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INITIAL TIME VALUE PROBLEM SOLUTIONS FOR
EVOLUTION INCLUSIONS WITH S, TYPE OPERATORS
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For a large class of operator inclusions, including those generated by maps of Sy

type, we obtain a general theorem on existence of solutions. We apply this result to
some particular examples. This theorem is proved using the method of Faedo-
Galerkin.

INTRODUCTION

One of the most effective approach to investigate nonlinear problems, represented
by partial differential equations, inclusions and inequalities with boundary values,
consists in the reduction of them into differential-operator inclusions in infinite-
dimensional spaces governed by nonlinear operators. In order to study these
objects the modern methods of nonlinear analysis have been used [7, 8, 17, 28].
Convergence of approximate solutions to an exact solution of the differential-
operator equation or inclusion is frequently proved on the basis of a monotony
or a pseudomonotony of corresponding operator. In applications, as a
pseudomonotone operator the sum of radially continuous monotone bounded
operator and strongly continuous operator was considered [8]. Concrete examples
of pseudomonotone operators were obtained by extension of elliptic differential
operators when only their summands complying with highest derivatives satisfied
the monotony property [17]. The papers of F. Browder and P. Hess [3, 4] became
classical in the given direction of investigations. In particular in F. Browder and
P. Hess work [4] the class of generalized pseudomonotone operators was
introduced. Let W be real Banach space continuously embedded in real reflexive

Banach space Y with dual space Y, ¢y Y xY >R be the pairing. Further,
as C,(Y *) we consider the family of all nonempty closed convex bounded

subsets of the space Y *. Multi-valued map A: Y ->C, (Y *) refers to be
generalized pseudomonotone on W if for each pair of sequences {y,},-; W

and {d,},> < Y" such that d,eA(y,), vy, >y weakly in W, d, — d weakly
in Y", from the inequality

En (d,,,yn>y S<d7y>)’
n—>00
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it follows that d € A(y) and {d,,,y,)y = (d,»)y. .V. Skrypnik's idea of passing
to subsequences in classical definitions [26], realized for stationary and evolution
inclusions in M.Z. Zgurovsky, P.O. Kasyanov, V.S. Mel'nik and J. Valero papers
(see [12—16], [18-21] and citations there) enabled to consider the class of Wi~

pseudomonotone maps which includes, in particular, a class of generalized
pseudomonotone on W multi-valued operators and it is closed within summing.

Let us remark that any multi-valued map 4:Y —> C, (Y *) naturally generates
upper and, accordingly, lower form:

[A(y), @], = sup {d,w)y, [A(y),@] = inf {d,w)y, y,weX.
deA(y) - deA(y)

Properties of the given objects have been investigated by M.Z. Zgurovsky and
V.S. Mel'nik (see [16, 18, 21]). Thus, together with the classical coercivity
condition for singlevalued maps

(A(y), )y
Iy

which ensures the important a priori estimations, arises -+-coercivity (and,
accordingly, —-coercivity) for multivalued maps

[A), y]i
¥y

+-coercivity is weaker condition than —-coercivity.

Recent development of the monotony method in the theory of differential-
operator inclusions and evolutionary variational inequalities ensures resolvability
of the given objects under the conditions of coercivity, quasiboundedness and the
generalized pseudomonotony (see for example [5-6, 9-10, 23-25, 27] and
citations there). V.S. Mel'nik's results [22] allows to consider evolution inclusions
with +-coercive Wio -pseudomonotone quasibounded multimappings (see [12]—

[16], [31] and citations there).

In this paper we introduce the differential-operator scheme for investigation
nonlinear boundary-value problems with summands complying with highest
derivatives are not satisfied monotone condition. A multi-valued map A4:Y —

=+ as ||ylly >+

— 400, as |[y|ly = +oo.

->C, (Y *) satisfies the property S, on W, if for any sequence {y,},-0 €W

such that y, =y, weakly in W, d, ->d, weakly in Y " as n— +w, where
d,cA(y,) Vn21, from

lim(d,,y, —yo)y =0,
n—>0
it follows that d, € A(y,). Now we consider the simple example of §; type

operator. Let Q=(0,1), ¥ =H$(Q) be the real Sobolev space with dual space
Y =H"" (Q) (see for details [8]). Let A:Y x[-1,1]—> Y" defined by the rule
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Then the multivalued map
AW ={Ay,a)le e[-1,1];, yeY
satisfies the property S, , it is +-coercive, but it is not —coercive, it is not general-
ized pseudomonotone and (—.A) is not generalized pseudomonotone too (see [11]

for detailes). We remark that stationary inclusions for multimaps with S

properties were considered by V.O. Kapustyan, P.O. Kasyanov, O.P. Kogut [11],
the evolution inclusions for +-coercive w Ao -pseudomonotone quasibounded

maps by V.S. Mel'nik, P.O. Kasyanov, J. Valero (see [12]-[16], [31] and citations
there). The obtained in this paper results are new results for evolution equations too.

PROBLEM DEFINITION

Let (V.- ||V1) and (V,,]|- ”Vz) be some reflexive separable Banach spaces,
continuously embedded in the Hilbert space (H,(-,)) such that
V:=V, "V, isdenseinspaces V},V, and H 1)
After the identification H=H we get
VicHcV), V,cHcV,, 2)

with continuous and dense embeddings [8], where (¥} |- ||V*) is the topologically

1

conjugate of V; space with respect to the canonical bilinear form

1

(ol Vi V>R (i=1,2)

which coincides on H x V' with the inner product (-,-) on H. Let us consider the

functional spaces
X;=L, (S;H) NL, S;7),

where §=[0,7], 0<T <+, 1<p;<r, <400 (i=1,2). The spaces X; are

1

Banach spaces with the norms HyHXi = HyHLp,(S;V,-) + HyHLr. (S:H) " Moreover, X
1 1

is a reflexive space.
Let us also consider the Banach space X =X, X, with the norm

Il =[yllx, +[¥llx, - Since the spaces L, (S;Vi*)+L,,l,, (S;H) and X, are
isometrically isomorphic, we identify them. Analogously,
X' =X\ + X5 =L, (S;17)+ Ly, (S;V2) + L, (S; H) + L, (S H),
where 4+ = p g =1,
Let us define the duality form on X" x X
9= [ @y @) de+ [ ([ @) (@) g d7 + [ for (0), (@) dT +
s s s

+ [ @, 7@y, dr = [(/ (), (0))dx,
S S
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where f = fi;+ fio+ o+ /0, fii EL’;” (S;H), fr eLq[ (S;Vl-*). Remark, that
for each feX*

Wl o« = inf max{HfHH (S-H)
X r=fitfiatfatfa by (S:H)

*
fri<Ly, (S:H). friely (S7)(=12)

Vil sy Vol syt Il (S;V;)}

Following by [17], we may assume that there is a separable Hilbert space V,
such that V_ <V, V, <V, with continuous and dense embedding, V,, c H with
compact and dense embedding. Then

VocVicHCV, V., VocVycHCV, cV,
with continuous and dense embedding. For i =1,2 let us set

Xio =L, (SSH)NL, (SiV,), X,=X,, Xy,
Xi,O':Lrir(S;H)+Lqi(S;VJ)> Xa:Xl,G+X2,a’
VVi,O':{yEXi|yI€Xi,U}9 WO':VVl,O'mWZ,O"

For multivalued (in general) map 4: X = X " let us consider such problem:

u'+ Au)> f, 3
u(0)y=a,ueW cC(S;H), )

where ae H and feX " are arbitrary fixed elements. The goal of this work is to
prove the solvability for the given problem by the Faedo-Galerkin method.

THE CLASS H(X")

Let us note that Be H(X *) , if for an arbitrary measurable set £ S and for
arbitrary u,ve B the inclusion u+(v—u)y; € B is true. Here and further for
deX’

1, 7€E,

0, else.

b

(dyp)r)=d(@) yp(7) forae. €S, x,(7)= {

Lemma 1 [30]. BeH(X*) if and only if Vn>1, V{d;}/, B and for

arbitrary measurable pairwise disjoint subsets {Ej};’:l of the set §: u;’-zl E; =S
the following Z_’;:ld JXE; € B is true.

Let us remark, that @, X e H(X ); VfeX {fleH(X);if K:S=V"
is an arbitrary multi-valued map, then
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(feX | f(t)eK(r) for ae. teSteH(X ).

At the same time for an arbitrary ve 7"\ 0 that is not equal to 0 the closed
convex set B={f e xX° | f=av,ae[0,1]} ¢ ’H(X*), as g(-)=v- ;([O;m](-) ¢B.

CLASSES OF MULTI-VALUED MAPS

Let us consider now the main classes of multi-valued maps. Let ¥ be some
reflexive Banach space, Y " be its topologically adjoint, (-,)y :Y "xY >R be the

pairing, A: Y=Y be the strict multi-valued map, i.e. A(y)# VyeX. For

this map let us define the upper |[A4(y)|, = sup Hd”x* and the lower
deA(y)

|A(y)| = inf ||d|| « norms, where yeY. Let us consider the next maps
- deA(y) X

which are connected with 4: co4:Y=Y" and cod: Y=Y *, which are defined
by the next relations (coA)(y)=co(A(y)) and (EA( y))=co(A(y))
respectively, where co(A(y)) is the weak closeness of the convex hull of the set

A(y) in the space Y". 1t is known that strict multi-valued maps 4,B:Y =Y :
have such properties [16, 18, 20]:

D) [A(y), v + v, 1, <[4 ]y +[A(), v, 14,
[AW),vy +vo o 2[A(), v - +[A(), v, ). Yy, v, v el
2) [A(y),v] =-A(»),~v],
[A(V) +B(),v]io) =[AW) V] +[B(V) Vo) Vy,vel;
3) [A)V], () =[cod(»)V], () Vy.veY;
4) [AD) Ly AN vl s [[4) + BN <[ AD)IL +IBOs

partially the inclusions d € co A(p) is true if and only if
[A(y),v], 2(d,v)y VveY.
Let DcY. If a(,):DxY >R, then for every yeD the functional
Y >wi a(y,w) is positively homogeneous convex and lower semi-continuous if
and only if there exists the multi-valued map A4:Y =Y * with the definition
domain D(A)= D such, that
a(y,w)=[A(y),w], VyeD(4),VweY.

Further, y,—y in Y will mean, that y, converges weaklyto y in Y.
Let W be some normalized space that continuously embedded into Y . Let

us consider multi-valued map 4:Y =Y .

Definition 1. The strict multi-valued map A:Y =Y " is called:
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e Ay -pseudomonotone on W , if for any sequence {y,},-o €W such, that

Yp—Yo In W, d,—d, in Y" as n— +o, where d, EEA(yn) Vnz=l1, from
the inequality

lim (d,,,y, - yo)y <0 (4)
n—0
it follows the existence of subsequence { Vi ’d”k Yisy from {y,.d,},s, for that

im (d,,, .y, W)y 2[A(ye).vo —w]. VweY 5)

k—o0

1s fulfilled;
o bounded, if for every L >0 there exists such />0, that

VyeY:|ylly £L, it follows that ||4(y)|, </.

Definition 2. The strict multi-valued map 4: X = X " is called:
e the operator of the Volterra type , if for arbitrary u,ve X, t €S from the
equality u(s)=v(s) for a.e. s €[0,¢], it follows, that [4(u),&, ], =[4A(v),&, ],
V& eX: &(s)=0 forae. seS\[0,¢];

e +(-)-coercive, if there exists the real function y:R, — R such, that
y(s) >+ as s -+ and

(A y]e z vy VyeY;

e demi-closed, if from that fact, that y, >y inY, d,—d in Y *, where
d, e A(y,), n=1, it follows, that d € A(y).

Let us consider multi-valued maps, that act from X,, into X ", m>1. Let

m>
us remark, that embeddings X,, c Y, c X ,*” are continuous, and the embedding
W, into X, is compact [17].

Definition 3. The multi-valued map A: X, — C,(X, ) is called (W,,, X, )-
weakly closed, if from that fact, that y,—y in W,,, d,—d in X,,, d, € A(y,)
Vn>1 it follows, that d € A(y).

Lemma 2. The multi-valued map A:X,, - C,(X ;:,) satisfies the property
S, on W, ifand only if A:X,, —C, (X:;,) is (Wm,X:,) -weakly closed.

*
m» Where

Proof. Let us prove the necessity. Let y,—y in W,, d,—d in X
d,e A(y,) Vn=1. Then y, >y in X,, and (d,,,», —y}Xm —>0 as n— +oo,

Therefore, in virtue of A satisfies the S, property on W,,, we obtain, that

de A(y).

Let us prove sufficiency. Let y,—y in W,, d,—d in X,,
(dn,yn—y)XmSO as n—+o, where d, € A(y,) Vn=1. Then y, >y in
X,, and d € A(y).
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The lemma is proved.

Corollary 1. If the multi-valued map A:X, —C,(X,) satisfies the
property S, on W,,, then A is A, -pseudomonotone on W, .

THE MAIN RESULTS
In the next theorem we will prove the solvability and justify the Faedo-Galerkin
method for the problem (3).

Theorem 1. Let a=0, 4: X — CV(X*) N H(X*) be +-coercive bounded
map of the Volterra type, that satisfies the property S, on W_ . Then for arbitrary

feX " there exists at least one solution of the problem (3), that can be obtained
by the Faedo-Galerkin method.

Proof. From +-coercivity for 4: X = X " it follows, that V yelX

(A, y): 2 7yl
So, 31y, >0: y(ry) > |[f]|X* > 0. Therefore,

VyeX:plx=r [40)-f.y],20. (6)
The solvability of approximate problems.
Let us consider the complete vectors system {4, };5; =V such that

o) {h;},» orthonormal in H ;

a,) {h;};» orthogonalin V'

ay) Vizl (h,v)y =A4,(h,v) VYvel,
where 0< 4, < /12,...,/1j — o0 as j— oo, () is the natural inner product in V',
i.e. {h;}; is a special basis [29]. Let for each m>1 H,, =span{h,;}",, on which
we consider the inner product induced from H that we again denote by (-,-). Due

to the equivalence of H" and H it follows that H:;, =H,; X, =L, (SH,),
X, =L, (S;H,), po=maxin,n}, qo>1: lUpg+lgo=1, (;)y =

=) x| ox , W,={yveX, |y'eX::,}, where y’ is the derivative of an
X, %X,

element ye X, is considered in the sense of D*(S,H m). For any m>1 let

I, € L(X,;X) be the canonical embedding of X,, in X, I, be the adjoint
operator to /,,. Then

o0

Let us consider such maps [12]:
Ay =1, 0dol, X, ->C (X)), f,:=1.1.

So, from (6) and corollary 1, applying analogical thoughts with [12], [14] we
will obtain, that

122 ISSN 1681-6048 System Research & Information Technologies, 2009, Ne 1



Initial time value problem solutions for evolution inclusions with S & bype operators

J1) 4, is Ay-pseudomonotone on W, ;
Jj2) A4, is bounded;
J3) [An D) = fs 0] 20 Yy e X, oyl =1

Let us consider the operator L, :D(L,)c X, — X ;:, with the definition
domain

D(L,) =4y €W, | y(0) =0} =W
that acts by the rule:
VyeW, L,y=V,

where the derivative )’ we consider in the sense of the distributions space
D (S;H,,). From [12] for the operator L,, the next properties are true:

Ja) L, is linear;

Js) ¥y W, (L,y.9)20;

Jjs) L, is maximal monotone.

Therefore, conditions j; )— js ) and the theorem 3.1 from [13] guarantees the
existence at least one solution y,, € D(L,,) of the problem:

Lm(ym)+Am(ym)3fm’ ||ymHX Sr()’

that can be obtained by the method of singular perturbations. This means, that y,,
is the solution of such problem:

Y+ Ay (V)3 [
_ )
ym(o):():ym eVVm’HymHX SR’

where R=7;.
Passing to the limit.
From the inclusion from (8) it follows, that Vm>1 3d,, € A(y,,):

1°. The boundedness of {d,,}, in X" follows from the boundedness of 4
and from (8). Therefore,
¢, >0: Vm>1 HdeX* <q. (10)

2°. Let us prove the boundedness {y},},s in X ; From (9) it follows, that
Vm21 y, = ]; (f —d,,),and, taking into account (7), (8) and (10) we have:

ull = <vmllw, < ez <. (11)
o

In virtue of (8) and the continuous embedding W,, < C(S;H,,) we obtain
(see [24]) that Ic; > 0 such, that

Vm>1,VteS |y, @)y <cs. (12)
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3°. In virtue of estimations from (10)—(12), due to the Banach-Alaoglu
theorem, taking into account the compact embedding W c Y, it follows the
existence of subsequences

W b2t © Wmdmats Ay Sho1 S bzt
and elements yeW ,de X ", for which the next converges take place:
Y=y in W, d, —d in X’
Vi, (t)—y(t) in H for each t€S§, (13)
ymk(t)—>y(t) in H forae. teS, as k—>wo.
From here, as Vk >1 Vmy (0)=0, then »(0)=0.

4° . Let us prove, that
y'=f-d. (14)
Let pe D(S),neN and he H,. Then Vk>1: m; 2n we have:

([0, @)+ dy ()T )=y, 4 ),
N

where y(r)=h-¢(r)e X, = X . Let us remark, that here we use the property of
Bochner integral [8](theorem IV.1.8, ¢.153). Since for m; = n Hmk D H,, then

g+ ) =Sy -¥7). Therefore, Yk >1: my >n

S 0) = ( [o@)/ (@), h}
N

Hence, forall k>1: m; >n

[I @)y, ()dz, h] =(f =dpv) >
N

—{ j o(7)( f(r)—d(r)dr,hJ as k—> . (15)
S

The last follows from the weak convergence d,, to d in X i

From the convergence (13) we have:

[ [y, (r)dr,h]%(y'w),h) as k — o0, (16)
S

where
VpeD(S) ¥'(9)=-y(p) =] )¢ (t)dr .
N
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Therefore, from (15) and (16) it follows, that

VoeD(S)Vhe | JH, (V'(p)h)= fw(f)(f(f) —d(r))dz,h |
N

m>1

Since UHm is dense in V' we have, that

m>1

VoeD(S) y'(p)= f¢(f)(f (7)—d(r))dz.
N

Therefore, y'= f—de X .

5°. In order to prove, that y is the solution of the problem (3) it remains to
show, that y satisfies the inclusion y'+ A4(y)> f . In virtue if identity (14), it is
enough to prove, that d € A(y).

From (13) it follows the existence of {r;},5; =S such that 7; T as

[ -+ and
Vix>1 ymk(r,)—>y(r,) in H as k—+wo 17

Let us show that for any />1

(d,w)<[A(y),w], VweX:w(t)=0 forae. te[r;,,T]. (18)
Let us fix an arbitrary 7 € {7,},5, . For i=1,2 let us set
Xio(O) =L, (2, H)N L, (7.T;V;), X5(7) =X ,(0) N X, (),

X o)=L, (7, T H)+ L, (£,T5V,), Xo(2)= X[ 5(0)+ X3, (7),
Wio (D= e Xi(D)]y' € X, (D)}, Wo(@) =Wy o(2) Wy 0(2).
ay=y(r), a;,= Vi, (r), k=1.

Similarly we introduce X(r), X *(T) , W(r).From (17) it follows that
a, >ag in H as k—+owo. (19)
Forany k21 let z; e W(r) be such that

{Z}C+J(Zk)36, (20)
2 (1) = ay,

where J:X(7)—> C, (X *(7)) be the duality (in general multivalued) mapping,
ie.
[ @).ul, = [Tl = lulfee = V@I =T, ueX(@).

We remark that the problem (20) has a solution z;, e W(r) because J is

monotone, coercive, bounded and demiclosed (see [1-2, 8, 13]). Let us also note
that for any £ >1
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2 2 , 2
lze MMz =Nl =2z 200 x o) + 2llzellx () =0
Hence,
1
Vk>1 |zl «, . =]z <—I|la <e,.
8l =l 5l s

Due to (19), similarly to [8, 13], as k — +o0, z; weakly converges in W to the
unique solution z, e W of the problem (20) with initial time value condition
z(0) = a, . Moreover,

zp > zoy In X(r) as k—+oo 21

because kﬁn ||Zk‘|§((r) < ||ZO||§((T), z;—z in X(r) and X(r) is a Hilbert space.
—>+00

For any £ >1 let us set
Vo (0, if 1€[0,7], d,, (), if 1€[0,7],
uy (1) = (n=

z, (), elsewhere, d (), elsewhere,

where a?k € A(u; ) is an arbitrary. As {u; };>; is bounded, 4: X=X " is bounded,
then {‘;'k}kzl is bounded in X" . In virtue of (21),(13), (17)

Jim (goug —uy= Tim [(d, (1), y,0) - y)dr =
0
= lim [(£@) =y 0.2 @) = y©)dr = lim [( 0, 30) =y (0)dr =
0 0
1 .
= tim (v O e @ )+ tim Jow .-

- L@ -yl J+ [,y
0

So,
lim (g, ,u; —u)=0. (22)
k—>+o0

Let us show that g, € A(u;,) Vk=1.Forany we X letus set
w(t), iftel0,7], 0, if t €[0,7],
Wf(t):{ (1) [0,7] W,(t):{ if 1 €[0,7]

0, elsewhere, w(t),  elsewhere.

In virtue of A is the Volterra type operator we obtain that
(W) =y W) +(dj, W) <
< LAy )W s+ W) =

= [A(uy ), w, 1, +{(d;,w") <
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< [A(uk)’ Wr]+ + [A(uk)awr]-w

Due to A(u;) e H(X *) , similarly to [30], we obtain that

[AQu), w1y +[AQ ), w1, =A@y ), wl,.-

As we X is an arbitrary, then g; € A(u;,) Vk=1. Due to {u;}, is
bounded in X, then {g;};>; is bounded in X " Thus, up to a subsequence
{ukj 8k, } o1 S g, & b1 » for some uel , ge X" the next convergence takes
place

ug—u in Wy, g —g in X' as j—oo. (23)
We remark that
u(t)=y(t), gt)=d() forae. te[0,7]. (24)

In virtue of (22), (23), as A satisfies the property S, on W, we obtain that
g € A(u) . Hence, due to (24), as A is the Volterra type operator, for any we X
such that w(¢#)=0 fora.e. £ €[7r,T] we have

<d,W> = <ga W> < [A(M),W]+ = [A(y)a W]+' ‘
As 7 e{r;},5 is an arbitrary, we obtain (18).

From (18), due to the functional w—[A(y),w], is convex and lower
semicontinuous on X (hence it is continuous on X ) we obtain that for any
weX (d,w)<[A(y),w],.So, de A(y).

The theorem is proved.

In a standard way (see [17]), by using the results of the theorem 1, we can
obtain such proposition.

Corollary 2. Let 4: X — C, (X*) N ’H(X*) be bounded map of the Volterra
type, that satisfies the property S, on W_. Moreover, let for some ¢ >0

[A(»), y], —cllAW)I,
Il

—> +00 (25)

as ||y||y —> +o . Then forany ae H, fe X  there exists at least one solution of
the problem (3), that can be obtained by the Faedo-Galerkin method.

2
Proof. Let us set ¢ = H;Lf. We consider we WV :
c

w' +&J(w)=0,
w(0)=a,

where J:X —»C,(X") be the duality map. Hence ||w|y <c. We define

A:X 5 C(X)NH(X") by the rule: A(z)=A(z+w), zeX. Let us set

f =f-weX " If zeW is the solution of the problem
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Z'+1:1(Z)3f,
z(0)=0,

then y=z+w is the solution of the problem (3). It is clear that A is a bounded
map of the Volterra type, that satisfies the property S, on W . So, due to the

theorem 1, it is enough to prove the + -coercivity for the map A. This property
follows from such estimates:

[A(2),2], 2[A(z + W),z + W], —[A(z+w),w], >
>[A(z+w),z+w], —clld(z+w)||,,

Izl 2|z +wily —c.

The corollary is proved.
Analyzing the proof of the theorem 1 we can obtain such result.

Corollary 3. Let A:X — C,(X )" H(X") be bounded map of the Volterra
type, that satisfies the property S, on W, {a,},so<H: a,—>a, in H as
n—+40o, y, €W, n>1 be the corresponding to initial data @, solution of the
problem (3). If y,—y, in X, as n—+oo, then yeW is the solution of the

problem (3) with initial data a,. Moreover, up to a subsequence, y,—y, in
W,.NC(S;H).

EXAMPLE

Let us consider the bounded domain Q < R" with rather smooth boundary oQ,
S=[0,T], O0=Qx(0;T), I} =0Qx(0;T). For a,beR we set [a,b]=
={aa+(1—-a)bla €[0,1]}. Let V = H(l) (Q) be real Sobolev space, vi=H"! Q)
be its dual space, H =L,(Q), aeH, feX * . We consider such problem:

%+[—Ay(x,t),Ay(xJ)]3f (x,1) in Q,

y(x,0)=a(x) in Q,
y(x,t)=0 in Iy,. (26)
We consider 4: X — CV(X*) N H(X*) ,
A(y)={Ay-plpeLl,(S)|p(<] ae. in S}.

where A means the energetic extension in X of Laplacian (see [8] for details),
(Ay- p)(x,t) = Ay(x,1)- p(¢) forae. (x,t)eQ.
We remark that

1AW, =Vl > LA ¥1, =1l - 27)
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We rewrite the problem (26) to the next one (see [8] for details):

V'+A(y)> f,y(0)=a. (28)
The solution of the problem (28) is called the generalized solution of (26).

Due to the corollary 2 and (27), it is enough to check that A satisfies the property

Sy on W. Indeed, let y,—y in W, d,—d in X", where d,=p,Ay,,

€L, (S), |p,(®)|<] for ae. teS. Then y,—>y in Y and up to a

subsequence p, — p weakly star in L (S), where | p(¢)|<1 for a.e. teS. As
_ < _ 3
2adyn =Pl (5. pr-2(cay) < =y >0 then p, Ay, — pAy weakly in

L,(S;H ~2(Q)). Due to the continuous embedding X = L,(S;H 2(Q) we
obtain that d = p A y € A(y) . So, we obtain such statement.

Proposition 1. Under the listed above conditions the problem (26) has at

least one generalized solution y e IV .
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