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Abstract. Optimization of complex particle transport simulation packages could be 
managed using genetic algorithms as a tuning instrument for learning statistics and 
behavior of multi-objective optimisation functions. Combination of genetic 
algorithm and unsupervised machine learning could significantly increase 
convergence of algorithm to true Pareto Front (PF). We tried to apply specific 
multivariate analysis operator that can be used in case of expensive fitness function 
evaluations, in order to speed-up the convergence of the "black-box" optimization 
problem. The results delivered in the article shows that current approach could be 
used for any type of genetic algorithm and deployed as a separate genetic operator. 
Keywords: machine learning, genetic algorithm, Pareto Front, principle component 
analysis,  transport particle simulations. 

 INTRODUCTION 

A set of scientific researches that required data verification or generating big set 
of datasets like the studies in cosmology, high energy physics (HEP), biology and 
genetics, require the development of new approaches and methods for their 
efficient analysis on modern computer platforms. 

In the point of the work on analyzing and optimizing the performance of the 
GeantV code [1], which is the prototype of the next-generation particle transport 
simulation software intended to succeed to Geant4 [2], which is the current 
golden standard in high energy physics (HEP) and beyond. Geant4 is a toolkit for 
simulation of the passage of particles through different kinds of matter, with 
application including high energy and nuclear physics, accelerator physics, 
medicine and space science and it is widely used in HEP experiments at the Large 
Hadron Collider (LHC) located at CERN (Geneva, Switzerland). 

As a history, GeantV project had been started in 2013 with an R&D phase 
focused on optimal exploitation of instruction level parallelism for particle 
transport simulation both on CPU and on accelerators such as GPUs and Intel 
Xeon Phi [3]. 

GeantV is based on a specially developed vectorized computational solid 
geometry (CSG) modeler, which provides a set of optimized shape primitives and 
highly parallel geometry navigator and necessary ray-tracing functionality for the 
efficient propagation of particles through the target geometry [4]. 



Multivariate convergence-targeted operator for the genetic algorithm … 

Системні дослідження та інформаційні технології, 2017, № 1 127

The goal of GeantV project is to optimize the simulation algorithms to get 
maximum benefit from highly massive parallel SIMD/MIMD architectures [5] 
while finding the optimal point for factors focused on computational performance 
(floating-point performance, off-chip memory bandwidth, usage of cache and 
memory hierarchy and etc.). As a consequence, a large number of parameters 
have to be optimized and GeantV optimization task can be treated as a black-box 
problem. 

DTLZ [6] set of benchmarks is covering cases in convex and non-convex, 
separable and non separable and multimodal functions with degenerate Pareto 
optimal fronts or disconnected Pareto optimal fronts, and disconnected Pareto 
optimal sets. These helps us to prototype of behavior of our algorithm in case of 
different set of realistic functions. The objective of this work is to observe 
whether, by using unsupervised machine learning, we can accelerate the process 
of finding a Pareto front. 

Also using genetic algorithm together with machine learning approach we 
will try to analyze convergence and fixed points of evolutionary systems, trying to 
accelerate convergence rate of algorithm for “black-box” optimization. Before 
going to optimize Geant-V simulations, we will try to prototype algorithm’s 
performance on a set of numerical DTLZ benchmarks [6] in order to accelerate 
their convergence to the true Pareto front via the integration of multi-objective 
search/optimisation (MOO) algorithms and unsupervised machine learning 
Principal Component Analisis (PCA) and kernel PCA. 

GENETIC ALGORITHMS AS A DYNAMIC SYSTEM 

Genetic algorithm is one of the widely used evolutionary algorithms for studies of 
various optimization problems, in the same time the theory of genetic algorithms 
(GA) was a subject of research for the last decades. The easiest model for 
studying GA is a simple model of genetic algorithm (SGA)[7], that could be used 
as a prototype of evolutionary system. This model is describing genetic algorithm 
(GA) as a dynamical system with accurate mathematical definitions and well 
studied in a literature. 

In the model for description of GA as a Markov chain is used next 
definitions where states are populations and transition are operated by sets of 
genetic operators: selection, crossover and mutation [8]. Mutation ensures that the 
Markov chain is connected, therefore there is an unique equilibrium distribution 
over populations, the probability to produce a particular population in one 
generation depends only on the previous generation external influencing factors. 
This randomized process is described by a Markov chain, characterized by a 
transition matrix pq rr,Θ  from the population pr  to the population qr . 

Dynamical systems describe the evolution of individuals in the finite space 
of possible populations of fixed size m , where m  is number of measurements 
during the experiment. While rethinking the genetic algorithms as a discrete 
dynamical system, many interesting mathematical objects like fixed points could 
be found. These objects are apparently not only generic for simple genetic 
algorithms, but also general for optimization problems. Let’s briefly recall the 
results presented in [7] and establish the possible links with the task of optimizing 
our parameters. 
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We have a population of N  different types of individuals in search sample 
space Ω . Each element of Ω  can be thought of as a “unique individual” with 
a given fitness value defined by the cost function. 

A population consists of m -subsets ( Nm = ) each of which contains 
i

vα  of 

the iα -type individual where mi 1,...,=  and defined by vector  

 t
m

bbbb ),...,,(=
21 ααα

r
, 

where Ω∈αi . The size of the population is 
i

m
i bm α∑ 1== . 

We can redefine the population vector in the following form  

 t
Npppp ),...,,(= 21

r , 

where )/=(
1

mbpp
i ααα  is the probability of occurrence α -th individual in the 

population vector b
r

. 
In the mentioned before representation the repeated application of the 

genetic algorithm gives a sequence of vectors Λ∈pr  where  

 1}.=1,0|),...,,{(=
1=

21 α
α

α ∑≤≤∈Λ ppRppp
N

Nt
N  

Λ  is a set of admissible states for the populations. We can consider Λ  as a 
1)( −N -dimensional simplex (a hyper-tetrahedron). 

)( pG r
α  is a certain probability of producing individual α  in the next 

generation if the previous population was pr  and define map Λ→Λ:G , where 
)(=)( pGpG rr

αΩ∈α∏ , and Λ∈)( pG r  could be considered as heuristic function. 
)( pG r  is GA procedure on Λ∈pr  and the map G  is actually the composition of 

three different maps: selection, mutation and crossover. 
Let define genetic selection operator Λ→Λ:F , where )(=)( pFpF rr

αΩ∈α∏  
and the α -th component, )( pF r

α , represents the probability of the appearance of 
an individual of type α  if the selection is applied to Λ∈pr . A selection operator 
chooses individuals from the current population using the cost function vector, 

NRff ∈α}{=
r

, where )(= αα ff , Ω∈α . This generic type of selection collects 
elements with probability proportional to their fitness. This corresponds to a 
heuristic function  

 ,)(diag=)(
pf

pfpF t rr
r

r

⋅
⋅  

where Λ∈pr  is the population vector, and )(diag f
r

 is the matrix with entries 
from f

r
 along the diagonal and zeros elsewhere. 

The mutation operator Λ→Λ:U  is an NN ×  real valued matrix with 
),( βα -th entry 0>,βαu  for all βα, , and βα,u  represents the probability that 

individual Ω∈β  mutates into Ω∈α . Then α⋅ )( pU r  is the appearance of an 
individual of type α  after applying a mutation to the population pr . 
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Crossover operator is defined Λ→Λ:C  as 

 )ˆ,...,ˆ(=)( 1 pCppCppC N
tt rrrrr

⋅⋅⋅⋅ , 

for Λ∈pr , where NCC ˆ,...,ˆ
1  is a sequence of symmetric non-negative NN ×  real-

valued matrices. Here )(ˆ pC r
α  represents the probability that an individual α  is 

generated by applying the crossover to population pr . 
Combining the selection, mutation and crossover maps we obtain the 

complete operator Ĝ  for the genetic algorithm (GA map)  

 ).(ˆˆ=)(ˆ,:ˆ pFUCpGG r
oo

r
Λ→Λ  

If we know the heuristic function G , we can write the transition matrix 
which is stochastic and based on the probability of transforming the population pr  
into the population qr :  

 ( )
( ) ,

!
)(!=,
α

α
α

Ω∈α
∏Θ

qm
pGm

qm

pq

r
rr  (1) 

where )( pG r
α  is probability of producing individual α  in the next generation and 

αqM  is the number of copies of individuals α  in the population qr , m  is the size 
of the population. 

As a brief review, the convergence properties of the simple genetic 
algorithm evolution schema was properly explored in the work [9]. While [10] 
showed that the convergence rate of the genetic algorithm is determined by the 
second largest eigenvalue of the transition matrix (1). The details of the proof was 
performed for diagonalizable transition matrices and transferred to matrices in 
Jordan normal form. 

Another remarkable feature of the SGA is the presence of a rich structure of 
fixed and metastable points (for a detailed discussion see [8]). 

Describing GA model through Markov chain representation we try to 
discover "hotspots" and find algorithmic or data patterns that could be used for 
improvement of the GA. 

For the optimization of the GeantV simulation, we identify a set of 
optimization parameters important for the performance of particle transport 
simulations (e.g. the size of vector of particles to be transported or other 
significant design features) and build the data matrix }{=}){(=, ααα xxX ii

rr  which 
contains the values of these parameters. In this matrix index i  enumerates the 
tuning parameters ( ni 1,...,= ) and index α  enumerates the number of 
measurements of the parameters ( M1,...,=α  for M  measurements), while in 
terms of GA index α  enumerates M  individuals and the population vector is 
constituted by ),...,,( 21 Mxxx rrr  

Recall the data and probabilistic sample representation. In the first case we 
can associate the vector based on the measurements of the i -th parameter 

})(,...,)(,){(=}){(= 21 M
'
i

'
i

'
i

'
i

'
i xxxxx rrrrr

α , where the component α)( '
ixr  corresponds 

to the value of the i -th parameter in the α -th measurement with the population 
vector ),...,,( 21

'
n

'' xxx rrr . 
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In the second case )(xPi  be the probability distribution function of the 
measurements of the i -th parameter, with normalization  

 1.=)(xdxPi∫
∞

∞−
 

Using the previous strategy we associate the population vector  

 ),...,,(with),...,,( 2121
'
n

''
n xxxppp rrrrrr , 

where  
 },)(,...,)(,){(= 21 Miiii pppp rrrr  

and the component α)( ipr  is the probability to measure of the i -th parameter 

value α)( '
ixr  in the α -th measurement. 

One of the challenges of a Markov chains is to determine the evolution of 
the components along an appropriate direction for faster convergence to 
equilibrium. Using Principal Component Analysis (PCA) allows to check the 
genetic algorithm parameter sensitivity and the possible correlation between 
parameters. For this we introduce a operator that will be based on PCA and 
inverse PCA noise reduction operation for a genetic algorithm’s optimisation of 
set of parameters. 

We considered a possibility to improve the convergence rate by adding to a 
standard set of GA operator’s (selection, mutation, crossing), a new operator P̂  
performing uncentered PCA on the GA populations. We will analyze the result of 
the implementation of the operator on the uncentered data matrix on standard GA 
performance benchmarks. From the experimental output we see that as in the 
SGA case [10], the convergence rate of genetic algorithm depends on the 
eigenvalues following the highest one, and for this reason the proposed operator 
P̂  was applied on them. 

UNCENTERED PCA AS A SVD APPROXIMATION  
FOR POPULATION DATA MATRIX 

In PCA, we usually manipulate with centered data matrix in order to reduce a 
complex data set (in our case performance measurements data) to a lower 
dimensional set through analyzing the covariance matrix. Here is presented a way 
that a “sort of PCA” could be implemented on an uncentered data matrix. This is 
particularly convenient in the case of transformations of constrained data 
measurements using genetic algorithms, which are in our case highly constrained 
and multi-scaled performance parameters. As a basis of ideas about the 
connection between the centered and uncentered data matrix was used ideas from 
[11, 12]. 

PCA for centered data matrix and SVD 

Let briefly recall PCA for the centered data matrix. The elements of the data 
matrix X̂  of size nm×  are described through m -samples of data from an n -
dimensional space. In our case m  is the number of individuals in the generation 
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and n  is the size of the individual ( n  is the dimension of vector of genes 
)(1}{= nixx i ≤≤

r . 
Let ),1}(1){(= nimxx i ≤≤≤α≤αα

rr  is α -th individual of the population and 

 },){(=}{=ˆ
, ii xXX αα

r  

be a uncentered data matrix, size nm× . Let us define the centered data matrix Ŷ : 

 },){(=}{=}{=ˆ
,, iiii yXYY ααα μ−

r  

where iμ  is mean over M -individuals of i -th component of the gene:  

 }.{=,1,1= ,
1=

ii

m

i niX
m

μμ≤≤μ α
α
∑ r  

The centered data matrix defines the covariance matrix Σ̂ : 

 j
t

iji
t YY

m
YY

m ,,,
1=}{=ˆˆ1=ˆ

ααΣ⋅Σ  

with the matrix multiplication repeated induces imply summation. Similarly for 
the uncentered data matrix we obtain the matrix of non-central second moments,  

 j
t
iji

t XX
m

TXX
m

T ,,,
1=}{=ˆˆ1=ˆ

αα⋅ . 

In standard PCA terms the first principal component (PC) 
)1,...,=(}{= ,11 mvv αα

r  is the linear combination  

 1,=,== 11,1,
1=

1,1 uuuYuyv t
ii

n

i

t rrrr
⋅⋅ ααα ∑  

where the orthonormal n-dimensional vector t
n

t uuu ),...,(= ,11,11
r  is defined from 

condition that the first principal component has the largest variance  

 .1=
2

,1,
1=1=

2
1 ⎥

⎦

⎤
⎢
⎣

⎡
σ α

α
∑∑ ii

n

i

m

u uY
m

 

The second principal component is the linear combination with the second 
largest variance and orthogonal to the first principal component, and so on. 

To calculate PC, it is more comfortable to review the variational problem. 
For }{=}{= , iiuYvv αα

r  we have  

 uuuYYu
m

v ttt rrrrr
⋅Σ⋅⋅⋅⋅ ˆ=ˆˆ1=)(Var  (2) 

and the Lagrangian for the variational problem  

 1).(ˆ=L −λ+⋅Σ⋅ uuuu tt rrrr  

The stationary condition is  

 .=ˆ0,=2ˆ2= uuuu
u
L rrrr
r λ⋅Σλ−⋅Σ

∂
∂  
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This matrix equation has n  solutions  

 ,1,=ˆ )( njuu j
c
jj ≤≤λ⋅Σ
rr  

where jur  are eigenvectors of Σ̂  with the eigenvalue jλ  and jur  satisfy the 
orthonormality condition  
 ,,1,= , njiuu jij

t
i ≤≤δ⋅

rr  (3) 
and  

 .=ˆ
jj

t
j uu λ⋅Σ⋅

rr

 (4) 
Then the direction with maximum variance is the eigenvector with the 

largest eigenvalue. This procedure can be iterated to get the second largest 
variance projection (orthogonal to the first one), and so on. 

From (2) it follows that the variance of the i -th centered principal 
component  
 ii

t
ii uuv λ⋅Σ⋅ =ˆ=)(Var rrr  

and the covariance of the i -th and j -th centered principal components  

 .0,=ˆ=),(Cov jiuuvv j
t
iji ≠⋅Σ⋅

rrrr  

Defining the matrix as jijji uuU )(==,
r , which consists from the 

eigenvectors of the covariance matrix Σ̂ . From (3) this matrix satisfies the 
orthogonality condition  

 .= ,,, jiji
t
ii UU δ′′  (5) 

Then from (4) we have  

 ,=,ˆ=ˆˆˆ
,, jiiji

t UU δλΛΛ⋅Σ⋅  (6) 

Let define the matrix }){(=}{=, jjj vvV αα
r , where jvr  — j -th centered 

principal compoent. Then  

 ,1,= ,,, mUYV jiij ≤α≤αα  (7) 

and the first principal component 1vr  

 1,1,,1,1 === uyUYVv t
ii

rr
⋅αααα  

if 1λ  is the largest eigenvalue. From (5), (6) we have  

 .== ,,,, jiijij
t

i mmVV δλΛαα  

It is convenient to define the new matrix jV ,
~
α  

 ,=,~= ,
1/21/2

,
1/2
,,, jiijijiij VmV δλΛΛαα  

which satify the condition 

 ,=~~
,,,, jij

t
i VV δαα  
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The matrix })~{(=~
, αα jj vV  consists from eigenvectors α)~( jv  of the matrix 

tYYK ⋅ˆ=ˆ  of the size mm×  

 .)~(=)~(=)~( ,,, αββαββα λ jjj
t

kkj vvYYvK  

with the same eigenvalues as in (4). From (7) we have  

 ,= ,,,
t

ijji UVY αα  
and obtain the Singular Value Decomposition (SVD) [13] for the centered data 
matrix  

 .~= ,
1/2
,,,

t
ijjiii UVmY Λαα  (8) 

We suppose that the covariance matrix Σ̂  has )( pn −  smallest eigenvalues 
njpj ≤≤+λ 11,= . Then we can apply the dimension reduction and after the 

reverse PCA, we obtain the output data matrix iY ,α :  

 =~~= ,
1/2
,,,

t
ijjiii UVmY Λαα .)~...~( ,,

1/2
1,,1

1/2
1

t
ippp

t
i UVUVm αα λ++λ .  (9) 

The approximation of matrix iY ,α  is the matrix iY ,α  of reduced rank nm < . 
This transformation is also known as the discrete Karhunen-Loéve or the 
Hotelling transformation [16]. 

Using the SVD representation (8) and (9) for the centered data matrix we can 
calculate the mean square error (the standard error)  

 
=)(1= 2

,,
1=1=

ii

n

i

m

m YY
nm αα

α
−η ∑∑

 

 .1=~1=
1=
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,,
1=1=1=

k
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pk

t
ikkk

n

pk

n

i

m

n
UVm

nm
λ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
λ ∑∑∑∑

+
α

+α
 

Thus the minimum error is obtained if the covariance matrix Σ̂  has )( pn −  
smallest eigenvalues njpj ≤≤+λ 1,  and the Hotelling transformation can be 
considered as the “eigenvalue control parameter” approximation. 

PCA for uncentered data matrix and SVD 

Next step is to apply the PCA method for the uncentered data matrix X̂ . 
Vectors )(1 njw j ≤≤

r  are eigenvectors of the matrix of non-central second 
moments  

 ,ˆˆ1=ˆ XX
m

T t ⋅  

with the corresponding eigenvalues jt  

 ,1,=ˆ njwtwT jjj ≤≤⋅
rr  (10) 

 and satisfy the orthonormality condition  
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 .,1,= , njiww jij
t
i ≤≤δ⋅

rr  

Then  

 .=ˆ
jj

t
j twTw rr

⋅⋅  (11) 
We define matrix jijji wwW )(=}{=,

r  that satisfies the orthogonality 
condition  

 .ˆ=ˆˆ IWW t ⋅  (12) 
From (11) we have  

 .=,ˆ=ˆˆˆ
,, jiiji

t tWTW δΔΔ⋅⋅  (13) 

Let )1,...,=(}{=}){(= mwx j
t

jj α⋅θθ αα
rrr

 is j -th uncentered principal 

component. By analogy with (7) we define the matrix }){(=}{=, αα θθΘ jjj
r

 

 ,1,= ,,, mWX jiij ≤α≤Θ αα  (14) 

which from (12) and (13) satisfy the condition  

 .== ,,,, jiijij
t
i mtm δΔΘΘ αα  (15) 

For the variance of j -th uncentered principal component we obtain  

 ),,(cos=)(1==)(Var 22
2

,,
1=1=

2
, jjjiii

n

i

m

jj wtWX
m

rrrr
μμ−⎥

⎦

⎤
⎢
⎣

⎡
μ−σθ α

α
θ ∑∑  

For case of uncentered matrix we do not have a simple relationship between 
the eigenvalues jt  and the variance j -th uncentered principal component 

2
, )( jθσ  as for the centered data matrix. However, this property is not essential for 

the usage of the PCA method for the GA and in this case it is convenient to apply 
the “eigenvalue control parameter” approximation. The idea is to use the PCA 
method for the SVD representation of the uncentered data matrix. 

We define the matrix j,
~
αΘ  

 .=,~= ,
1/21/2

,
1/2
,,, jiijijiij tm δΔΔΘΘ αα  (16) 

From (15) and (16) we obtain:  

 .=~~
,,, jij

t
i δΘΘ αα  

Using (16), (15) and (11) it is not hard to show that }
~

{=~
, jj θΘα

r
 is the 

matrix of eigenvectors αθ )~( j  of the matrix tXXK ˆˆ=~
⋅  of size mm×  

 .)~(=)~(=)~(~
,,, αββαββα θθθ jjj

t
kkj tXXK  

From (14) we obtain the representation for the uncentered data matrix  

 ,= ,,,
t
ijji WX αα Θ   
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 from which we get the SVD representation for the uncentered data matrix  

 .~= ,
1/2

,,,
t
ijjkki WmX ΔΘαα   

If the matrix of non-central second moments T̂  has )( qn −  smallest 
eigenvalues njqt j ≤≤+11,=  we can use the “eigenvalue control parameter” 

approximation and get the output data matrix jX ,
~
α  of rang q  

 =~~=~
,

1/2
,,,

t
ijjkki WmX ΔΘαα ,)~...~( ,,

1/2
1,,1

1/2
1

t
iqqq

t
i WtWtm αα Θ++Θ   (17) 

where the eigenvalue matrix jk ,
~
Δ  has rang q 0)==...==( 21 nqq ttt ++ . 

We approximate iX ,α  with rank n  by the matrix iX ,
~
α  which has rank q . 

This is the analog of the Hotelling transformation. 
Using the SVD representation we can estimate the mean square error qη  for 

this approximation:  

 =)~(1= 2
,,

1=1=
ii

n

i

m

q XX
mn αα

α
−η ∑∑  

 .1=~1=
1=

2

,,
1=1=1=

k

n

qk

t
ikkk

n

qk

n

i

m
t

n
Wtm

mn ∑∑∑∑
+

α
+α

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Θ  

The minimum error is obtained in the case if the matrix of non-central 
second moments T̂  has )( qn −  smallest eigenvalues njqt j ≤≤+1, . 

The second case we can get this approximation using a projector P̂ , which 
projects the data matrix X̂  onto the subspace spanned by the principal axes with 
largest eigenvalues ,jt  qj ≤≤1 . Let define matrix ikkki wwW )(=}{=~

, ′′′
r  

)(1 qk ≤′≤  of the size qn× . This matrix consists from the first q  largest 
eigenvectors kw ′

r  (20). 

The projector )(1,ˆ qP  is defined the following way  

 .ˆ=ˆˆ,~~=ˆ )(1,)(1,)(1,
,,

)(1,
,

qqqt
jkki

q
ji PPPWWP ⋅′′  

Then it is not hard to show that the approximation iX ,
~
α  in (17) can be 

written using the projector )(1,ˆ qP  

 ....=ˆ=~
,,1,,11

)(1,
,,,

t
jqqq

t
j

q
jiij WtWtPXX αααα Θ++Θ  

Analysis of eigenvalues in SVD representation of the uncentered input data 
matrix iX ,α  used as population in GA can significantly accelerate the processes 
of finding the Pareto front for the MOP. We verified this hypothesis for the 
standard GA test problems [6]. 

Eigenvectors with the largest eigenvalues likely determine the subspace of 
solutions of the MOP in which lies the Pareto front. Using an iterative procedure 



O. Shadura, A. Petrenko, S. Svistunov 

ISSN 1681–6048 System Research & Information Technologies, 2017, № 1 136

for uncentered data matrix from MOP we can faster converge to the optimal 
solution subspace. 

PCA-based genetic operator )(ˆˆˆ=)( pFUCPpGP
r

ooo
r  allows to check the 

genetic algorithms parameter sensitivity and the possible correlation between 
parameters. We introduced a new algorithmic step applied to generation 
modification step that performs data transformation based on PCA and inverse 
PCA noise reduction operation the set of parameters used for GA. 

EVOLUTIONARY SCHEMA PERFORMANCE IMPROVEMENT FOR NSGA-II 

In the article we propose to modify NSGA-II [14] as one of the most common 
GAs with specific operator shown on figure 1 that can be regarded as a denoising 
factor for faster approximation and convergence to the true Pareto front consisting 
of ideal individuals, we can apply orthogonal transformation to be able to 
discover strong patterns in data set. NSGA-II features fast non-dominance sorting 
procedure of population and preservation of a good convergence rate to the 
optimal Pareto set and it preserves a spread of best individuals is using a diversity 
preservation operation called crowding distance and non-dominated ranking 
procedure. In case of NSGA-III [15] as a evolution of NSGA-II has more specific 
algorithm schema based on reference point’s selection procedure. 

On a Fig. 1 is shown how was integrated operator performing UPCA in the 
algorithm. It is particularly important to notice that authors tested more 
combinations, and case of schema described on Fig. 1, we got maximum of 
benefits in speedup and algorithm convergence caused by increased size of 
population matrix used for tournament selection pool. 

RESULTS OF RUNNING DTLZ BENCHMARKS 

The DTLZ problems [6] are a set of numerical MOP benchmarks that are used for 
comparing and validating results from different GA algorithms. We present 
results of the DTLZ benchmarks [6] for NSGA-II and NSGA-II with PCA noise 
cleanup operator. We recognized that currently NSGA-III is outperforming 
NSGA-II but here results are provided as a proof of concept. On Figure 2, 5 are 

Fig. 1. New schema of algorithm 
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presented the parameter distribution (mean and standard deviation values) and 
cost function values behavior depending on used algorithms.  

Comparing Fig. 5, 6 and Fig. 7 where was applied noise-removing procedure 
and Figure 2, 3 and Figure 4 where was not, we can observe faster convergence to 

PopDist10 
Entries 2400 
Mean 0,4911 

Std deviation 0,2422 

Population distribution 

TGenes/Bins 

z 

Fig. 2. Population distribution on 10th generation - NSGA-II - DTLZ2 
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Fig. 3. Pareto Front on 10th generation of NSGA-II - DTLZ2 
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Fig. 4. Pareto Front on 40th generation of NSGA-II - DTLZ4 
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the ideal values of the parameters in the first case. Fig. 7 and Fig. 6 show the first 
approach to Pareto front in combination with correct set of parameters. 

Fig. 6. Pareto Front on 10th generation of NSGA-II with preprocessing of data - DTLZ2 
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Fig. 5. Population distribution on 10th generation — NSGA-II with preprocessing of 
data -DTLZ2 
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Fig.7. Pareto Front on 40th generation of NSGA-II with preprocessing of data - DTLZ4 
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The next steps of our work will be to agree our concept with the existence of 
fixed points in dynamical systems, to re-evaluate a possible speedup comparing to 
other algorithms together with the “black-box” benchmarks [17] and port a new 
algorithm as a part of the optimization framework for GeantV particle transport 
simulations code. 

CONCLUSIONS 

In this work we tried to explore the possibility to combine genetic algorithms and 
unsupervised machine learning (PCA/UPCA/SVD/KPCA) to obtain a powerful 
combination that speedup existing GA algorithms. Usage of this algorithm for 
performance optimization of simulation of particle physics with clearly give 
benefit in finding optimal value with smaller number evolutions with costly 
fitness function. Next step of work is to implement this algorithm as a part of 
optimization routine in Geant-V project and test a benefits in full scale mode 
system. 
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