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TIДC  

НОВІ МЕТОДИ В СИСТЕМНОМУ АНАЛІЗІ, 
ІНФОРМАТИЦІ ТА ТЕОРІЇ ПРИЙНЯТТЯ РІШЕНЬ 

УДК 517.9 

INITIAL TIME VALUE PROBLEM SOLUTIONS FOR 
EVOLUTION INCLUSIONS WITH kS  TYPE OPERATORS 

P.O. KASYANOV, V.S. MEL'NIK,  S. TOSCANO 

For a large class of operator inclusions, including those generated by maps of kS  
type, we obtain a general theorem on existence of solutions. We apply this result to 
some particular examples. This theorem is proved using the method of Faedo-
Galerkin. 

INTRODUCTION 

One of the most effective approach to investigate nonlinear problems, represented 
by partial differential equations, inclusions and inequalities with boundary values, 
consists in the reduction of them into differential-operator inclusions in infinite-
dimensional spaces governed by nonlinear operators. In order to study these 
objects the modern methods of nonlinear analysis have been used [7, 8, 17, 28]. 
Convergence of approximate solutions to an exact solution of the differential-
operator equation or inclusion is frequently proved on the basis of a monotony 
or a pseudomonotony of corresponding operator. In applications, as a 
pseudomonotone operator the sum of radially continuous monotone bounded 
operator and strongly continuous operator was considered [8]. Concrete examples 
of pseudomonotone operators were obtained by extension of elliptic differential 
operators when only their summands complying with highest derivatives satisfied 
the monotony property [17]. The papers of F. Browder and P. Hess [3, 4] became 
classical in the given direction of investigations. In particular in F. Browder and 
P. Hess work [4] the class of generalized pseudomonotone operators was 
introduced. Let W  be real Banach space continuously embedded in real reflexive 
Banach space Y  with dual space *Y , R→×⋅〉〈⋅ YYY

*:,  be the pairing. Further, 

as )( *YCv  we consider the family of all nonempty closed convex bounded 

subsets of the space *Y . Multi-valued map )(: *YCYA v→  refers to be 
generalized pseudomonotone on W  if for each pair of sequences Wy nn ⊂≥1}{  

and *
1}{ Yd nn ⊂≥  such that )( nn yAd ∈ , yyn →  weakly in W , ddn →  weakly 

in *Y , from the inequality 
 YYnnn

ydyd 〉〈≤〉〈
∞→

,,lim  
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it follows that )(yAd ∈  and YYnn ydyd 〉〈→〉〈 ,, . I.V. Skrypnik's idea of passing 
to subsequences in classical definitions [26], realized for stationary and evolution 
inclusions in M.Z. Zgurovsky, P.O. Kasyanov, V.S. Mel'nik and J. Valero papers 
(see [12–16], [18–21] and citations there) enabled to consider the class of 

0λ
w -

pseudomonotone maps which includes, in particular, a class of generalized 
pseudomonotone on W  multi-valued operators and it is closed within summing. 
Let us remark that any multi-valued map )(: *YCYA v→  naturally generates 
upper and, accordingly, lower form: 
 XywdyAwdyA YyAdY

yAd
∈〉〈〉〈

∈∈
+ ωωω ,,,inf=]),([,,sup=]),([

)(_
)(

. 

Properties of the given objects have been investigated by M.Z. Zgurovsky and 
V.S. Mel'nik (see [16, 18, 21]). Thus, together with the classical coercivity 
condition for singlevalued maps 

 +∞→
〉〈

Y

Y

y
yyA ),(

  as  +∞→Yy  

which ensures the important a priori estimations, arises +-coercivity (and, 
accordingly, –-coercivity) for multivalued maps  

 .as,
]),([ )( +∞→+∞→−+

Y
Y

y
y

yyA
 

 +-coercivity is weaker condition than –-coercivity. 
Recent development of the monotony method in the theory of differential-

operator inclusions and evolutionary variational inequalities ensures resolvability 
of the given objects under the conditions of coercivity, quasiboundedness and the 
generalized pseudomonotony (see for example [5–6, 9–10, 23–25, 27] and 
citations there). V.S. Mel'nik's results [22] allows to consider evolution inclusions 
with + -coercive 

0λ
w -pseudomonotone quasibounded multimappings (see [12]–

[16], [31] and citations there). 
In this paper we introduce the differential-operator scheme for investigation 

nonlinear boundary-value problems with summands complying with highest 
derivatives are not satisfied monotone condition. A multi-valued map →YA :  

)( *YCv→  satisfies the property kS  on W , if for any sequence Wy nn ⊂≥0}{  

such that 0yyn →  weakly in W , 0ddn →  weakly in *Y  as +∞→n , where 
)( nn yAd ∈  1≥∀n , from 

 0=,lim 0 Ynn
n

yyd 〉−〈
∞→

, 

it follows that )( 00 yAd ∈ . Now we consider the simple example of kS  type 

operator. Let (0,1)=Ω , )(= 1
0 ΩHY  be the real Sobolev space with dual space 

)(= 1* Ω−HY  (see for details [8]). Let *1,1][: YYA →−×  defined by the rule  

 ⎟
⎠
⎞

⎜
⎝
⎛− y

dx
d

dx
dyA αα =),( . 
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Then the multivalued map 
 YyyAy ∈−∈ },1,1][|),({=)( ααA   

satisfies the property kS , it is +-coercive, but it is not –-coercive, it is not general-
ized pseudomonotone and )( A−  is not generalized pseudomonotone too (see [11] 
for detailes). We remark that stationary inclusions for multimaps with kS  
properties were considered by V.O. Kapustyan, P.O. Kasyanov, O.P. Kogut [11], 
the evolution inclusions for + -coercive 

0λ
w -pseudomonotone quasibounded 

maps by V.S. Mel'nik, P.O. Kasyanov, J. Valero (see [12]–[16], [31] and citations 
there). The obtained in this paper results are new results for evolution equations too. 

PROBLEM DEFINITION 

Let ),(
11 VV ⋅  and ),(

22 VV ⋅  be some reflexive separable Banach spaces, 

continuously embedded in the Hilbert space )),(,( ⋅⋅H  such that  

 21=: VVV ∩   is dense in spaces  21,VV   and  H  (1) 

After the identification *HH ≡  we get  

 ,, *
22

*
11 VHVVHV ⊂⊂⊂⊂  (2) 

with continuous and dense embeddings [8], where ),( *
*

iViV ⋅  is the topologically 

conjugate of iV  space with respect to the canonical bilinear form 

 R→×⋅〉〈⋅ iiiV VV *:,  ( 21,=i ) 

which coincides on VH ×  with the inner product ),( ⋅⋅  on H. Let us consider the 
functional spaces 
 ),;();(= iipiri VSLHSLX ∩  

where ][0,= TS , +∞<<0 T , +∞≤ <<1 ii rp  1,2)=(i . The spaces iX  are 
Banach spaces with the norms );();(= HSyVSyy

ir
LiipLiX + . Moreover, iX  

is a reflexive space. 
Let us also consider the Banach space 21= XXX ∩  with the norm 

21
= XXX yyy + . Since the spaces );();( * HSLVSL

iriiq ′
+  and *

iX  are 
isometrically isomorphic, we identify them. Analogously,  

 ),;();();();(==
21

*
22

*
11

*
2

*
1

* HSLHSLVSLVSLXXX rrqq ′′
++++  

where 1== 1111 −−−
′

− ++ iiii qprr . 

Let us define the duality form on XX ×*  
 +〉〈++〉〈 ∫∫∫ τττττττττ dyfdyfdyfyf V

S
H

S
H

S
1211211 )(),())(),(())(),((=,  

 ,))(),((=)(),(
222 ττττττ dyfdyf

S
V

S
∫∫ 〉〈+  
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where 22211211= fffff +++ , );(1 HSLf
iri ′

∈ , );( *
2 iiqi VSLf ∈ . Remark, that 

for each *Xf ∈  

 
⎩
⎨
⎧

+++
∈

′
∈

;);('
max

:
inf=

1
11

1,2)=()*;(2),;(1

22211211=
* HSf

fff
f

rL

iiVS
iqLifHS

ir
Lif

ffX
 

 .);(;);(;);(' *
22

22*
11

21
2

12
⎭
⎬
⎫

VSfVSfHSf
qLqLrL  

Following by [17], we may assume that there is a separable Hilbert space σV  
such that 1VV ⊂σ , 2VV ⊂σ  with continuous and dense embedding, HV ⊂σ  with 
compact and dense embedding. Then  

 **
22

**
11 , σσσσ VVHVVVVHVV ⊂⊂⊂⊂⊂⊂⊂⊂  

with continuous and dense embedding. For 1,2=i  let us set 

 ,=),;();(= 2,1,, σσσσσ XXXVSLHSLX
ipiri ∩∩  

 *
2,

*
1,

***
, =),;();(= σσσσσ XXXVSLHSLX

iqiri ++
′

, 

 σσσσσ 2,1,
*
,, =},|{= WWWXyXyW iii ∩∈′∈ . 

For multivalued (in general) map *: XXA ⇒  let us consider such problem: 

 
⎩
⎨
⎧

⊂∈
∋+′

),;(,=(0)
,)(

HSCWuau
fuAu

 (3) 

where Ha∈  and *Xf ∈  are arbitrary fixed elements. The goal of this work is to 
prove the solvability for the given problem by the Faedo-Galerkin method. 

THE CLASS )( *XH  

Let us note that )( *XB H∈ , if for an arbitrary measurable set SE ⊂  and for 
arbitrary Bvu ∈,  the inclusion Buvu E ∈−+ χ)(  is true. Here and further for 

*Xd ∈  

 )()(=))(( τχττχ EE dd  for a.e. 
⎩
⎨
⎧ ∈

∈
.else,0
,,1

=)(,
E

S E
τ

τχτ  

Lemma 1 [30]. )( *XB H∈  if and only if 1≥∀n , Bd n
ii ⊂∀ 1=}{  and for 

arbitrary measurable pairwise disjoint subsets n
jjE 1=}{  of the set S : SE j

n
j =1=∪  

the following Bd
jEj

n
j ∈∑ χ1=  is true. 

Let us remark, that )(, ** XX H∈∅ ; *Xf ∈∀  )(}{ *Xf H∈ ; if *: VSK ⇒  
is an arbitrary multi-valued map, then 
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 ).(}a.e.for)()(|{ ** XSttKtfXf H∈∈∈∈  

At the same time for an arbitrary 0\*Vv∈  that is not equal to 0  the closed 
convex set ),([0,1]},|{= ** XvfXfB H∉∈≡∈ αα  as Bvg T ∉⋅⋅⋅ )(=)( /2][0;χ . 

CLASSES OF MULTI-VALUED MAPS 

Let us consider now the main classes of multi-valued maps. Let Y  be some 
reflexive Banach space, *Y  be its topologically adjoint, R→×⋅〉〈⋅ YYY

*:,  be the 

pairing, *: YYA ⇒  be the strict multi-valued map, i.e. ∅≠)(yA  .Xy∈∀  For 
this map let us define the upper *

)(
sup=)(

Xyd
dyA

A∈
+  and the lower 

*)(_ inf=)(
Xyd

dyA
A∈

 norms, where Yy∈ . Let us consider the next maps 

which are connected with :A  *:co YYA ⇒  and ,:co *YYA ⇒  which are defined 
by the next relations ))((co=))(co( yAyA  and ))((co=))(co( yAyA  
respectively, where ))((co yA  is the weak closeness of the convex hull of the set 

)(yA  in the space *Y . It is known that strict multi-valued maps *:, YYBA ⇒  
have such properties [16, 18, 20]: 

1) +++ +≤+ ]),([]),([]),([ 2121 vyAvyAvvyA , 

−−− +≥+ ]),([]),([]),([ 2121 vyAvyAvvyA  y∀ , 1v , Yv ∈2 ; 
2) −+ −− ]),([=]),([ vyAvyA , 

)()()( ]),([]),([=]),()([ −+−+−+ ++ vyBvyAvyByA  Yvy ∈∀ , ; 

3) )()( ]),(c[=]),([ −+−+ vyAovyA  Yvy ∈∀ , ; 

4) YvyAvyA )()( )(]),([ −+−+ ≤ , +++ +≤+ )()()()( yByAyByA , 

partially the inclusions )(c yAod ∈  is true if and only if 

 .,]),([ YvvdvyA Y ∈∀〉〈≥+  

Let .YD ⊂  If R→×⋅⋅ YDa :),( , then for every Dy∈  the functional 
),( wyawY 6∋  is positively homogeneous convex and lower semi-continuous if 

and only if there exists the multi-valued map *: YYA ⇒  with the definition 
domain DAD =)(  such, that 

 .),(]),([=),( YwADywyAwya ∈∀∈∀+  

Further, yyn  in Y  will mean, that ny  converges weakly to y  in Y . 
Let W  be some normalized space that continuously embedded into Y . Let 

us consider multi-valued map *: YYA ⇒ . 

Definition 1. The strict multi-valued map *: YYA ⇒  is called: 
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• 0λ -pseudomonotone on W , if for any sequence Wy nn ⊂≥0}{  such, that 

0yyn  in W , 0ddn  in *Y  as +∞→n , where )(co nn yAd ∈  1≥∀n , from 
the inequality 
 0,lim 0 ≤〉−〈

∞→
Ynnn

yyd  (4) 

it follows the existence of subsequence 1},{ ≥kknkn dy  from 1},{ ≥nnn dy , for that 

 YwwyyAwyd Yknkn
k

∈∀−≥〉−〈 −
∞→

]),([,lim 00  (5) 

is fulfilled; 
• bounded, if for every 0>L  there exists such 0>l , that 

 LyYy Y ≤∈∀ : ,  it follows that  lyA ≤+)( . 

Definition 2. The strict multi-valued map *: XXA ⇒  is called: 
• the operator of the Volterra type , if for arbitrary Xvu ∈, , St∈  from the 

equality )(=)( svsu  for a.e. ][0,ts∈ , it follows, that ++ ]),([=]),([ tt vAuA ξξ  

 Xt ∈∀ξ : 0=)(stξ  for a.e. ];[0,\ tSs∈   

• +(-)-coercive, if there exists the real function RR →+:γ  such, that 
+∞→)(sγ  as +∞→s  and 

 ;)(]),([ )( YyyyyyA YY ∈∀≥−+ γ  

• demi-closed, if from that fact, that yyn →  in Y , ddn  in *Y , where  

 )( nn yAd ∈ , 1≥n , it follows, that )(yAd ∈ . 

Let us consider multi-valued maps, that act from mX  into *
mX , 1≥m . Let 

us remark, that embeddings *
mmm XYX ⊂⊂  are continuous, and the embedding 

mW  into mX  is compact [17]. 

Definition 3. The multi-valued map )(: *
mvm XCX →A  is called ),( *

mm XW -

weakly closed, if from that fact, that yyn  in ,mW  ddn  in ,*
mX  )( nn yd A∈  

1≥∀n  it follows, that ).(yd A∈  

Lemma 2. The multi-valued map )(: *
mvm XCX →A  satisfies the property 

kS  on mW  if and only if )(: *
mvm XCX →A  is ),( *

mm XW -weakly closed. 

Proof. Let us prove the necessity. Let yyn  in ,mW  ddn  in ,*
mX  where 

)( nn yd A∈  1.≥∀n  Then yyn →  in mX  and 0, →〉−〈
mXnn yyd  as .+∞→n  

Therefore, in virtue of A  satisfies the kS  property on ,mW  we obtain, that 
)(yd A∈ . 

Let us prove sufficiency. Let yyn  in ,mW  ddn  in ,*
mX  

0, ≤〉−〈
mXnn yyd  as +∞→n , where )( nn yd A∈  1.≥∀n  Then yyn →  in 

mX  and ).(yd A∈  
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The lemma is proved. 
Corollary 1. If the multi-valued map )(: *

mvm XCX →A  satisfies the 
property kS  on mW , then A  is 0λ -pseudomonotone on mW . 

THE MAIN RESULTS 

In the next theorem we will prove the solvability and justify the Faedo-Galerkin 
method for the problem (3). 

Theorem 1. Let 0=a , )()(: ** XXCXA v H∩→  be + -coercive bounded 
map of the Volterra type, that satisfies the property kS  on σW . Then for arbitrary 

*Xf ∈  there exists at least one solution of the problem (3), that can be obtained 
by the Faedo-Galerkin method. 

Proof. From +-coercivity for *: XXA ⇒  it follows, that Xy∈∀   

 .)(]),([ XX yyyyA γ≥+  

So, :0>0r∃  0.>)( *0 ≥
X

frγ  Therefore,  

 0.],)([=: 0 ≥−∈∀ +yfyAryXy X  (6) 

T h e  s o l v a b i l i t y  o f  a p p r o x i m a t e  p r o b l e m s. 
Let us consider the complete vectors system Vh ii ⊂≥1}{  such that 

1α )   1}{ ≥iih  orthonormal in H ; 

2α )   1}{ ≥iih  orthogonal in V ; 

3α ) Vvvhvhi iiVi ∈∀≥∀ ),(=),(1 λ , 
where ∞→≤≤ jλλλ ,...,0 21  as ∞→j , V),( ⋅⋅  is the natural inner product in V , 

i.e. 1}{ ≥iih  is a special basis [29]. Let for each 1≥m  m
iim hH 1=}{span= , on which 

we consider the inner product induced from H  that we again denote by ),( ⋅⋅ . Due 

to the equivalence of *H  and H  it follows that mm HH ≡* ; );(=
0 mpm HSLX , 

);(=
0

*
mqm HSLX , },{max= 210 rrp , 1>0q : 1=1/1/ 00 qp + , =⋅〉〈⋅

mX,  

mmXX X×⋅〉〈⋅= *|, , }|{:= *
mmm XyXyW ∈′∈ , where y′  is the derivative of an 

element mXy∈  is considered in the sense of ),(*
mHSD . For any 1≥m   let 

);( XXI mm L∈  be the canonical embedding of mX  in X , *
mI  be the adjoint 

operator to mI . Then  

 1.=);1 **(
*

σσ XXmIm
L

≥∀  (7) 

Let us consider such maps [12]:  

 .:=),(:=: *** fIfXCXIAIA mmvmmmm →DD  

So, from (6) and corollary 1, applying analogical thoughts with [12], [14] we 
will obtain, that 
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)1j  mA  is 0λ -pseudomonotone on mW ; 
)2j  mA  is bounded; 
)3j  0],)([ ≥− +yfyA mm  mXy∈∀ : 0= ry X . 

Let us consider the operator *)(: mmmm XXLDL →⊂  with the definition 
domain 
 ,=}0=(0)|{=)( 0

mmm WyWyLD ∈  
that acts by the rule: 
 ,=0 yyLWy mm ′∈∀  

where the derivative y′  we consider in the sense of the distributions space 

);(*
mHSD . From [12] for the operator mL  the next properties are true: 

)4j  mL  is linear; 

)5j  0,0 ≥〉〈∈∀ yyLWy mm ; 
)6j  mL  is maximal monotone. 

Therefore, conditions 1j )– 6j ) and the theorem 3.1 from [13] guarantees the 
existence at least one solution )( mm LDy ∈  of the problem:  

 ,,)()( 0ryfyAyL Xmmmmmm ≤∋+  

that can be obtained by the method of singular perturbations. This means, that my  
is the solution of such problem:  

 
⎪⎩

⎪
⎨
⎧

≤∈

∋+′

,,,0=(0)

)(

RyWyy

fyAy

Xmmmm

mmmm
 (8) 

where 0= rR . 
P a s s i n g  t o  t h e  l i m i t. 
From the inclusion from (8) it follows, that 1≥∀m  :)( mm yAd ∈∃   

 ).(=)(= **
mmmmmmmm yAIyAyfdI ∈′−  (9) 

D1 . The boundedness of 1}{ ≥mmd  in *X  follows from the boundedness of A  
and from (8). Therefore,  
 .1:0> 1*1 cdmc

Xm ≤≥∀∃  (10) 

D2 . Let us prove the boundedness 1}{ ≥′ mmy  in *
σX . From (9) it follows, that 

1≥∀m  )(= *
mmm dfIy −′ , and, taking into account (7), (8) and (10) we have:  

 .<2* +∞≤≤′ cyy WmXm σσ
 (11) 

In virtue of (8) and the continuous embedding );( mm HSCW ⊂  we obtain 
(see [24]) that 0>3c∃  such, that  

 .)(1, 3ctyStm Hm ≤∈∀≥∀  (12) 
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D3 . In virtue of estimations from (10)–(12), due to the Banach-Alaoglu 
theorem, taking into account the compact embedding YW ⊂ , it follows the 
existence of subsequences 

 1111 }{}{,}{}{ ≥≥≥≥ ⊂⊂ mmkkmmmkkm ddyy  

and elements Wy∈ , *Xd ∈ , for which the next converges take place: 

 yy
km   in  ddW

km,   in  *X  

 )()( tyty
km   in  H   for  each  St∈ ,  (13) 

 )()( tyty
km →   in  H   for a.e.  St∈ ,  as  ∞→k . 

From here, as 1≥∀k  0=(0)
kmy , then 0=(0)y . 

D4 . Let us prove, that  
 .= dfy −′  (14) 

Let N∈∈ nSD  ),(ϕ  and nHh∈ . Then 1≥∀k : nmk ≥  we have:  

 ,,'=),))()(')((( 〉+〈+∫ ψττττϕ
kmkmkmkm

S

dyhddy  

where XXh n ⊂∈⋅ )(=)( τϕτψ . Let us remark, that here we use the property of 
Bochner integral [8](theorem IV.1.8, c.153). Since for nmk ≥  nkm HH ⊃ , then 

.,=,' 〉〈〉+〈 ψψ
kmkmkm fdy  Therefore, 1≥∀k : nmk ≥   

 .,)()(=,
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
〉〈 ∫ hdff

S
km τττϕψ  

Hence, for all 1≥k : nmk ≥  

 →−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′∫ ψτττϕ ,,)()(

kk m
S

m dfhdy  

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−→ ∫

S

hddf ,)()(()( ττττϕ  as ∞→k .  (15) 

The last follows from the weak convergence 
kmd  to d  in *X . 

From the convergence (13) we have: 

 ( )hyhdy
S

mk
),(,)()( ϕτττϕ ′→

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′∫   as ∞→k ,  (16) 

where 
 ττϕτϕϕϕ dyyyS

S

)()()()()( ′−=′−=′∈∀ ∫D . 
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Therefore, from (15) and (16) it follows, that  

 .,))()()((=)),(( )(
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−′∈∀∈∀ ∫

≥

hddfhyHhS
S

m
m

ττττϕϕϕ ∪D  

Since m
m

H∪
1≥

 is dense in V  we have, that  

 .))()()((=)()( ττττϕϕϕ ddfyS
S

−′∈∀ ∫D  

Therefore, *= Xdfy ∈−′ . 
D5 . In order to prove, that y  is the solution of the problem (3) it remains to 

show, that y  satisfies the inclusion fyAy ∋+′ )( . In virtue if identity (14), it is 
enough to prove, that )(yAd ∈ . 

From (13) it follows the existence of Sll ⊂≥1}{τ  such that Tlτ  as 
+∞→l  and 

 )()(1 llkm yyl ττ →≥∀   in  H   as  +∞→k  (17) 

Let us show that for any 1≥l   

 0=)(:]),([, twXwwyAwd ∈∀≤〉〈 +   for a e.  ],[ Tt lτ∈ . (18) 

Let us fix an arbitrary 1}{ ≥∈ llττ . For 1,2=i  let us set  

 ),()(=)(),;,();,(=)( 2,1,, ττττττ σσσσσ XXXVTLHTLX
ipiri ∩∩  

 )()(=)(),;,();,(=)( *
2,

*
1,

***
, ττττττ σσσσσ XXXVTLHTLX

iqiri ++
′

, 

 )()(=)()},(|)({=)( 2,1,
*
,, ττττττ σσσσσ WWWXyXyW iii ∩∈′∈ . 

 1.),(=),(=0 ≥kyaya
kmk ττ   

Similarly we introduce )(τX , )(* τX , )(τW . From (17) it follows that  

 0aak →   in  H   as  +∞→k . (19) 

For any 1≥k  let )(τWzk ∈  be such that  

 
⎩
⎨
⎧ ∋+′

,=)(
,0)(

kk

kk

az
zJz

τ
 (20) 

where ))(()(: * ττ XCXJ v→  be the duality (in general multivalued) mapping, 
i.e. 
 ).(,)(=)(==]),([=]),([ 222

)( ττ XuuJuJuuuJuuJ X ∈−+−+  

We remark that the problem (20) has a solution )(τWzk ∈  because J  is 
monotone, coercive, bounded and demiclosed (see [1–2, 8, 13]). Let us also note 
that for any 1≥k  
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 0.=2,2=)( 2
)()(

22
ττ XkXkkHkHk zzzaTz +〉′〈−  

Hence, 

 .
2

1=)(1 3)(* cazzk HkXkXk ≤≤′≥∀ ττ  

Due to (19), similarly to [8, 13], as +∞→k , kz  weakly converges in W  to the 
unique solution Wz ∈0  of the problem (20) with initial time value condition 

0=(0) az . Moreover, 

 0zzk →   in  )(τX   as  +∞→k  (21) 

because 2
)(0

2
)(lim ττ XXkk

zz ≤
+∞→

, 0zzk  in )(τX  and )(τX  is a Hilbert space. 

For any 1≥k  let us set 

 
⎪⎩

⎪
⎨
⎧ ∈

⎪⎩

⎪
⎨
⎧ ∈

,elsewhere),(ˆ
],[0,if),(

=)(
,elsewhere),(

],[0,if  ),(
=)(

td

ttd
tg

tz

tty
tu

k

km
k

k

km
k

ττ
 

where )(ˆ
kk uAd ∈  is an arbitrary. As 1}{ ≥kku  is bounded, *: XXA ⇒  is bounded, 

then 1}ˆ{ ≥kkd  is bounded in *X . In virtue of (21), (13), (17) 

 ( ) =)()(),(lim=,lim
0

dttytytduug kkkkkk
−〉−〈 ∫+∞→+∞→

τ

 

 ( ) ( ) =)()(),('lim=)()(),(')(lim=
00

dttytytydttytytytf kk
k

kk
k

−−− ∫∫ +∞→+∞→

ττ

 

 ( ) ( ) =)(),('lim)((0)
2
1lim=

0

22 dttytyyy k
k

HkHk
k ∫+∞→+∞→

+−
τ

τ  

 ( ) ( ) 0.=)(),()((0)
2
1=

0

22 dttytyyy HH ′+− ∫
τ

τ  

So, 
 0.=,lim 〉−〈

+∞→
uug kk

k
 (22) 

Let us show that )( kk uAg ∈  1≥∀k . For any Xw∈  let us set  

 
⎪⎩

⎪
⎨
⎧ ∈

⎩
⎨
⎧ ∈

.elsewhere),(
],[0, if  ,0

=)(
,elsewhere,0

],[0,if  ),(
=)(

tw
t

tw
ttw

tw
ττ τ

τ  

In virtue of A  is the Volterra type operator we obtain that 

 ≤〉〈+〉〈〉〈 τ
τ wdwdwg kkmk ,ˆ,=,  

 =,ˆ]),([ 〉〈+≤ +
τ

τ wdwyA kkm  

 ≤〉〈++
τ

τ wdwuA kk ,ˆ]),([=  
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 .]),([]),([ ++ +≤ τ
τ wuAwuA kk  

Due to )()( *XuA k H∈ , similarly to [30], we obtain that 

 .]),([=]),([]),([ +++ + wuAwuAwuA kkk
τ

τ  

As Xw∈  is an arbitrary, then )( kk uAg ∈  1≥∀k . Due to 1}{ ≥kku  is 

bounded in X , then 1}{ ≥kkg  is bounded in *X . Thus, up to a subsequence 

11 },{},{ ≥≥ ⊂ kkkjjkjk gugu , for some Wu∈ , *Xg∈  the next convergence takes 

place  
 uu

jk   in  ggW
jk,σ   in  *X   as  ∞→j . (23) 

We remark that  
 )(=)(),(=)( tdtgtytu   for a.e.  ][0,. τ∈t . (24) 

In virtue of (22), (23), as A  satisfies the property kS  on σW , we obtain that 
)(uAg∈ . Hence, due to (24), as A  is the Volterra type operator, for any Xw∈  

such that 0=)(tw  for a.e. ],[ Tt τ∈  we have  

 .]),([=]),([,=, ++≤〉〈〉〈 wyAwuAwgwd . 

As 1}{ ≥∈ llττ  is an arbitrary, we obtain (18). 
From (18), due to the functional +→ ]),([ wyAw  is convex and lower 

semicontinuous on X  (hence it is continuous on X ) we obtain that for any 
Xw∈  +≤〉〈 ]),([, wyAwd . So, )(yAd ∈ . 
The theorem is proved.  
In a standard way (see [17]), by using the results of the theorem 1, we can 

obtain such proposition. 
Corollary 2. Let )()(: ** XXCXA v H∩→  be bounded map of the Volterra 

type, that satisfies the property kS  on σW . Moreover, let for some 0>c   

 +∞→
− ++

Xy
yAcyyA )(]),([  (25) 

as +∞→Xy . Then for any Ha∈ , *Xf ∈  there exists at least one solution of 
the problem (3), that can be obtained by the Faedo-Galerkin method.   

Proof. Let us set 2

2

2
=

c
a Hε . We consider Ww∈ : 

 
⎩
⎨
⎧ +′

,=(0)
,0=)(

aw
wJw ε

 

where )(: *XCXJ v→  be the duality map. Hence cw X ≤ . We define 

)()(:ˆ ** XXCXA v H∩→  by the rule: )(=)(ˆ wzAzA + , Xz∈ . Let us set 
*=ˆ Xwff ∈′− . If Wz∈  is the solution of the problem 
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⎪⎩

⎪
⎨
⎧ ∋+′

,0=(0)
,)(ˆ

z
fzAz  

then wzy +=  is the solution of the problem (3). It is clear that Â  is a bounded 
map of the Volterra type, that satisfies the property kS  on W . So, due to the 
theorem 1, it is enough to prove the + -coercivity for the map Â . This property 
follows from such estimates: 

 ≥+−++≥ +++ ]),([]),([]),(ˆ[ wwzAwzwzAzzA  

 ,)(]),([ ++ +−++≥ wzAcwzwzA  

 cwzz XX −+≥ . 

The corollary is proved.  
Analyzing the proof of the theorem 1 we can obtain such result. 
Corollary 3. Let )()(: ** XXCXA v H∩→  be bounded map of the Volterra 

type, that satisfies the property kS  on σW , Ha nn ⊂≥0}{ : 0aan →  in H  as 
+∞→n , Wyn ∈ , 1≥n  be the corresponding to initial data na  solution of the 

problem (3). If 0yyn  in X , as +∞→n , then Wy∈  is the solution of the 
problem (3) with initial data 0a . Moreover, up to a subsequence, 0yyn  in 

);( HSCW ∩σ . 

EXAMPLE 

Let us consider the bounded domain nR⊂Ω  with rather smooth boundary Ω∂ , 
][0,= TS , )(0;= TQ ×Ω , )(0;= TT ×Ω∂Γ . For R∈ba,  we set =],[ ba  

[0,1]}|)(1{ ∈−+= ααα ba . Let )(= 1
0 ΩHV  be real Sobolev space, )(= 1* Ω−HV  

be its dual space, )(= 2 ΩLH , Ha∈ , *Xf ∈ . We consider such problem:  

 ),()],(),,([),( txftxytxy
t

txy
∋∆−∆+

∂
∂   in  Q , 

 )(=,0)( xaxy   in  Ω , 

 0=),( txy   in  TΓ . (26) 

We consider )()(: ** XXCXA v H∩→ , 

 1|)(|),(|{=)( ≤∈⋅∆ ∞ tpSLppyyA   a.e.  in  }S . 

where ∆  means the energetic extension in X  of Laplacian (see [8] for details), 
)(),(=),)(( tptxytxpy ⋅∆⋅∆  for a.e. Qtx ∈),( . 

We remark that  

 .=]),([,=)( 2
XX yyyAyyA ++  (27) 
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We rewrite the problem (26) to the next one (see [8] for details):  

 .=(0),)( ayfyAy ∋+′  (28) 

The solution of the problem (28) is called the generalized solution of (26). 
Due to the corollary 2 and (27), it is enough to check that A  satisfies the property 

kS  on W . Indeed, let yyn  in W , ddn  in *X , where nnn ypd ∆= , 
)(SLpn ∞∈ , 1|)(| ≤tpn  for a.e. St∈ . Then yyn →  in Y  and up to a 

subsequence ppn →  weakly star in )(SL∞ , where 1|)(| ≤tp  for a.e. St∈ . As 
0))(;( 2

2
→−≤Ω∆−∆ − YnLnnn yyHSypyp , then ypyp nn ∆→∆  weakly in 

))(;( 2
2 Ω−HSL . Due to the continuous embedding ))(;( 2

2
* Ω⊂ −HSLX  we 

obtain that )(= yAypd ∈∆ . So, we obtain such statement. 
Proposition 1. Under the listed above conditions the problem (26) has at 

least one generalized solution Wy∈ . 
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