

## ПРОБЛЕМИ ПРИЙНЯТТЯ РІШЕНЬ І УПРАВЛІННЯ В ЕКОНОМІЧНИХ, ТЕХНІЧНИХ, ЕКОЛОГІЧНИХ І СОЦІАЛЬНИХ СИСТЕМАХ

УДК 519.71:330.42

## К МОДЕЛИРОВАНИЮ СТОХАСТИЧЕСКИХ СИТУАЦИЙ ПРИНЯТИЯ РЕШЕНИЯ

## В. И. ИВАНЕНКО, В. М. МИХАЛЕВИЧ

Для стохастических ситуаций принятия решений, т.е. для ситуаций со стохастическим причинно-следственным механизмом даются определения т.н. лотерейной и матричной модели. Показано, что эти модели эквивалентны (равносильны) при моделировании широкого класса таких ситуаций.

Ситуацией принятия решения (СПР) называем ту, оказавшись в которой, некто должен принять решение. Это значит, что он должен выбрать одно действие d из множества D, дозволенных ему. Каждое из действий  $d \in D$  в СПР обуславливает только одно последствие c, ведь заранее неизвестно, какое именно последствие c из множества  $C_d$  всех возможных последствий этого действия [1,2].

Из всех СПР выделим два типа, а именно: параметрические и непараметрические. Примером непараметрической СПР будет ситуация, при которой тот, кто принимает решение (ТПР), должен выбрать одну из нескольких лотерей ( $d \in D$ ), где каждая должна принести ему выигрыш ( $c \in C_d$ ). Примером параметрической СПР может стать антагонистическая игра, в которой действие ТПР является решением  $d \in D$ , а действие противника — параметром, влияющим на последствие игры.

Лотерейной моделью СПР мы называем пару  $M_l = (Z_l, I_l)$ , здесь тройка  $Z_l = (D, C, \psi(\cdot))$ ; D — множество решений; C — множество последствий,  $\psi: D \to 2^C$ ;  $\psi(d) = C_d \subseteq C$ ,  $\forall d \in D$  называется лотерейной схемой СПР, а символом  $I_1$  обозначено сведения об причинно-следственном механизме (ПС), порождающем последствия в данной СПР.

Матричной моделью СПР называем пару  $M_m = (Z_m, I_m)$ , где четверка  $Z_m = (\Theta, D, C, g(\cdot, \cdot))$  и D и C имеют тот же смысл, что и в модели  $M_l$ ,  $\Theta$  — неизвестный тому, кто принимает решение (ТПР) параметр; и, наконец,  $g: \Theta \times D \to C$ , символом  $I_m$  обозначено сведения о механизме, порождающем значения параметра  $\Theta$ .

В [3] было высказано утверждение, что всякую СПР — параметрическую или непараметрическую — можно представить как лотерейной, так матричной моделью. Это значит, что такие модели эквивалентны или равносильны для описания СПР.

Нетрудно заметить, что для схем  $Z_l$  и  $Z_m$  это утверждение верно.

В итоге, пусть задана матричная схема  $Z_m$  некоторой СПР. Для построения лотерейной схемы этой же ситуации надо выстроить только многозначное отображение  $\psi(\cdot)$ . Будем называть эту операцию *проектированием* или *сжатием*. Выберем её так, что

$$\psi(d) = \{ g(\theta, d) : \theta \in \Theta \} \quad \forall d \in D . \tag{1}$$

Пусть теперь задана лотерейная схема  $Z_l$  этой же СПР, и нам надо перейти к её матричной схеме  $Z_m$ , такой, чтобы сжатие последней совпадало бы с  $Z_l$ . При этом надо построить множество  $\Theta$  и функцию g. Назовем эту операцию *параметризацией* и представим её в следующем виде [4]:

$$\Theta = \left\{ \theta \in C^D : \theta(d) \in \psi(d), \ \forall d \in D \right\},$$

$$g(\theta, d) = \theta(d), \ \forall \theta \in \Theta, \ \forall d \in D.$$

$$(2)$$

Тем самым операция сжатия (1) оказывается сурьекцией класса матричных схем в класс лотерейных [5], а схемы  $Z_l$  и  $Z_m$  эквивалентны в указанном выше смысле. Однако упомянутое выше утверждение [3] об эквивалентности моделей  $M_l$  и  $M_m$  нуждается в доказательстве, которое ниже приводится для так называемых стохастических СПР с конечным множеством решений U.

Пусть лотерейная модель задана в виде:

$$M_1 = (D, (C, A), \{\mu_d, d \in D\}),$$
 (3)

где A —  $\sigma$ -алгебра на C , а  $\mu_d$  — вероятностная мера на измеримом пространстве (C,A)  $\forall d \in D$  , сосредоточенная на  $C_d$  , которое определено с точностью до нулевой меры.

Матричную модель представим в виде:

$$M_m = ((\Theta, A_{\Theta}, \mu), D, (C, A), g(\cdot, \cdot)), \tag{4}$$

где  $(\Theta, A_{\Theta}, \mu)$  — вероятностное пространство с  $\sigma$  -алгеброй  $A_{\Theta}$  и мерой  $\mu$  .

Отображение  $g(\cdot,\cdot)$  индуцирует некоторое вероятностное распределение  $\mu'_d$  на множестве последствий C. Значение  $\mu'_d$  при этом определяется в виде:

$$\mu'_d(A) = \Pr[g(\theta, d) \in A] = \mu \{\theta : g(\theta, d) \in A\}. \tag{5}$$

Для корректного определения  $\mu'_d$  необходимо, чтобы  $A\in A$  ,  $\forall\, d\in D$  выполнялось условие  $\{\theta\in\Theta:g(\theta,d)\in A\}\in A_\Theta$  .

Ограничимся далее такими СПР, где все последствия  $c \in C$  могут быть оценены действительными числами, причем последствия, порождаемые разными решениями, независимы.

Точнее, пусть на множестве последствий c соответствующим отношением предпочтения существует функция полезности U [2], измеримая относительно соответствующей  $\sigma$ -алгебры. Тогда модели (3) и (4) можно представить в более удобной форме.

Лотерейную модель получаем в виде:

$$M_l = (D, \{X_d, d \in D\}), \tag{6}$$

где случайные величины  $X_d = U(c) \ \forall \ c \in C$  из вероятностного пространства  $(C, A, \mu_d), \ \forall \ d \in D$  .

Таким образом, лотерейная модель  $M_l$  представляет собой семейство случайных величин с функциями распределения  $F_d(x) = \mu_d \left\{ c \in C : U(c) < x \right\}$   $\forall d \in D$ .

Матричную модель задаем в виде:

$$M_m = ((\Theta, A_{\Theta}, \mu), D, L(\cdot, \cdot)), \tag{7}$$

где  $L \in (\Theta \times D)^R$  такая, что  $L(\theta,d) = U(g(\theta,d))$  и  $L(\cdot,d)$  — измерима относительно  $\sigma$  -алгебры  $A_\Theta$ ,  $\forall d \in D$ ,  $\forall \theta \in \Theta$  (последнее непосредственно следует из свойств функций U и g).\*

Теперь переход от матричной модели  $M_m$  (7) к лотерейной  $M_l$  (6) — процедуру сжатия — дополним, определив распределение независимых случайных величин  $X_d$ ,  $d \in D$  в виде:

$$F_d(x) = \mu(\{\theta \in \Theta : L(\theta, d) < x\}), \forall d \in D.$$

Это определение корректно в силу измеримости  $L(\cdot,d)$ .

Обратный переход от лотерейной модели  $M_l$  (6) к матричной  $M_m$  (7), такой, что её сжатие (проекция) совпадает с  $M_l$ , состоит в следующем: на семействе случайных величин  $\left\{X_d\,,\,\forall\,d\in D\right\}$  мы можем задать случайную функцию в широком смысле [6], полагая совместные функции распределения последовательности случайных величин  $X_{d_1}, X_{d_2}, \ldots, X_{d_n},\,\forall\,d\in D\,,\,\forall\,n\in\mathbb{N}$  как

$$F_{d_1d_2...d_n}(x_1, x_2, ..., x_n) = F_{d_1}(x_1) \cdot F_{d_2}(x_2) \cdot ... \cdot F_{d_n}(x_n)$$
.

Согласно фундаментальной теореме Колмогорова для всякой случайной функции в широком смысле можно построить ей стохастически эквивалентную в широком смысле случайную функцию [6]. Эта функция, очевидно, и есть результат обратного перехода от  $M_l$  (6) к  $M_m$  (7), так как проекция  $M_m$  совпадает с  $M_l$ .

Из полученных результатов сформулируем следующую теорему:

**Теорема**. Класс ситуаций принятия решений, моделирующихся в матричном виде, совпадает с классом ситуаций принятия решений, которые моделируются в лотерейном виде.

## ЛИТЕРАТУРА

- 1. Де Гроот М. Оптимальные статистические решения. М.: Мир, 1975. 491 с.
- Фишберн П.С. Теорема полезности для принятия решений. М.: Наука, 1978.
   — 358 с.
- 3. *Иваненко В.И., Лабковский В.А.* Проблема неопределенности в задачах принятия решений. Киев: Наук. думка, 1990. 134 с.
- 4. *Ivanenko V.I., Labkovsky V.A.* Experiment in the General Decision Problem // Theory and Decision. Springer, 2005. **57**. P. 309–330.
- 5. *Иваненко В.И., Михалевич В.М.* К вопросу о неопределенности в задачах принятия решения // Кибернетика и системный анализ. 2008. № 2. С. 116–120.
- 6. *Гихман И.И.*, *Скороход А.В.* Введение в теорию случайных процессов // М.: Наука, 1965. 655 с.

Поступила 04.08.2009

<sup>\*</sup>В случае, когда  $L(\theta,d) = -L(g(\theta,d))$  , её иногда называют функцией потерь [1]