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MINIMAX RECURSIVE STATE ESTIMATION FOR LINEAR
DISCRETE-TIME DESCRIPTOR SYSTEMS

S. ZHUK

This paper describes an approach to the online state estimation of systems described
by a general class of linear noncausal time-varying difference descriptor equations
subject to uncertainties. An approach is based on the notions of a linear minimax
estimation and an index of causality introduced here for singular difference
equations. The online minimax observer is derived by the application of the
dynamical programming and Moore's pseudoinverse theory to the minimax
estimation problem.

INTRODUCTION

There is a number of physical and engineering objects most naturally modelled as
systems of differential and algebraic equations (DAEs) or descriptor systems:
microwave circuits [1], flexible-link planar parallel platforms [2] and image
recognition problems (noncasual image modeling) [3]. DAEs arise in economics
[4]. Also nonlinear differential-algebraic systems are studied with help of linear
DAEs by linearization: a batch chemical reactor model [5].

On the other hand there are many papers devoted to the mathematical
processing of data, obtained from the measuring device during an experiment. In
particular, the problem of observer design for continious-time DAEs was
considered in [7] and discrete-time case was studied in [8]-[9]. The minimax state
estimation for uncertain linear dynamical systems was investigated in [10]. Other
approaches to state estimation with set-membership description of uncertainty
were discussed in [12]-[14].

In [6] authors derive a so-called «3-block» form for the optimal filter and a
corresponding 3-block Riccati equation using a maximum likelihood approach.
A filter is obtained for a general class of time-varying descriptor models.
Measurements are supposed to contain a noise with Gaussian distribution. The
obtained recursion is stated in terms of the 3-block matrix pseudoinverse.

In [8] the filter recursion is represented in terms of a deterministic data
fitting problem solution. The authors introduce an explicit form of the 3-block
matrix pseudoinverse for a descriptor system with a special structure, so their
filter coincides with obtained in [6].

In this paper we study an observer design problem for a general class of
linear noncasual time-varying descriptor models with no restrictions on system
structure. Suppose we are given an exact mathematical model of some real
process and the vector x; describes the system output at the moment &k in the

corresponding state space of the system. Also successive measurements
Yo ---Vy ... of the system output x; are supposed to be available with the noise

go---& --- of an uncertain nature. (For instance we do not have a-priory infor-
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mation about its distribution.) Further assume that the system input f} , start point
g and noise g, are arbitrary elements of the given set G . The aim of this paper
is to design a minimax observer k> X, that gives an online guaranteed
estimation of the output x; on the basis of measurements y; and the structure

of G . In [9] minimax estimations were derived from the 2-point boundary value
problem with conditions at i =0 (start point) and i =k (end point). Hence a
recalculation of the whole history X, ...x; is required if the moment & changes.

Here we derive the observer (k,y;) > x; by applying dynamical programming

methods to the minimax estimation problem similar to the posed one in [9]. We
construct a map x that takes (k,y;) to x;, making it possible to assign a unique

sequence of estimations X;...X;... to given sequence of observations
Yo---Vi .- in the real time. A resulting filter recursion is stated in terms of
pseudoinverse of positive semi-defined 7 x n - matrices.

Minimax estimation problem

Assume that x;, e R" is described by the equation

FraXpn = Cpxg = fi, k=0,1,..., (1)
with initial condition
Foxy =4, @)
and y, is given by
Y =Hpx, +g,, k=0,1,..., 3)

where F),C, are mxn-matrices, H, is pxn-matrix. Since we deal with

descriptor system we see that for any k& there is a set of vectors xf) ...x,?

satisfying (1) while f; =0, g =0. Thus the undefined inner influence caused, by
xlo ...x,?, may appear in the system’s output. Also we suppose the initial
condition ¢, input {f;} and noise {g,} to be unknown elements of the given
set. (Here and after (-,-) denotes an inner product in an appropriate Euclidean

space, [x]=(x,x)"'?.)

r ={(6], {Ui3:18k3): G, 1k} - {8k 1) =

=(S%CI)+Z(Skfkafk)Jr(ngk»gk)Sl}a 4)

0
where S, S;, R, are some symmetric positive-defined weight matrices with

appropriate dimensions. The trick is to fix any A -partial sum of (4) so that
(g.{f%},{g;}) belongs to

N-1 N
GV = {(q. /i 18k D) (5090 + X (S fin S+ L (Regig) <1} (5)
k=0 k=0
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Then we derive the estimation Xy =v(N, yy,Xy_;) considering a minimax
estimation problem for G N Let us denote by N asetofall ({x;},q,{f;}) such

that (1) is held. The set G]yv is said to be a-posteriori set, where

Gl i={{x ) (I 1@ (i D eN, (@ {fi}. vk —Hix DeGYE (6)

It follows from the definition that G y consists of all possible {x;}, causing

an output {y,}, while (q,{f;},{gx}) runs through GV . Thus, it’s naturally to
look for estimation x, of only among the elements of Py (G]yv ), where Py
denotes the projection that takes {x,...xy} to x, .

Definition 1. A linear function (/,x, ) is called a minimax a-posteriori
estimation if the following condition holds:

inf  sup [(Lxy)=(LXy)= sup [(Lxy)—(6xy).
(%1€6)) 1 1e6 ) tprecl

The non-negative number

6(€7N): sup |(£:XN)_(£7-£‘N)|
{xk}GGJ]Y

is called a minimax a-posteriori error in the direction ¢. A map
N Iy =dim{{eR" :6((,N) < +o0}

is called an index of causality for the pair of systems (1)—(3).
Now we say that a minimax estimation problem is to construct an a-
posteriori linear minimax estimation (¢,x, ) for the system (1) on the basis of the

measurements (3) and a-posteriori set Glyv . A solution of the minimax estimation

problem in the form of a recursive map k> (/,x, ) is presented in the next
section.

Minimax online observer

Denote by &+ Q) a recursive map that takes each natural number k£ to the

matrix O, , where
Oy = Hi Ry Hy + F{[Siy = St CoaWi i Cha S 1y
Qo = FoSFy + HoRyH o, W), = O + 1.5, C. (7
Let k> 7, be a recursive map that takes each natural number k£ to the

vector 7, € R", where
1 = S CoaWiana + iRy, 1= HoRyy, ®)

and to each natural number i € assign a number «;, where

a; =+ Ry, y:) =Wl niy), o =(82,8)+(Royp. o) - )
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The main result of this paper is formulated in the next theorem.
Theorema (minimax recursive estimation). Suppose we are given a

natural number N and a vector / € R". Then a necessary and sufficient condition
for a minimax a-posteriori error 6(¢, N) to be finite is that

ONOnl=1. (10)
Under this condition we have
1 1
G(LN)=[1—ay +(Oyry,ry)]* (On!,0)? (11)
and
(0,%5)=(0,0nry). (12)

Corollary 1. The index of causality /, for the pair of systems (1)—(3) can
be represented as /, =rank(Qy ).

Corollary 2 (minimax obsever). The online minimax observer is given by
ki X, = Q) r, and (we assume here that 1/0 = +00 )

A(N)= min  max |xy —fN"2 =
{yrecl {xk}eelyv

- AR

~ max "x _3 "2:[ ay +(Qnxy,Xy)] (13)
v in {4 (N)}

{xk}eGy miln i

where A;(N) are eigenvalues of Q. In this case all possible realisations of the

state vector x, of (1) fill the ellipsoid Py (G]yv )c R", where

PN(GZyV)={x:(QNx,x)—2(QNch,x)+aN <1}. (14)
Remark 1. If A, (H,R,H;) grows for k=i,i+1,... then the minimax
estimation error p(k) becomes smaller causing x, to get closer to the real state

vector xy .

In [8] Kalman’s filtering problem for descriptor systems was investigated
from the deterministic point of view. Authors recover Kalman’s recursion to the
time-variant descriptor system by a deterministic least square fitting problem over
the entire trajectory: find a sequence {)%O\ka---afcmk} that minimises the following

fitting error cost
k 2 2
S (e i0) = HFOx0|k - g” + HJ’O ~ Hoxo H *

‘2

k
2
+ ZHFixi\k - Ci—lxi—l\kH + “J’i — Hxy
i=1

Py
H,

estimates {Xoy,..., X} resulting from the minimisation of J; can be found

assuming that the rank[ }En. According to [8] the successive optimal

from the recursive algorithm
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A [ ' -1 A
Xk = P e (B + Cr By Crm) Cra Xy +
+ B H i Ry yies Xopo = Foo (Foq + Ho o) »
_ ' ' -1 ' -1
B = (F (E+ G Beoyja Cr) ™ Fre + Hi Hy)

P0|o:(F6F0+H6Ho)_1- (15)

Fr
H,

let k+— 7, be a recursive map that takes each natural number k£ to the vector

Corollary 3 (Kalman’s filter recursion). Suppose the rank{ }E n, and

1, € R", where
ne=Hy + FC ((CiyChy + O )i 7kt
o= Fog + Hoyg - (16)

Then Q)7 = X foreach k€N, where X,y is givenby (15)and 7, =n.

Acknowledgements. It is a pleasure to thank Prof. A.Nakonechniy and
Dr. V. Pichkur for insightful discussions about the key ideas presented in this
paper.

Proof of Theorem. By definition, put

FO Omn Omn Omn
Omn
- CO Fl Omn Omn
Omn
F= Omn _Cl F2 Omn ’
Omn
Omn Omn Omn _CN—l
FN
vl [ a ] 2 |
Hy 0,, ... 0, X 0 0
0 H 0 M1 fo 81
pn 1 e pn X1
H: . . . ,X: . ,Y= y2 ,FZ fi ,G= g2
0 0 . Hy X
o N L VN ] |-t ] s

By direct calculation we obtain (¢, x, )= (L, X),

GY = DXCFX|? +]Y - HX|2) <1},

where [F7 = (Sq.q)+ X0 (S fis fi).
This implies

|| 5 is indused by R; on the same way.
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sup |(€axN_$N)|: sup |(L:X)_(L:;()|

N N
Xk }EGy XeGy

Denote by M the set R[F' H']. We obviously get
LeM<e sup |(L,X)—(L,X)|<+w.
XeGJ]y
The application of Corollary 4 yields (10). Consider a vector L € M . Clearly
inf (L,X)<(L,X)< sup (L,X), XeG} .
xeGl xeGY

1
Let ¢ denotes E(SupXGGN (L, X)+ infxeG]yV (L, X)) . Therefore
y

sup |<L,X)—(L,>N<)|=%(s<L|G;V)+(s(—L|G’yV))+|c—<L,7<>|
XEG)]Y

hence

&(f,N>=%<s<L|GyN>+s(—L|Gﬁ)), (f,ch)=%(S(L|G]yv)—5(—L|G]yV)), (17)

where s(-| G]yv ) denotes the support function of Glyv . Clearly, GJ]Y is a convex
closed set. Hence the equality (L, )N() =(l,xy) is held for some Xe G]yV . Thus,

to conclude the proof we have to calculate s(L,G ]yv ). Let
Gy = X [FX|P +[HX] < By, (18)

where By =1—ay +(Qnry,7y)20.
Lemma 1.

s(L,GY)=(£,08ry) +s(L|Gg). (19)
It follows from the definition of Gj) that s(L|G{ )=s(-L|G{’) hence
(17) implies
(LEy)=(,08ry), 6(H)=s(L|Gy).

The application of Lemma 2 completes the proof.
Lemma 2.

1
S(LIGY) =By Qi .02, [E-0y0y1=0, (20)
+ o0, [E-QOnxOyn1E#0.

Let r;, denote R" — valued recursive map
Te = F{(Skot = Skt Crat P Cret Skat) fimt + Fi Sk CoaWilame + Hi Ry vy

ro =FgSq+HyRyyy, P, =CiS;Cp + 0y, (21)
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and set
300D = [Foo — &l +lvo — Hoxol: +

N
+ > | Fexy = Chorxg g — fk—l”i_l + |y - Hkxk|i ,

k=1

2 2 2
where gl = (Sg.2). [i[l, = Sisi- S0 Wil = Rivivi).-
Lemma 3. Let x> X, be a recursive map that takes any k €natural to

x, € R", where

X = B (CiSy (Fnfn = fi) +11)s Xy = Oy - (22)
Then
minJ ({x; }) =J({x; }) .
{xp
Proof. By definition put ®(x;): =||F0 X —g”; +||y0 - Hyxg | (2) ,
2 2
D;(x;,%;41) = ”Fi+1xi+1 - Cx; _f”,' +||yi+1 _Hi+1xi+1”i+1 :
Then we obviously get
N-1
I 1) = @(xg) + 2@, (x; %) (23)

i=0
Let us apply a modification of Bellman’s method (so-called «Kyivsky vi-
nyk» method) to the nonlinear programming task

J({x}) = min -
Xt

By definition put

£1(x1) = min {®(xg) + @ (xg, %)} -
X0

Using (7) and (21) one can get
2 2
D(xg) = (Qoxg,x9) —2(rp,xg) + g 2 0, == "g”S +||J’0||0 :
On the other hand it’s clear that
() =D(xg) + Do (X0, %) = (O X1, %) — 2(r7, 1) + ) 20,

where %, = Py (ry + CoSo (F1x; — f0))

2 2 ’ ’
ap = oy + ||)’1||1 + ||f0||o —(Py (ry = CySo.f0)s 70 — CoSo fo) -
Considering ¢,(x;) as an induction base and assuming that

O (X)) =min P (x5 X)) + 45 (X 5) ) =
X2

= (i1 Xi_15%21) = 2(r_15 %) H @y

now we are going to prove that
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Ci(x) = min{P@,y (i, x) + 0 (o)} = (0%, %) = 2(r, X)) + ;. (24)

Xi-1
Note that [11] for any convex function (x,y)— f(x,y)
ymin{f(x, y)[(x,y): P(x,y) =y}, P(a,b)=b

is convex. Thus taking into account the definition of /(x;) one can prove by

induction that ¢,_; is convex and
D,y (xj15%) + £ (%) 2 0.

Hence (the function x> (Ax,x)—2(x,q)+c¢ is convex if A=A4">0)
0;_; 20, the set of global minimums ¥;_; of the quadratic function.

Xig @ (X)) + (O Xy X)) = 2(r 5, %) + @y

is non-empty and x,_; € ¥;, where (The vector x;_; has the smallest norm among
other points of the minimum.)

X = (0 +Ciy S Ciy )+ (CiaSim (Fox; = fi) + 1)
This implies
Ci(e) =@y (Xyoy, ) + 44 (%) = (05X, %) = 2(r, x;) + ¢y,

where
a =i+ Ry, y)+ (8o firs fio) —

~ (P (i = Ciy St fi-)o 1 = Cig St i) -
Therefore, we obtain

min? y(xy) =l yEy)=ay —(”N,QJJ{/”N),;CN :Q;\-/rN
XN

so that minyy, } J({x; }) = I({x; }) .
Corollary 4. Suppose L =[0.../]; then

LeR[FH]<[E-050y1/=0
and
IFHT LH2 =(031,1).
Proof. Suppose S, = E, R, = E for a simplicity. If L € R[F'H'] then
Fyzy +Hyuy =0, Fiz;p+Hu, —Cizpy =0(%),
for some z, e R™, u, € R? . Let’s find the projection {(Z,,i; )}s—, of the vector

{(zp,up)} IZLO onto the range of the matrix [E] . Lemma 3 implies

R S-S AREY 2 fO— T R (%%
20 = Fpxg, 2 = Fixp = Croy Xpoy Uy = Hyxy, (%)
where
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X = B (CrFyp X + 1 = Crzpyy)s Xy =Onry s
1 =FlC Byry + FU(E = C B Chry)zy +
+H/’(Mk,7”0 :F(;ZO +H61/l0,Pk = C/’(Ck +Qk
(*) lmplles I’k:C;{ZkH, k=0,...,N—1, FNZK thus .)’(?N:Q;\—/f, .?’(\fk:
=P CiFy Xy o1 X, =0k, N)Oy/
Ok,N) = P,:C,;FkHCI)(k +1,N),D(s,s)=E.
Combining this with (**) we obtain
2y = (Fy®(k,N) = C_;®(k —1,N))On/,
u, =H, ok, N)Qj{,f, Zy= FOCD(O,N)QX,Z. (25)
By definition, put U(0) = Q,,
Uk)y=®'(k—1,k)U(k —1)D(k —=1,k)+ Hy H; + F,(E —C; P, ,Ci_)* F} .
It now follows that

[P S 2
e -

It’s easy to prove by induction that O, =U (k).

iy|* = U035, 050).

Since
LeR[FH]

we obtain by substituting z, i, into (¥)
vZy +Hy, =10
On the other hand (7) and (25) imply
Fizy +Hytliy =(=[E-QxOn1(=0.
Suppose that [E — Oy Oy 1¢ =0 . To conclude the proof we have to show that
(4, xy) = (O 0,0y xy)=0, V[xg...xy]e N[F'H].

By induction, fix N =0. If Fyx, =0, Hyxy, =0, then Qyx, =0. We say
that [x,...x; ] N[F'H'] if

Foxqg =0, Hyxy =0, Fox, =C,_x Hx; =0.

s—1»
Suppose QO 1%, =0, V[xy...x;,;]1eN[F'H] and fix any [x,...x;]e
eN[F'H'|. Then F,x; = Cy1Xy,» Hyx, =0. Combining this with (7) we obtain

Opxy =F[(E=C P Cr)Chyxp ().

We show that O, > 0 in the proof of Theorem 1. One can see that
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+
Cr-1 !

L = [(CraCry + 05 ) Cy o (CLuCry + O )T O .
oL,
Since

+
Cr-1 || Ck-1 Ck-1 Cr-1

1 1 o= !

2 2 2 2
O L9 ] 19 O

X1

we obviously get
Crot (CroaCry + Q)" Chry Cy Xy = Criyxgy = Oy =0

as it follows from (*). This completes the proof.
Proof of Lemma 1. Taking into account the definitions of the matrices F,H
and (6) we clearly have

GY = X:|FX|” + Y - HX|* <1}.
Let X be a minimum of the quadratic function X+ || FX”2 + ||Y - HX”2 Lt
now follows that
GY =X+G{ =s(LIG))=(L.X)+s(L|Gy).
The application of Lemma 3 yields
(LX) = (£, 05ry).
This completes the proof.

Proof of Lemma 2. Suppose the function f:R” —R' is convex and
closed. Then [11] the support function s(-|{x:f(x)<0}) of the set
{x: f(x) <0} is given by

s(z|{x: f(x)<0}) =clinf {ﬂ,f*(ij}.
220 A

To conclude the proof it remains to compute the support function of G(])V

according to this rule and then apply Corollary 4.
Proof of Corollary 3. The proof is by induction on k. For k=0, there is

nothing to prove. The induction hypothesis is Py = Q,;ll . Suppose S is
nxn -matrix such that S =8> 0, A is mx n -matrix; then
AS™ + A4 =(E+ 454")7' 48 . (26)
Using (26) we get
ASA' =[E + ASA'|A[A'A+ S~ 4" (27)
Combining (27) with the induction assumption we get the following

E+Ci Py Croy =E+[E+Ci P k—1|k—1Cl'c—1 Ix
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X Ci[Opy + oy Gy 17 iy
By simple calculation from the previous equality follows
' e Vall ’ -1
E—-Ci (O + CrCry) ™ Cpy =(E+ Ci By Cry) -
Using this and (7), 15) we obviously get O, = Py -

It follows from the definitions that Q lro =)%0|0. Suppose that Q,:_llrk_l =

= Xj_1jk—1 - The induction hypothesis and (26) imply
' -1 I ' -1
(E+ Cha P Cr1) Crma Xt = Cr (Cra Cry + Qg o1 Pt -
Combining this with (15), (16) and using O = Py we obtain

A -1 ' ' ’
Xip = O (F{Chry(ChiCroy + O )iy + Hywy).

This concludes the proof.
Proof of Corollary 2. If I, <n then rank(Q)<n hence 4,,,(Q;)=0. In

this case there is a direction £ € R" such that 6(¢,k) = +o. So p(k)=+o0.
If I, = n then it follows from formula (11) that

. ~ 112 . ~ 2
min~ max |¥y —Xy| = min  max {max|(Lxy —Xy) [} =
peel wecy pieel meel M

. ~ \n2
={minmax max |({,xy —Xy)[}" =
ol Iz ec

) ~ 2
2{max min max |(l,xy —Xy)[}" =
=1 2 €6l (1Y

[1-ay +(Oyry.ry)]

=[1—0£N +(Q]-{—[FN7FN)]maX(Q;/Z’£): (28)
= min (4; ()}
On the other hand formula (11) implies
max iN—?cN"z:{max max | (xy =317 =
5166 = 7 e Y
1 1
= {tmax[1-ay +(Qyry. )12 Q602 (29)

=1
Using (28)—(29), we get (13).
Since (29) we see that the condition 7, =#n implies GJ]Y is a bounded set.

On the other hand 7, =n implies [E — QyQy]1=0 for the given N . It follows
from Lemmas 1, 2 that
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1

(| Py (G ) =s(Pyt1GY ) =s(LIGY )= (4,04 ry) + By (01,02, (30)

for any /e R". By Young’s theorem [11], (30), so that

Py(GY)={xeR":(x,()<s(¢| Py(G})), V{eR"} =
1

={xeR" :st;p{(x,@—(f,a%;v)—m (O3l 02} <0} =

={xeR":(Oyx,x) = 2(QnXy,X)+ay <1}.

This completes the proof.
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