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MINIMAX RECURSIVE STATE ESTIMATION FOR LINEAR 
DISCRETE-TIME DESCRIPTOR SYSTEMS 

S. ZHUK 

This paper describes an approach to the online state estimation of systems described 
by a general class of linear noncausal time-varying difference descriptor equations 
subject to uncertainties. An approach is based on the notions of a linear minimax 
estimation and an index of causality introduced here for singular difference 
equations. The online minimax observer is derived by the application of the 
dynamical programming and Moore's pseudoinverse theory to the minimax 
estimation problem. 

INTRODUCTION 

There is a number of physical and engineering objects most naturally modelled as 
systems of differential and algebraic equations (DAEs) or descriptor systems: 
microwave circuits [1], flexible-link planar parallel platforms [2] and image 
recognition  problems (noncasual image modeling) [3]. DAEs arise in economics 
[4]. Also nonlinear differential-algebraic systems are studied with help of linear 
DAEs by linearization: a batch chemical reactor model [5]. 

On the other hand there are many papers devoted to the mathematical 
processing of data, obtained from the measuring device during an experiment. In 
particular, the problem of observer design for continious-time DAEs was 
considered in [7] and discrete-time case was studied in [8]–[9]. The minimax state 
estimation for uncertain linear dynamical systems was investigated in [10]. Other 
approaches to state estimation with set-membership description of uncertainty 
were discussed in [12]–[14]. 

In [6] authors derive a so-called «3-block» form for the optimal filter and a 
corresponding 3-block Riccati equation using a maximum likelihood approach. 
A filter is obtained for a general class of time-varying descriptor models. 
Measurements are supposed to contain a noise with Gaussian distribution. The 
obtained recursion is stated in terms of the 3-block matrix pseudoinverse. 

In [8] the filter recursion is represented in terms of a deterministic data 
fitting problem solution. The authors introduce an explicit form of the 3-block 
matrix pseudoinverse for a descriptor system with a special structure, so their 
filter coincides with obtained in [6]. 

In this paper we study an observer design problem for a general class of 
linear noncasual time-varying descriptor models with no restrictions on system 
structure. Suppose we are given an exact mathematical model of some real 
process and the vector kx  describes the system output at the moment k  in the 
corresponding state space of the system. Also successive measurements 

…… kyy0  of the system output kx  are supposed to be available with the noise 
…… kgg0  of an uncertain nature. (For instance we do not have a-priory infor-
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mation about its distribution.) Further assume that the system input kf , start point 
q  and noise kg  are arbitrary elements of the given set G . The aim of this paper 
is to design a minimax observer kxk ˆ6  that gives an online guaranteed 
estimation of the output kx  on the basis of measurements ky  and the structure 
of G . In [9] minimax estimations were derived from the 2-point boundary value 
problem with conditions at 0=i  (start point) and ki =  (end point). Hence a 
recalculation of the whole history kxx ˆˆ0…  is required if the moment k  changes. 
Here we derive the observer kk xyk ˆ),( 6  by applying dynamical programming 
methods to the minimax estimation problem similar to the posed one in  [9]. We 
construct a map x̂  that takes ),( kyk  to kx̂  making it possible to assign a unique 
sequence of estimations …… kxx ˆˆ0  to given sequence of observations 

…… kyy0  in the real time. A resulting filter recursion is stated in terms of 
pseudoinverse of positive semi-defined nn× - matrices. 

Minimax estimation problem 

Assume that n
kx R∈  is described by the equation  

 ,0,1,=,=11 …kfxCxF kkkkk −++  (1) 

with initial condition  
 qxF =00 , (2) 
and ky  is given by  
 ,0,1,=,= …kgxHy kkkk +  (3) 

where kk CF ,  are nm× -matrices, kH  is np× -matrix. Since we deal with 

descriptor system we see that for any k  there is a set of vectors 00
1 kxx …  

satisfying (1) while 0=0,= qfi . Thus the undefined inner influence caused, by 
00

1 kxx … , may appear in the system’s output. Also we suppose the initial 
condition q , input }{ kf  and noise }{ kg  to be unknown elements of the given 
set. (Here and after ),( ⋅⋅  denotes an inner product in an appropriate Euclidean 
space, 2/1),(= xxx .) 

  
⎪⎩

⎪
⎨
⎧

==Γ }){},{,(:}){},{,( kkkk gfqGgfq  

 
⎪⎭

⎪
⎬
⎫

≤++= ∑
∞

1),(),(),(
0

kkkkkk ggRffSqSq , (4) 

where kk RSS ,,  are some symmetric positive-defined weight matrices with 
appropriate dimensions. The trick is to fix any N -partial sum of (4) so that 

}){},{,( kk gfq  belongs to 

 :}){},{,{(=: kk
N gfqG 1}),(),(),(

0=

1

0=
≤++ ∑∑

−

kkk

N

k
kkk

N

k
ggRffSqSq . (5) 
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Then we derive the estimation )ˆ,,(=ˆ 1−NNN xyNvx  considering a minimax 

estimation problem for NG . Let us denote by N  a set of all }){,},({ kk fqx  such 

that (1) is held. The set N
yG  is said to be a-posteriori set, where 

 }}){},{,(,}){,},({:}{{=: N
kkkkkkk

N
y xHyfqfqxx GNG ∈−∈ . (6) 

It follows from the definition that N
yG  consists of all possible }{ kx , causing 

an output }{ ky , while }){},{,( kk gfq  runs through NG . Thus, it’s naturally to 

look for estimation Nx  of only among the elements of )( N
yNP G , where NP  

denotes the projection that takes }{ 0 Nxx …  to Nx . 

Definition 1. A linear function )ˆ,( NxA  is called a minimax a-posteriori 
estimation if the following condition holds: 
 |)ˆ,(),(|sup|)~,(),(|supinf

}{}{}~{
NN

N
ykx

NN
N
ykxN

ykx
xxxx AAAA −

∈
=−

∈∈ GGG
.  

The non-negative number  
 |)ˆ,(),(|sup=),(ˆ

}{
NN

N
ykx

xxN AAA −
∈G

σ  

is called a minimax a-posteriori error in the direction .A  A map 

 }<),(ˆ:{dim= +∞∈ NIN n
N AA6 σR  

is called an index of causality for the pair of systems (1)–(3). 
Now we say that a minimax estimation problem is to construct an a-

posteriori linear minimax estimation )ˆ,( NxA  for the system (1) on the basis of the 

measurements (3) and a-posteriori set N
yG . A solution of the minimax estimation 

problem in the form of a recursive map )ˆ,( Nxk A6  is presented in the next 
section. 

Minimax online observer 
Denote by kQk 6  a recursive map that takes each natural number k  to the 
matrix kQ , where 

 kkkkkkkkkkkk FSCWCSSFHRHQ ][= 111111 −−
+
−−−− ′−′+′ , 

 kkkkk CSCQWHRHSFFQ ′+′+′ =,= 000000 .  (7) 

Let krk 6  be a recursive map that takes each natural number k  to the 

vector n
kr R∈ , where 

 ,= 1111 kkkkkkkkk yRHrWCSFr ′+′ −
+
−−−   0000 = yRHr ′  (8) 

and to each natural number ∈i  assign a number iα , where 

 ),,(),(= 1111 −−
+
−− −+ iiiiiiii rrWyyRαα  ),(),(= 0000 yyRgSg +α . (9) 
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The main result of this paper is formulated in the next theorem. 
Theorema (minimax recursive estimation). Suppose we are given a 

natural number N  and a vector nR∈A . Then a necessary and sufficient condition 
for a minimax a-posteriori error ),(ˆ NAσ  to be finite is that  

 .= AANN QQ+  (10) 

Under this condition we have  

 2
1

2
1

),()],([1=),(ˆ AAA +++− NNNNN QrrQN ασ  (11) 
and 
 .),(=)ˆ,( NNN rQx +AA  (12) 

Corollary 1. The index of causality NI  for the pair of systems (1)–(3) can 
be represented as )(rank= NN QI . 

Corollary 2 (minimax obsever). The online minimax observer is given by 

kkk rQxk +=ˆ6  and (we assume here that +∞=0/1 .) 

 =−
∈∈

2

}~{}{

~maxmin=)(ˆ NN
N
ykxN

ykx
xxN

GG
ρ  

 
)}({min

)]ˆ,ˆ([1
=ˆmax

2

}{ N
xxQ

xx
i

i

NNNN
NN

N
ykx λ

α +−
−

∈
=

G
 (13) 

where )(Niλ  are eigenvalues of .NQ  In this case all possible realisations of the 

state vector Nx  of (1) fill the ellipsoid nN
yNP RG ⊂)( , where  

 1}),ˆ2(),(:{=)( ≤+− NNNN
N
yN xxQxxQxP αG . (14) 

Remark 1. If )(min kkk HRH ′λ  grows for …1,,= +iik  then the minimax 
estimation error )(ˆ kρ  becomes smaller causing kx̂  to get closer to the real state 
vector kx . 

In [8] Kalman’s filtering problem for descriptor systems was investigated 
from the deterministic point of view. Authors recover Kalman’s recursion to the 
time-variant descriptor system by a deterministic least square fitting problem over 
the entire trajectory: find a sequence }ˆ,,ˆ{ ||0 kkk xx …  that minimises the following 
fitting error cost 

 +−+−
2

|000
2

|000| =)}({ kk
k

kik xHygxFxJ  

 
2

|
2

|11|
1=

kiiikiikii

k

i
xHyxCxF −+−+ −−∑  

assuming that the .rank nH k

kF ≡⎥⎦
⎤

⎢⎣
⎡  According to [8] the successive optimal 

estimates }ˆ,,ˆ{ ||0 kkk xx …  resulting from the minimisation of kJ  can be found 
from the recursive algorithm 
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 +′+′ −−−
−

−−−− 1|11
1

11|11|| ˆ)(=ˆ kkkkkkkkkkkk xCCPCEFPx  

 )(=ˆ, 0000|00|0| yHqFPxyRHP kkkkk ′+′′+ , 

 11
11|11| ))((= −−
−−−− ′+′+′ kkkkkkkkkk HHFCPCEFP , 

 1
00000|0 )(= −′+′ HHFFP . (15) 

Corollary 3 (Kalman’s filter recursion). Suppose the ,rank nH k

kF ≡⎥⎦
⎤

⎢⎣
⎡  and 

let krk 6  be a recursive map that takes each natural number k  to the vector 
n

kr R∈ , where 

 ,)(= 111111 −
+
−−−−− +′′+′ kkkkkkkkkk rQCCCFyHr  

 0000 = yHqFr ′+′ . (16) 

Then kkkk xrQ |ˆ=+  for each N∈k , where kkx |ˆ  is given by (15) and nI k = . 

Acknowledgements. It is a pleasure to thank Prof. A.Nakonechniy and 
Dr. V. Pichkur for insightful discussions about the key ideas presented in this 
paper. 

Proof of Theorem. By definition, put 
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By direct calculation we obtain ),,(=),( XLNxA  

 1}):{= 2
2

2
1 ≤−+ HXYXFXG N

y , 

where ),(),(= 1
0

2
1 kkk

N ffSqSq ∑ −+F , 2⋅  is indused by kR  on the same way. 

This implies  
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 |)~,(),(|sup|=)~,(|sup
X}{

XLXL
GG

−−
∈ ∈ N

y
NN

N
ykx

xxA . 

Denote by M  the set ]''[ HFR . We obviously get  

 +∞−⇔∈
∈

|<)~,(),(|sup XLXLML
GX N

y

. 

The application of Corollary 4 yields (10). Consider a vector ML∈ . Clearly  

 N
y

N
y

N
y

GXXLXLXL
GXGX

∈≤≤
∈∈

),,(sup),(),(inf . 

Let c  denotes )),(inf),(sup(
2
1 XLXL GXGX N

yN
y ∈∈ + . Therefore  

 |)~,(c|))|(s()|((s
2
1|)~,(),(|sup XLGLGLXLXL

GX
−+−+=−

∈

N
y

N
y

N
y

 

hence 

 ))|(s)|(s(
2
1=),(ˆ N

y
N
yN GLGL −+Aσ , ))|(s)|(s(

2
1=)ˆ,( N

y
N
yNx GLGL −−A ,  (17) 

where )|(s N
yG⋅  denotes the support function of .N

yG  Clearly, N
yG  is a convex 

closed set. Hence the equality )ˆ,(=)~,( NxAXL  is held for some .~ N
yGX∈  Thus, 

to conclude the proof we have to calculate .),(s N
yGL  Let  

 },:{= 22
0 N
N β≤+ HXFXXG  (18) 

where 0),(1= ≥+− +
NNNNN rrQαβ . 

Lemma 1. 
 .)|(s),(=),(s 0

N
NN

N
y rQ GLGL ++A  (19) 

It follows from the definition of N
0G  that )|(s=)|(s 00

NN GLGL −  hence 
(17) implies  
 )|(s=)(ˆ),,(=)ˆ,( 0

N
NNN rQx GLAAA σ+ . 

The application of Lemma 2 completes the proof.  
Lemma 2. 

 
⎪⎩

⎪
⎨
⎧

≠−∞+
−

+

++

.0][,
0,=][,),(=)|(s 2

1

0
A
AAA

NN

NNNN
N

QQE
QQEQβGL  (20) 

Let kr  denote nR  — valued recursive map 

 kkkkkkkkkkkkkkkkk yRHrWCSFfSCPCSSFr ′+′+′−′ −
+
−−−−−−

+
−−−− 11111111111 )(= , 

 kkkkk QCSCPyRHSqFr +′′+′ =,= 00000 , (21) 
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and set 
 +−+− 2

0000
2

00=})({ xHygxFx SkJ  

 22
1111

1=
kkkkkkkkkk

N

k
xHyfxCxF −+−−+ −−−−∑ , 

where ),(=2 gSgg S , ),(=2
kkkkk ffSf , ),(=2

iiiii yyRy . 

Lemma 3. Let kxx ˆ6  be a recursive map that takes any natural∈k  to 
n

kx R∈ˆ , where 

 ),)ˆ((=ˆ 11 kkkkkkkk rfxFSCPx +−′ ++
+   NNN rQx +=ˆ . (22) 

Then 
 .})ˆ({=})({min

}{
kk

kx
xx JJ  

Proof. By definition put 2
0000

2
000 =:)( xHygxFx S −+−Φ , 

2
1111

2
111 :),( +++++++ −+−−=Φ iiiiiiiiiiii xHyfxCxFxx . 

Then we obviously get 

 .),()(=})({ 1

1

0=
0 +

−
Φ+Φ ∑ iii

N

i
k xxxxJ  (23) 

Let us apply a modification of Bellman’s method (so-called «Kyivsky vi-
nyk» method) to the nonlinear programming task  
 min})({

}{ kx
kx →J . 

By definition put  
 )},()({min:=)( 1000

0
11 xxxx

x
Φ+ΦA . 

Using (7) and (21) one can get  

 2
00

2
00000000 :=0,),2(),(=)( ygxrxxQx S +≥+−Φ αα  . 

On the other hand it’s clear that  

 0,),2(),(=),ˆ()ˆ(=)( 111111100011 ≥+−Φ+Φ αxrxxQxxxxA  

where ))((=ˆ 01100000 fxFSCrPx −′++  

 )),((:= 000000000
2
00

2
1101 fSCrfSCrPfy ′−′−−++ +αα . 

Considering )( 11 xA  as an induction base and assuming that  

 =+Φ −−−−−
−

−− )}(),({min=)( 22122
2

11 iiiii
ix

ii xxxx AA  

 111111 ),2(),( −−−−−− +−= iiiiii xrxxQ α  

now we are going to prove that 
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 .),2(),()}(),({min=)( 1111
1

iiiiiiiiiii
ix

ii xrxxQxxxx α+−=+Φ −−−−
−

AA  (24) 

Note that [11] for any convex function ),(),( yxfyx 6   

 bbaPyyxPyxyxfy =),(},=),(:),(|),({min6  

is convex. Thus taking into account the definition of )( 11 xA  one can prove by 
induction that 1−iA  is convex and  

 0)(),( 1111 ≥+Φ −−−− iiiii xxx A . 

Hence (the function cqxxAxx +− ),2(),(6  is convex if 0= ≥′AA ) 
01 ≥−iQ , the set of global minimums 1−Ψi  of the quadratic function.  

 111111111 ),2(),(),( −−−−−−−−− +−+Φ iiiiiiiiii xrxxQxxx α6  

is non-empty and iix Ψ∈−1ˆ , where (The vector 1ˆ −ix  has the smallest norm among 
other points of the minimum.) 

 ))(()(=ˆ 111111111 −−−−
+

−−−−− +−′′+ iiiiiiiiiii rfxFSCCSCQx . 

This implies 

 iiiiiiiiiiiii xrxxQxxxx α+−=+Φ −−−− ),2(),()ˆ(),ˆ(=)( 1111 AA , 
where 
 −++ −−−− ),(),(= 1111 iiiiiiii ffSyyRαα  

 )),(( 111111111 −−−−−−−−
+
− ′−′−− iiiiiiiii fSCrfSCrP . 

Therefore, we obtain  

 NNNNNNNNNNN
Nx

rQxrQrxx ++− =ˆ),,(=)ˆ(=)(min αAA  

so that })ˆ({=})({min }{ kkkx xx JJ . 

Corollary 4.  Suppose ][0= A…L ; then 

 [ ] 0=]['' ANN QQE +−⇔∈ HFRL  

and 

 [ ] ),(=''
2

AA++
NQLHF . 

Proof. Suppose ERES kk =,=  for a simplicity. If [ ]''HFRL∈  then  

 (*),0=,= 1+′−′+′′+′ kkkkkkNNNN zCuHzFuHzF A  

for some p
k

m
k uz RR ∈∈ , . Let’s find the projection N

kkk uz 0=)}ˆ,ˆ{(  of the vector 
N
kkk uz 0=)},{(  onto the range of the matrix ][

H
F . Lemma 3 implies  

 (**),ˆ=ˆ,ˆˆ=ˆ,ˆ=ˆ 11000 kkkkkkkk xHuxCxFzxFz −−−  
where 
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 NNNkkkkkkkk rQxzCrxFCPx +
+++

+ ′−+′ =ˆ),ˆ(=ˆ 111 , 

 +′−′+′ −
+
−−−

+
−− kkkkkkkkkk zCPCEFrPCFr )(= 111111  

 kkkkkk QCCPuHzFruH +′′+′′+ =,=, 00000  

(*)  implies 1= +′ kkk zCr , 1,0,= −Nk … , A=Nr  thus A+NN Qx =ˆ , =kx̂  

11 ˆ ++
+ ′= kkkk xFCP  or A+Φ Nk QNkx ),(=ˆ , 

 EssNkFCPNk kkk =),(),1,(=),( 1 Φ+Φ′Φ +
+ . 

Combining this with (**)  we obtain 

 ,))1,(),((=ˆ 1 A+− −Φ−Φ Nkkk QNkCNkFz  

 AA ++ ΦΦ NNkk QNFzQNkHu )(0,=ˆ,),(=ˆ 00 . (25) 

By definition, put 0=(0) QU , 

 kkkkkkk FCPCEFHHkkkUkkkU 2
111 )()1,(1)()1,(=)( −

+
−− ′−+′+−Φ−−Φ′ . 

It now follows that  

 [ ] ),)((ˆˆ'' 22

0

2
AA +++ =+=∑ NNNN

N
QQNUuzLHF . 

It’s easy to prove by induction that )(= kUQk . 
Since 

 [ ]''HFL R∈  

we obtain by substituting kk uz ˆ,ˆ  into (*)  

 A=ˆˆ NNNN uHzF ′+′ . 

On the other hand (7) and (25) imply  

 0=][=ˆˆ AA NNNNNN QQEuHzF +−⇒′+′ . 

Suppose that 0=][ ANN QQE +− . To conclude the proof we have to show that  

 [ ]''][0,=),(=),( 0 HFN∈∀+
NNNNN xxxQQx …AA . 

By induction, fix 0=N . If 0=0,= 0000 xHxF , then 0=00 xQ . We say 
that [ ]''][ 0 HFN∈kxx …  if  

 0=,=0,=0,= 110000 ssssss xHxCxFxHxF −− . 

Suppose [ ]''][0,= 1011 HFN∈∀ −−− kkk xxxQ …  and fix any ∈][ 0 kxx …  
[ ]''HFN∈ . Then 0=,=

11 kkkkkk xHxCxF − . Combining this with (7) we obtain  

 (*))(= 11111 −−−
+
−− ′−′ kkkkkkkk xCCPCEFxQ . 

We show that 0≥kQ  in the proof of Theorem 1. One can see that 
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we obviously get 

 0==)( 111111111 kkkkkkkkkkk xQxCxCCQCCC ⇒′+′ −−−−−
+

−−−−  

as it follows from (*) . This completes the proof. 
Proof of Lemma 1. Taking into account the definitions of the matrices HF,  

and (6) we clearly have  

 1}:{= 22 ≤−+ HXYFXXG N
y . 

Let X̂  be a minimum of the quadratic function 22 HXYFXX −+6 . It 
now follows that  

 )|(s)ˆ,(=)|(sˆ= 000
NNNN

y GLXLGLGXG +⇒+ . 

The application of Lemma 3 yields  

 ),(=)ˆ,( NN rQ+AXL . 

This completes the proof. 
Proof of Lemma 2. Suppose the function 1: Rf n →R  is convex and 

closed. Then [11] the support function 0}))(:{|( ≤⋅ xfxs  of the set 
0})(:{ ≤xfx  is given by  

 
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛≤

≥ λ
λ

λ

zfxfxzs *

0
infcl=0}))(:{|( . 

To conclude the proof it remains to compute the support function of N
0G  

according to this rule and then apply Corollary 4. 
Proof of Corollary 3. The proof is by induction on k . For 0=k , there is 

nothing to prove. The induction hypothesis is 1
11|1 = −
−−− kkk QP . Suppose S  is 

nn× -matrix such that 0>= SS ′ , A  is nm× -matrix; then 

 ASAASEAASA 111 )(=)( −−− ′+′+ . (26) 

Using (26) we get  
 ASAAAAASEAAS ′+′′+′ −− 11][][= . (27) 

Combining (27) with the induction assumption we get the following 

 ×′++=′+ −−−−−−−− ][ 11|1111|11 kkkkkkkk CPCEECPCE  
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 1
1

1111 ][ −
−

−−−− ′′+× kkkkk CCCQC . 

By simple calculation from the previous equality follows 

 1
11|111

1
1111 )()( −

−−−−−
−

−−−− ′+=′′+− kkkkkkkkk CPCECCCQCE . 

Using this and (7), 15) we obviously get kkk PQ |
1 =− . 

It follows from the definitions that 0|00
1

0 x̂rQ =− . Suppose that =−
−
− 1
1
1 kk rQ  

1|1ˆ −−= kkx . The induction hypothesis and (26) imply 

 1
1

111111|11
1

11|11 )(ˆ)( −
−
−−−−−−−−

−
−−−− +′=′+ kkkkkkkkkkkkk rQCCCxCCPCE . 

Combining this with (15), (16) and using kkk PQ |
1 =−  we obtain  

 ))((=ˆ 111111
1

| kkkkkkkkkkkk yHrQCCCFQx ′++′′ −
+
−−−−−

− . 

This concludes the proof. 
Proof of Corollary 2. If nI k <  then nQ <)(rank  hence .0=)( kmin Qλ  In 

this case there is a direction nR∈A  such that +∞=),(ˆ kAσ . So +∞=)(ˆ kρ . 
If nI k =  then it follows from formula (11) that 

 =−
∈∈

=−
∈∈

2

1=}~{}{

2

}~{}{
|})~,(|max{maxmin~maxmin NN

lN
ykxN

ykx
NN

N
ykxN

ykx
xxxx A

GGGG
 

 ≥−
∈

= 2

}~{1=
|})~,(|maxmaxmin{ NN

N
ykxlN

y

xxA
GG

 

 =−
∈∈

≥ 2

}~{}{1=
|})~,(|maxminmax{ NN

N
ykxN

ykxl
xxA

GG
 

 
)}({min

)],([1
),(max)],([1

1= N
rrQ

QrrQ
i

i

NNNN
N

l
NNNN λ

α
α

+
++ +−

=+−= AA . (28) 

On the other hand formula (11) implies 

 =−
∈

=−
∈

2

}~{1=

2

}~{
|})~,(|maxmax{~ˆmax NN

N
ykxl

NN
N
ykx

xxxx A
GG

 

 .}),()],([1max{ 22
1

2
1

1=
AA+++−= NNNNN

l
QrrQα  (29) 

Using (28)–(29), we get (13). 
Since (29) we see that the condition nI N =  implies N

yG  is a bounded set. 

On the other hand nI N =  implies 0][ =− +
NN QQE  for the given N . It follows 

from Lemmas 1, 2 that 



Minimax recursive state estimation for linear discrete-time descriptor systems 

Системні дослідження та інформаційні технології, 2010, № 2 105

 2
1

),(),()|()|())(|( AAAAA ++ +==′= NNNN
N
y

N
yN

N
yN QrQsPsPs βGLGG ,  (30) 

for any nR∈A . By Young’s theorem [11], (30), so that 

 =∈∀≤∈ })),(|(),(:{=)( nN
yN

nN
yN PsxxP RGRG AAA  

 =≤−−∈= + 0}}),()ˆ,(),{(sup:{ 2
1

AAAA
A

NNN
n Qxxx βR  

 1}),ˆ(2),(:{ ≤+−∈= NNNN
n xxQxxQx αR . 

This completes the proof. 
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