ИССЛЕДОВАНИЕ ДВОЙСТВЕННОЙ ЗАДАЧИ ОПТИМИЗАЦИИ ИНВЕСТИЦИОННОГО ПОРТФЕЛЯ В НЕЧЕТКИХ УСЛОВИЯХ

Ю.П. ЗАЙЧЕНКО, ОВИ НАФАС АГАИ АГ ГАМИШ

Рассмотрена и исследована двойственная задача оптимизации инвестиционного портфеля в условиях неопределенности. Получены достаточные условия выпуклости математической модели этой задачи. Приведены результаты экспериментальных исследований получаемых решений прямой и двойственной задач нечеткой портфельной оптимизации.

ВВЕДЕНИЕ

В последние годы проблема оптимизации инвестиционных портфелей представляет значительный интерес в связи с развитием финансовых рынков в Украине и мире. Нахождение оптимального портфеля позволяет инвесторам и финансовым фондам распределять финансовые средства в портфели ценных бумаг с целью получения максимально возможной прибыли, а также сокращения риска принятых решений.

Особенностью данной проблемы является существенная неопределенность исходной информации относительно доходности ценных бумаг (ЦБ) в будущий момент времени. Новый подход к задаче оптимизации портфеля, который позволяет учесть неопределенность исходных данных и является альтернативой классической модели Марковица, базируется на применении аппарата нечетких множеств. Проблема нечеткой портфельной оптимизации была рассмотрена и исследована в работах [1, 2, 3]. В этих работах рассматривалась следующая постановка задачи: необходимо оптимизировать ожидаемую доходность портфеля при ограничениях на возможный риск. Алгоритм для решения этой задачи предложен и исследован в [2]. В работе [3] было предложено использовать прогнозирование доходностей акций, что позволило повысить эффективность получаемых решений.

Цель работы — рассмотрение двойственной задачи нечеткой портфельной оптимизации, ее исследование и определение достаточных условий ее выпуклости.

ДВОЙСТВЕННАЯ ЗАДАЧА НЕЧЕТКОЙ ПОРТФЕЛЬНОЙ ОПТИМИЗАЦИИ

Исходная задача оптимизации нечеткого портфеля, которую естественно называть прямой, имеет следующий вид [1, 2].

Найти ожидаемую доходность нечеткого портфеля

$$\widetilde{r} = \sum_{i=1}^{N} \widetilde{r}_{i} x_{i} \to \max$$
 (1)

© Ю.П. Зайченко, Ови Нафас Агаи Аг Гамиш, 2011

при ограничениях на риск

$$0 < \beta < 1, \tag{2}$$

$$\sum_{i=1}^{N} x_i = 1, (3)$$

$$x_i \ge 0. \tag{4}$$

При этом доходность i-й ценной бумаги (ЦБ) рассматривается как нечеткое число с треугольной функцией принадлежности:

$$r_i = \{r_{i1}, \widetilde{r}_i, r_{i2}\},$$

где $\widetilde{r_i}$ — ожидаемая доходность i-той ценной бумаги; r_{i1} — нижняя граница доходности i-той ценной бумаги; r_{i2} — верхняя граница доходности i-й ценной бумаги. Тогда доходность по портфелю:

$$r = \left(r_{\min} = \sum_{i=1}^{N} r_{i1} x_i; \quad \widetilde{r} = \sum_{i=1}^{N} \widetilde{r}_i x_i; \quad r_{\max} = \sum_{i=1}^{N} r_{i2} x_i\right),$$

также является треугольным нечетким числом (как линейная комбинация треугольных нечетких чисел), где x_i — вес i-го актива в портфеле.

Рассмотрим случай, когда критериальное значение доходности r^* удовлетворяет условиям:

$$r_{\min} = \sum_{i=1}^{N} x_i r_{i1} \le r^* \le \sum_{i=1}^{N} x_i \widetilde{r}_i = \widetilde{r} . \tag{5}$$

Тогда величина риска равна [1, 2]:

$$\beta(x) = \frac{1}{\sum_{i=1}^{N} x_i r_{i2} - \sum_{i=1}^{N} x_i r_{i1}} \times$$

$$\times \left[\left(r^* - \sum_{i=1}^{N} x_i r_{i1} \right) + \left(\sum_{i=1}^{N} x_i \widetilde{r}_i - r^* \right) \ln \left(\frac{\sum_{i=1}^{N} x_i \widetilde{r}_i - r^*}{\sum_{i=1}^{N} x_i \widetilde{r}_i - \sum_{i=1}^{N} x_i r_{i1}} \right) \right]. \tag{6}$$

Рассмотрим двойственную задачу оптимизации нечеткого портфеля относительно задачи (1)–(4):

минимизировать
$$\beta(x)$$
, (7)

при условиях $\widetilde{r} = \sum_{i=1}^{N} x_i \widetilde{r_i} \ge r_{3 \text{ад}} = r^*, \tag{8}$

$$\sum_{i=1}^{N} x_i = 1, \quad x_i \ge 0.$$
 (9)

Требуется доказать, что функция риска $\beta(x)$ является выпуклой, где

$$\beta(x) = \left(A(x) + B(x) \ln \frac{B(x)}{C(x)}\right) D(x).$$

Для этого необходимо доказать, что функция

$$D(x) = \frac{1}{\sum_{i=1}^{N} x_i r_{i2} - \sum_{i=1}^{N} x_i r_{i1}}$$
 — выпуклая,

и функция

$$A(x) + B(x) \ln \frac{B(x)}{C(x)}$$
 также выпуклая,

где
$$A(x) = r^* - \sum_{i=1}^N x_i r_{i1}$$
, $B(x) = \sum_{i=1}^N x_i \widetilde{r}_i - r^*$, $C(x) = \sum_{i=1}^N x_i \widetilde{r}_i - \sum_{i=1}^N x_i r_{i1}$.

Кроме того, обе функции являются убывающими по x_i и неотрицательными.

Действительно A(x) — линейна, и поэтому не строго выпуклая, а функции B(x) и C(x) также линейны.

Кроме того, $r_{i2} \ge r_{i1}$, $1 \le i \le N$, $\sum_{i=1}^N x_i \widetilde{r_i} - r^* > 0$ по предположению (условие (8)).

Рассмотрим функцию D(x) и найдем ее первые производные:

$$\frac{\partial D(x)}{\partial x_i} = D'(x) = -\frac{r_{i2} - r_{i1}}{\left(\sum_{i=1}^{N} x_i (r_{i2} - r_{i1})\right)^2} < 0,$$

$$\frac{\partial^2 D(x)}{\partial x_i^2} = \frac{2(r_{i2} - r_{i1})^2}{\left(\sum_{i=1}^{N} x_i (r_{i2} - r_{i1})\right)^3} > 0.$$

Так как $r_{i2} > r_{i1}$, то $\frac{\partial^2 D(x)}{\partial x_i^2} > 0$, для всех $1 \le i \le N$. Следовательно,

функция D(x) выпуклая.

Вычислим:

$$\frac{\partial}{\partial x_i} \left[B(x) \ln \frac{B(x)}{C(x)} \right] = B'(x) \ln \frac{B(x)}{C(x)} + B(x) - \frac{C'(x)B(x)}{C(x)}. \tag{10}$$

Поскольку

$$C'(x) = \frac{\partial}{\partial x_i} C(x) = \widetilde{r_i} - r_{i1}, \quad B'(x) = \frac{\partial B(x)}{\partial x_i} = \widetilde{r_i},$$

то подставляя в (10), получим:

$$\frac{\partial}{\partial x_i} \left[B(x) \ln \frac{B(x)}{C(x)} \right] = \widetilde{r}_i \ln \frac{B(x)}{C(x)} + \widetilde{r}_i - (\widetilde{r}_i - r_{i1}) \frac{B(x)}{C(x)}. \tag{11}$$

Найдем вторую частную производную

$$\frac{\partial^{2}}{\partial x_{i}^{2}} \left[B(x) \ln \frac{B(x)}{C(x)} \right] = \widetilde{r}_{i} \frac{C(x)}{B(x)} \frac{B'(x)C(x) - C'(x)B(x)}{C^{2}(x)} - \left(\widetilde{r}_{i} - r_{i1} \right) \frac{B'(x)C(x) - C'(x)B(x)}{C^{2}(x)} = \right]$$

$$= \widetilde{r}_{i} \left(\frac{B'(x)}{B(x)} - \frac{C'(x)}{C(x)} \right) - \left(\widetilde{r}_{i} - r_{i1} \right) \left[\frac{B'(x)}{C(x)} - \frac{C'(x)B(x)}{C^{2}(x)} \right] =$$

$$= \widetilde{r}_{i} \left[\frac{\widetilde{r}_{i}}{\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*}} - \frac{\widetilde{r}_{i} - r_{i1}}{\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - \sum_{i=1}^{N} x_{i} r_{i1}} \right] -$$
(12)

$$-(\widetilde{r}_{i} - r_{i1}) \left[\frac{\widetilde{r}_{i}}{\sum_{i=1}^{N} x_{i}(\widetilde{r}_{i} - r_{i1})} - \frac{\left(\sum_{i=1}^{N} x_{i}\widetilde{r}_{i} - r^{*}\right)(\widetilde{r}_{i} - r_{i1})}{\left(\sum_{i=1}^{N} x_{i}(\widetilde{r}_{i} - r_{i1})\right)^{2}} \right] = (13)$$

$$= \frac{\widetilde{r_i}^2}{\sum_{i=1}^N x_i \widetilde{r_i} - r^*} - \frac{2\widetilde{r_i} (\widetilde{r_i} - r_{i1})}{\sum_{i=1}^N x_i (\widetilde{r_i} - r_{i1})} + \frac{(\widetilde{r_i} - r_{i1})^2 \left(\sum_{i=1}^N x_i \widetilde{r_i} - r^*\right)}{\left(\sum_{i=1}^N x_i (\widetilde{r_i} - r_{i1})\right)^2}.$$
 (14)

После приведения к общему знаменателю выражения (14) получим:

$$\frac{\partial^{2}}{\partial x_{i}^{2}} \left[B(x) \ln \frac{B(x)}{C(x)} \right] =$$

$$= \frac{\widetilde{r}_{i}^{2} \left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1}) \right)^{2} - 2\widetilde{r}_{i} (\widetilde{r}_{i} - r_{i1}) \left(\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*} \right) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1}) \right)}{\left(\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*} \right) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1}) \right)^{2}} +
\frac{\left(\widetilde{r}_{i} - r_{i1} \right)^{2} \left(\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*} \right)^{2}}{\left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1}) \right)^{2} \left(\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*} \right)} =$$

$$= \frac{\left[\widetilde{r}_{i} \left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1}) \right) - \left(\widetilde{r}_{i} - r_{i1} \right) \left(\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*} \right) \right]^{2}}{\left(\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*} \right) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1}) \right)^{2}} \ge 0. \tag{15}$$

Так как $\widetilde{r}_i > (\widetilde{r}_i - r_{i1})$ и $\sum_{i=1}^N x_i (\widetilde{r}_i - r_{i1}) > \sum_{i=1}^N x_i \widetilde{r}_i - r^*$, то выражение (15)

строго больше нуля. Таким образом, все частные производные второго порядка больше нуля:

$$\Delta_{ii} = \frac{\partial^2}{\partial x_i^2} \left[B(x) \ln \frac{B(x)}{C(x)} \right] > 0,$$

и, соответственно,

$$\frac{\partial^2}{\partial x_i^2} \left[A(x) + B(x) \ln \frac{B(x)}{C(x)} \right] > 0.$$

Теперь необходимо показать, что все диагональные миноры вида:

$$\begin{bmatrix} \Delta_{ii} & \Delta_{ij} \\ \Delta_{ji} & \Delta_{jj} \end{bmatrix} = \Delta_{ii} \Delta_{jj} - \Delta_{ij} \Delta_{ji} = \Delta_{ii} \Delta_{jj} - \Delta_{ji}^{2} \ge 0.$$
 (16)

Эти условия будут достаточными для выпуклости функции $B(x) \ln \frac{B(x)}{C(x)}$, а следовательно, и исходной функции $A(x) + B(x) \ln \frac{B(x)}{C(x)}$.

Вычислим смешанные частные производные:

$$\frac{\partial^{2}}{\partial x_{i}\partial x_{j}} \left[B(x) \ln \frac{B(x)}{C(x)} \right] = \frac{\partial}{\partial x_{i}} \left(B'(x) \ln \frac{B(x)}{C(x)} + B'(x) - \frac{C'(x)B(x)}{C(x)} \right) =$$

$$= \widetilde{r}_{i} \frac{C(x)}{B(x)} \frac{B'_{j}(x)C(x) - C'_{j}(x)B(x)}{C^{2}(x)} - \left(\widetilde{r}_{i} - r_{i1} \right) \frac{B'_{j}(x)C(x) - C'_{j}(x)B(x)}{C^{2}(x)} =$$

$$= \widetilde{r}_{i} \left(\frac{B'_{j}(x)}{B(x)} - \frac{C'_{j}(x)}{C(x)} \right) - \left(\widetilde{r}_{i} - r_{i1} \right) \left[\frac{B'_{j}(x)}{C(x)} - \frac{C'_{j}(x)B(x)}{C^{2}(x)} \right], \tag{17}$$

где

$$B'_{j}(x) = \frac{\partial}{\partial x_{j}} B(x) = \widetilde{r}_{j}, C'_{j}(x) = \frac{\partial}{\partial x_{j}} C(x) = \widetilde{r}_{j} - r_{j1}.$$

Подставляя эти значения в (17), получим:

$$\widetilde{r_{i}} \left(\frac{\widetilde{r_{j}}}{\sum_{i=1}^{N} x_{i} \widetilde{r_{i}} - r^{*}} - \frac{\widetilde{r_{j}} - r_{j1}}{\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})} \right) - \frac{1}{\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})} - \frac{1}{\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})} - \frac{1}{\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})^{2}} = \frac{1}{\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})^{2} - r_{i} (\widetilde{r_{j}} - r_{j1}) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})^{2} \right) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1}) \right)} - \frac{1}{\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})^{2} \left(\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})^{2} \right) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1}) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r_{i}} - r_{i1})^{2} \right) \left(\sum_{i=1}^{N} x_{i} (\widetilde{r_{i$$

$$= \frac{\widetilde{r}_{i}\widetilde{r}_{j} \sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1})^{2} - (2\widetilde{r}_{i}\widetilde{r}_{j} - \widetilde{r}_{i}\widetilde{r}_{j1} - \widetilde{r}_{i1}\widetilde{r}_{j}) \sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1}) (\sum_{i=1}^{N} x_{i}\widetilde{r}_{i} - r^{*})}{\left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1})^{2}\right) \left(\sum_{i=1}^{N} x_{i}\widetilde{r}_{i} - r^{*}\right)} + \frac{\left(\widetilde{r}_{i} - r_{i1}\right) \left(\widetilde{r}_{j} - r_{j1}\right) \left(\sum_{i=1}^{N} x_{i}\widetilde{r}_{i} - r^{*}\right)^{2}}{\left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1})^{2}\right) \left(\sum_{i=1}^{N} x_{i}\widetilde{r}_{i} - r^{*}\right)}.$$

$$(19)$$

Для удобства и сокращения выкладок обозначим знаменатель

$$\left(\sum_{i=1}^{N} x_{i} (\widetilde{r}_{i} - r_{i1})^{2} \right) \left(\sum_{i=1}^{N} x_{i} \widetilde{r}_{i} - r^{*}\right) = E(x).$$
 (20)

Подставим выражение для Δ_{ii} и Δ_{ij} из (15) и (19) в (16) и получим:

$$\Delta_{ii}\Delta_{jj} - \Delta_{ji}^{2} = \frac{\left[\widetilde{r}_{i}\sum_{i=1}^{N}x_{i}(\widetilde{r}_{i} - r_{i1}) - (\widetilde{r}_{i} - r_{i1})\left(\sum_{i=1}^{N}x_{i}\widetilde{r}_{i} - r^{*}\right)\right]^{2}}{E(x)} \times \frac{\widetilde{r}_{j}\sum_{j=1}^{N}x_{j}(\widetilde{r}_{j} - r_{j1}) - (\widetilde{r}_{j} - r_{j1})\left(\sum_{i=1}^{N}x_{j}\widetilde{r}_{j} - r^{*}\right)^{2}}{E(x)} - \left[\widetilde{r}_{i}\widetilde{r}_{j}\sum_{i=1}^{N}x_{i}(\widetilde{r}_{i} - r_{i1})^{2} - (2\widetilde{r}_{i}\widetilde{r}_{j} - \widetilde{r}_{i}\widetilde{r}_{j1} - \widetilde{r}_{i1}\widetilde{r}_{j})\sum_{i=1}^{N}x_{i}(\widetilde{r}_{i} - r_{i1})\left(\sum_{i=1}^{N}x_{i}\widetilde{r}_{i} - r^{*}\right) + \frac{(\widetilde{r}_{i} - r_{i1})(\widetilde{r}_{j} - r_{j1})\left(\sum_{i=1}^{N}x_{i}\widetilde{r}_{i} - r^{*}\right)}{E^{2}(x)}\right]^{2}}{E^{2}(x)}.$$

$$(21)$$

Для дальнейшего упрощения введем обозначения:

$$\sum_{i=1}^{N} x_i (\widetilde{r}_i - r_{i1}) = \widetilde{r} - r_{min}; \quad \sum_{i=1}^{N} x_i \widetilde{r}_i - r^* = \widetilde{r} - r^*.$$

Подставляя их в (21), получим:

$$\Delta_{ii}\Delta_{jj} - \Delta_{ji}^{2} = \frac{\left[\widetilde{r}_{i}(\widetilde{r} - r_{\min}) - (\widetilde{r}_{i} - r_{i1})(\widetilde{r} - r^{*})\right]^{2}}{E^{2}(x)} *$$

$$*\frac{\left[\widetilde{r}_{j}(\widetilde{r} - r_{\min}) - (\widetilde{r}_{j} - r_{j1})(\widetilde{r} - r^{*})\right]^{2}}{E^{2}(x)} - \frac{\left\{\widetilde{r}_{i}\widetilde{r}_{j}(\widetilde{r} - r_{\min})^{2} - \left(2\widetilde{r}_{i}\widetilde{r}_{j} - \widetilde{r}_{i}r_{j1} - \widetilde{r}_{j}r_{i1}\right)(\widetilde{r} - r_{\min})(\widetilde{r} - r^{*})\right\}}{E^{2}(x)} +$$

$$+\frac{\left(\widetilde{r}_{i}-r_{i1}\right)\left(\widetilde{r}_{j}-r_{j1}\right)\left(\widetilde{r}-r^{*}\right)^{2}}{E^{2}(x)}.$$
(22)

Далее обозначим $\widetilde{r}_i(\widetilde{r}-r_{\min})-(\widetilde{r}_i-r_{i1})(\widetilde{r}-r^*)=F;$ $\Delta_{ji}=\frac{H}{E},$ $\widetilde{r}_j(\widetilde{r}-r_{\min})-(\widetilde{r}_j-r_{j1})(\widetilde{r}-r^*)=G$ и подставляя в (22), получим:

$$\Delta_{ii}\Delta_{jj} - \Delta_{ji}^2 = \frac{F^2G^2 - H^2}{E^2} = \frac{(FG - H)(FG + H)}{E^2} > 0.$$
 (23)

Условие неотрицательности для (23) таково: FG-H>0. Откуда

$$FG - H = \left[\widetilde{r}_{i}\left(\widetilde{r} - r_{\min}\right) - \left(\widetilde{r}_{i} - r_{i1}\right)\left(\widetilde{r} - r^{*}\right)\right]\left[\widetilde{r}_{j}\left(\widetilde{r} - r_{\min}\right) - \widetilde{r}_{j}\left(\widetilde{r}_{j} - r_{j1}\right)\left(\widetilde{r} - r^{*}\right)\right] - \widetilde{r}_{i}\widetilde{r}_{j}\left(\widetilde{r} - r_{\min}\right)^{2} + \left(2\widetilde{r}_{i}\widetilde{r}_{j} - \widetilde{r}_{i}r_{j1} - \widetilde{r}_{j}r_{i1}\right)\left(\widetilde{r} - r_{\min}\right)\left(\widetilde{r} - r^{*}\right) - \left(\widetilde{r}_{i} - r_{i1}\right)\left(\widetilde{r}_{j} - r_{j1}\right)\left(\widetilde{r} - r^{*}\right) = \widetilde{r}_{i}\widetilde{r}_{j}\left(\widetilde{r} - r_{\min}\right)^{2} - \left(\widetilde{r}_{i} - r_{i1}\right)\left(\widetilde{r} - r^{*}\right)\left(\widetilde{r} - r_{\min}\right) - \widetilde{r}_{i}\left(\widetilde{r} - r_{\min}\right)\left(\widetilde{r}_{j} - r_{j1}\right)\left(\widetilde{r} - r^{*}\right) + \left(\widetilde{r}_{i} - r_{i1}\right)\left(\widetilde{r}_{j} - r_{j1}\right)\left(\widetilde{r} - r^{*}\right)^{2} - \widetilde{r}_{i}\widetilde{r}_{j}\left(\widetilde{r} - r_{\min}\right)^{2} + \left(2\widetilde{r}_{i}\widetilde{r}_{j} - \widetilde{r}_{i}r_{j1} - \widetilde{r}_{j}r_{i1}\right)\left(\widetilde{r} - r_{\min}\right)\left(\widetilde{r} - r^{*}\right) - \left(\widetilde{r}_{i} - r_{i1}\right)\left(\widetilde{r}_{j} - r_{j1}\right)\left(\widetilde{r} - r^{*}\right)^{2} =$$

$$= \left(\widetilde{r} - r_{\min}\right)\left(\widetilde{r} - r^{*}\right)\left[-\widetilde{r}_{j}\left(\widetilde{r}_{i} - r_{i1}\right) - \widetilde{r}_{i}\left(\widetilde{r}_{j} - r_{j1}\right) + 2\widetilde{r}_{i}\widetilde{r}_{j} - \widetilde{r}_{i}r_{j1} - \widetilde{r}_{j}r_{i1}\right] = 0. \quad (24)$$

Итак, мы получили следующие условия

$$\Delta_{ii} = \frac{\partial^2}{\partial x_i^2} \left[B(x) \ln \frac{B(x)}{C(x)} \right] > 0$$

для всех i, $1 \le i \le N$, и, кроме того, диагональные миноры неотрицательны:

$$\mu_{i1} = \begin{bmatrix} \Delta_{ii} & \Delta_{ij} \\ \Delta_{ji} & \Delta_{jj} \end{bmatrix} = 0.$$
 (25)

Это является достаточными условиями выпуклости функции $B(x) \ln \frac{B(x)}{C(x)}$ и, следовательно, функции $A(x) + B(x) \ln \frac{B(x)}{C(x)}$.

Теперь остается показать, что произведение выпуклых функций $A(x)+B(x)\ln\frac{B(x)}{C(x)}$ и D(x) будет так же выпуклым на интервале $x_i\in[0,1]$, $i=\overline{1,N}$ с учетом того, что

$$D(x) = \frac{1}{\sum_{i=1}^{N} x_i r_{i2} - \sum_{i=1}^{N} x_i r_{i1}},$$

где

$$r_{i2} > r_{i1}, \ x_i \in [0, 1], \ \sum_{i=1}^{N} x_i = 1.$$

Заметим, что $A(x)+B(x)\ln\frac{B(x)}{C(x)}$ и D(x), как показано выше, положительны и D(x) монотонно убывающая функция, поскольку $D'(x)=-\frac{r_{i2}-r_{i1}}{\left(\sum_{i=1}^N x_i(r_{i2}-r_{i1})\right)^2}<0$. Для удобства обозначим $A(x)+B(x)\times$

 $imes \ln \frac{B(x)}{C(x)} = \varphi(x)$. Докажем, что $\frac{\partial \varphi}{\partial x_i} = \varphi'(x) < 0$. Имеем:

$$\frac{\partial \varphi}{\partial x_i} = \frac{\partial}{\partial x_i} \left(A(x) + B(x) \ln \frac{B(x)}{C(x)} \right) =$$

$$= A'(x) + B'(x) \ln \frac{B(x)}{C(x)} + B(x) \frac{C(x)}{B(x)} \frac{B'(x)C(x) - C'(x)B(x)}{C^2(x)} =$$

$$= A'(x) + B'(x) \ln \frac{B(x)}{C(x)} + B'(x) - C'(x) \frac{B(x)}{C(x)}. \tag{26}$$

Подставив значения A'(x) и B'(x) в (26), получим:

$$\frac{\partial \varphi}{\partial x_{i}} = -r_{i1} + \widetilde{r}_{i} \ln \frac{B(x)}{C(x)} + \widetilde{r}_{i} - \left(\widetilde{r}_{i} - r_{i1}\right) \frac{B(x)}{C(x)} =$$

$$= \widetilde{r}_{i} \left(1 + \ln \frac{B(x)}{C(x)}\right) - r_{i1} - \left(\widetilde{r}_{i} - r_{i1}\right) \frac{B(x)}{C(x)} . \tag{27}$$

Поскольку $\frac{B(x)}{C(x)}$ < 1 , то $-r_{i1}+r_{i1}\frac{B(x)}{C(x)}$ < 0. Отсюда после упрощения (27), получим:

$$\frac{\partial \varphi}{\partial x_i} < \widetilde{r_i} \left(1 + \ln \frac{B(x)}{C(x)} - \frac{B(x)}{C(x)} \right). \tag{28}$$

Рассмотрим

$$1 + \ln\left(\frac{B(x)}{C(x)}\right) - \frac{B(x)}{C(x)} = 1 + \ln\left(\frac{\widetilde{r} - r^*}{\widetilde{r} - r_{min}}\right) - \frac{\widetilde{r} - r^*}{\widetilde{r} - r_{min}}.$$
 (29)

Заметим, что $r^* > r_{\min} = \sum_{i=1}^N x_i r_{i1}$ и $\widetilde{r} > r^*$. Покажем, что выражение (29)

меньше 0. Обозначим $\widetilde{r}-r^*=a$, тогда $\widetilde{r}-r_{\min}=\widetilde{r}-r^*+(r^*-r_{\min})=a+y$, где $y=r^*-r_{\min}>0$.

Подставляя в (29), получим:

$$1 + \ln\left(\frac{\widetilde{r} - r^*}{\widetilde{r} - r_{\min}}\right) - \frac{\widetilde{r} - r^*}{\widetilde{r} - r_{\min}} = 1 + \ln\left(\frac{a}{a + y}\right) - \frac{a}{a + y}.$$
 (30)

Покажем, что $\Delta(y)=1+\ln\left(\frac{a}{a+y}\right)-\frac{a}{a+y}<0$ для всех y>0. Очевид-

но, $\Delta(0) = 0$ и, кроме того, функция $\Delta(y)$ монотонно убывающая, т.к.

$$\Delta'(y) = -\frac{1}{a+y} + \frac{a}{(a+y)^2} = -\frac{y}{(a+y)^2} < 0,$$
(31)

для всех y > 0.

Таким образом $\Delta(y) < 0$, для всех y > 0, и окончательно имеем $\frac{\partial \varphi(x)}{\partial x_i} < 0$.

Вычислим первые производные:

$$\frac{\partial}{\partial x_i} (\varphi(x)D(x)) = \varphi'(x)D(x) + D'(x)\varphi(x) < 0, \qquad (32)$$

$$\frac{\partial^2}{\partial x_i^2} (\varphi(x)D(x)) = \varphi''(x)D(x) + 2\varphi'(x)D'(x) + \varphi(x)D''(x). \tag{33}$$

Но поскольку D''(x) > 0, $\varphi''(x) > 0$, D'(x) < 0, $\varphi'(x) < 0$, то выражение (33) будет больше нуля:

$$\frac{\partial^2}{\partial x_i^2} (\varphi(x)D(x)) > 0, \qquad (34)$$

а условия (34) являются достаточными условиями для выпуклости функции

$$\beta(x) = \varphi(x)D(x).$$

Итак, мы доказали, что если $\sum_{i=1}^N x_i r_{i1} \le r^* \le \sum_{i=1}^N x_i \widetilde{r_i} = \widetilde{r}$, то функция рис-

ка $\beta(x)$ является выпуклой. Кроме того, как было доказано раньше, функция риска $\beta(x)$ — монотонно убывающая.

Таким образом, для данного случая задача нечеткой портфельной оптимизации (7)—(9) является задачей выпуклого программирования.

Учитывая, что ограничения (8) линейны, составим функцию Лагранжа:

$$L(x,\lambda,\mu) = \beta(x) + \lambda \left(r^* - \sum_{i=1}^N x_i \widetilde{r}_i\right) + \mu \left(\sum_{i=1}^N x_i - 1\right). \tag{35}$$

Условия оптимальности по Куну-Таккеру будут таковы:

$$\frac{\partial L}{\partial x_i} = \frac{\partial \beta(x)}{\partial x_i} - \lambda \widetilde{r}_i + \mu \ge 0, \qquad (36)$$

$$\frac{\partial L}{\partial \lambda} = -\sum_{i=1}^{N} x_i \widetilde{r} + r^* \le 0, \quad \frac{\partial L}{\partial \mu} = \sum_{i=1}^{N} x_i - 1 = 0.$$
 (37)

И условия дополняющей нежесткости:

$$\frac{\partial L}{\partial x_i} x_i = 0, \quad 1 \le i \le N, \quad \frac{\partial L}{\partial \lambda} \lambda = \lambda \left(-\sum_{i=1}^N x_i \widetilde{r} + r^* \right) = 0, \quad x_i \ge 0, \lambda \ge 0,$$

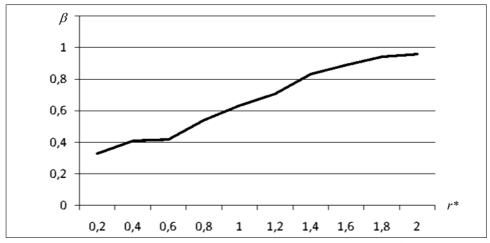
где $\lambda \ge 0$ и μ — неопределенные множители Лагранжа. Эту задачу можно решать стационарными методами выпуклого программирования, например, методом Зойтендейка или штрафных функций.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

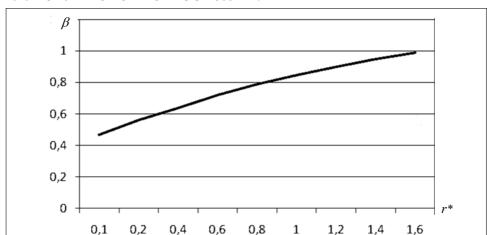
Входными данными для экспериментов являются рыночные цены акций ведущих российских компаний — ОАО РАО «ЕЭС России», ОАО ГМК «Норильский никель», ОАО «ЛУКОЙЛ» и ОАО «Газпром» за февраль 2008 года. Наиболее доходными за этот период являются акции ОАО ГМК «Норильский никель», наименее доходными — акции ОАО «Газпром».

Исследуем зависимость уровня риска (risk) от заданного порогового значения доходности r^* для различных комбинаций бумаг в портфеле.

На рис. 1 приведены результаты по портфелю из акций ОАО «Газпром» и ОАО РАО «ЕЭС России».



 $Puc.\ 1.\$ Зависимость величины риска от критериального значения r^* для портфеля из акций ОАО «Газпром» и ОАО РАО «ЕЭС России»



На рис. 2 приведены результаты по портфелю из акций ОАО «ЛУКОЙЛ» и ОАО РАО «ЕЭС России».

 $Puc.\ 2$. Зависимость величины риска от критериального значения r^* для портфеля из акций ОАО «ЛУКОЙЛ» и ОАО РАО «ЕЭС России»

В табл. 1 приведены результаты по портфелю из акций ОАО «Газпром» и ОАО «ЛУКОЙЛ»

Таблица 1. Зависимость величины риска от критериального значения r^* для портфеля из акций ОАО «Газпром» и ОАО «ЛУКОЙЛ»

r^*	0,1	0,2	0,4	0,6	0,8	1	1,2	1,4	1,5
risk	0,458	0,561	0,638	0,718	0,787	0,844	0,897	0,948	0,99

В табл. 2 приведены результаты по портфелю акций ОАО «Газпром», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ».

Таблица 2. Зависимость величины риска от критериального значения r^* для портфеля из акций ОАО «Газпром», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ»

r*	0,2	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8
risk	0,457	0,477	0,625	0,745	0,82	0,871	0,918	0,962	0,999

Таким образом, судя по полученным графикам, можно сделать вывод, что при увеличении заданного порового значения доходности, уровень риска увеличивается.

Исследуем зависимость уровня доходности портфеля $R = (R1; R_{;R2})$ от уровня риска (risk).

В табл. 3 приведены результаты по портфелю акций ОАО «Газпром» и ОАО РАО «ЕЭС России».

В табл. 4 приведены результаты по портфелю акций ОАО ГМК «Норильский никель» и ОАО «Газпром».

Таблица 3. Зависимость «доходность-риск» для оптимального портфеля из акций ОАО «Газпром» и ОАО РАО «ЕЭС России»

R1	R_	R2	risk
-3,27524	0,32628	4,88492	0,374
-3,27693	0,325257	4,878173	0,398
-3,6526	0,228595	4,396182	0,4887
-3,77124	0,197885	4,242538	0,5921
-3,88174	0,16928	4,09942	0,71
-3,89545	0,165732	4,081668	0,8097
-3,88902	0,167396	4,089994	0,892
-3,90088	0,163151	4,065503	0,954
-3,88659	0,168024	4,093136	0,995

Таблица 4. Зависимость «доходность-риск» для оптимального портфеля из акций ОАО ГМК «Норильский никель» и ОАО «Газпром»

R1	R_	R2	risk
-4,12801	0,42681	5,738035	0,391
-3,72911	0,4227	5,39345	0,4391
-3,73777	0,40998	5,32853	0,462
-3,77676	0,35274	5,03639	0,55
-3,84824	0,2478	4,5008	0,6837
-3,89062	0,185578	4,183233	0,79737
-3,90398	0,165963	4,083121	0,8836
-3,906	0,163	4,068	0,954
-3,906	0,163	4,068	0,999

На рис. 3 приведены результаты по портфелю акций ОАО «ЛУКОЙЛ» и ОАО ГМК «Норильский никель».

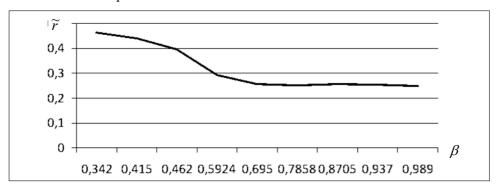
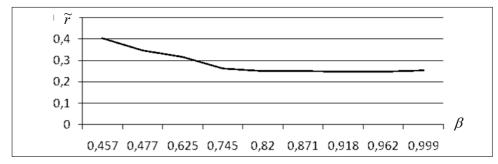


Рис. 3. Зависимость «доходность-риск» для оптимального портфеля из акций ОАО «ЛУКОЙЛ» и ОАО ГМК «Норильский никель»

На рис. 4 приведены результаты по портфелю акций ОАО «Газпром», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ».



Puc.4. Зависимость «доходность-риск» для оптимального портфеля из акций ОАО «Газпром», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ»

В табл. 5 приведены результаты по портфелю из акций ОАО РАО «ЕЭС России», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ».

Таблица 5. Зависимость «доходность-риск» для оптимального портфеля из акций ОАО РАО «ЕЭС России», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ»

R1	R_	R2	risk
-3,61028	0,445731	5,522534	0,341
-3,5609	0,434741	5,46456	0,42
-4,11287	0,377739	5,19912	0,528
-4,41087	0,290823	4,773968	0,701
-4,41639	0,291458	4,77744	0,786
-4,57568	0,272961	4,690976	0,853
-4,66402	0,264004	4,64962	0,907
-4,71599	0,258063	4,621886	0,955
-4,72066	0,258482	4,624224	0,995

В табл. 6 приведены результаты по портфелю из акций ОАО РАО «ЕЭС России», ОАО «Газпром», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ».

Таблица 6. Зависимость «доходность-риск» для оптимального портфеля из акций ОАО РАО «ЕЭС России», ОАО «Газпром», ОАО ГМК «Норильский никель» и ОАО «ЛУКОЙЛ»

R1	R_	R2	risk
-4,09352	0,452824	5,577784	0,34
-3,89222	0,461952	5,610476	0,404
-3,88378	0,439452	5,49371	0,5235
-3,985	0,294998	4,751116	0,688
-4,32256	0,292872	4,768776	0,799
-4,42812	0,286567	4,744776	0,857
-4,38233	0,214641	4,368052	0,954

Таким образом, судя по полученным графикам, можно сделать вывод, что при увеличении ожидаемой доходности инвестиционного портфеля уровень риска падает.

ЗАКЛЮЧЕНИЕ

В работе рассмотрена и исследована двойственная задача нечеткой портфельной оптимизации. Определены достаточные условия, при которых данная задача является задачей выпуклого программирования. В этом случае данную задачу можно решать стандартными методами выпуклого программирования.

Проведены экспериментальные исследования, в ходе которых построены зависимости риска портфеля от критериального значения доходности, а также ожидаемой доходности портфеля от величины риска.

ЛИТЕРАТУРА

- 1. Зайченко Ю.П., Малихех Есфандиярфард. Анализ и сравнение результатов оптимизации инвестиционного портфеля при применении модели Марковитца и нечетко-множественного метода // Proceedings of X111-th International Conference KDS-2007 «Knolwledge, Dialogue Solution». 1. P. 278–286.
- 2. Зайченко Ю.П., Малихех Есфандиярфард. Оптимизация инвестиционного портфеля в условиях неопределенности // Системні дослідження та інформаційні технології. 2008. № 2. С. 59–76.
- 3. Зайченко Ю.П., Малихех Есфандиярфард, Заика А.И. Анализ инвестиционного портфеля на основе прогнозирования курсов акций // Вісн. НТУУ «КПІ». Інформатика, управління та обчислювальна техніка. 2007. № 47. С. 168–179.

Поступила 03.11.2010