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ON SOME TOPOLOGICAL PROPERTIES FOR SPECIAL
CLASSES OF BANACH SPACES. PART 2
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We consider some classes of infinite-dimensional Banach spaces with integrable
derivatives. A compactness lemma for nonreflexive spaces is obtained. However
some main topological properties for the given spaces are obtained.

This work is continuation of [1].
Theorem 1. WO* c C(S;H) with continuous embedding. Moreover, for

every y,& e WO* and s,7 € S the next formula of integration by parts takes place

(v(®),50) = (¥(5),5(5)) = f {('(0.8(0)+ ()& (D)}dx. (1

In particular, when y =¢& we have:

SOl -l = [/ @ @z

Proof. To simplify the proof we consider S =[a,b] for some

—wo<g<bh<+om,

The validity of formula (1) for y,&eC'(S;V) is checked by direct
calculation. Now let (peCl(S) be such fixed that @(a)=0 and @(b)=1.
Moreover, for y e C'(S;V) let E=gy and 5 = y— gy . Then, due to (1):

(S, y(0)= J {0 ()(W(5), ¥ () + 20(s)(¥'(5), ¥(s))}ds ,

b
- (), y()) = f{—w'(S)(y(S), Y($))+2(1= p()(¥'(s), y(s))}ds ,

from here for fiequ_(S;V[*) and n[eL,l_,(S;H) (i=1,2) such that y'=

=&+ &, +n +1, it follows:

© P. Kasyanov, |V. Mel'nik|, 2008
88 ISSN 1681-6048 System Research & Information Technologies, 2008, Ne 3



On some topological properties for special classes of Banach spaces. Part 2

b b
@7 = f{¢'(s)(y(s),y(s)) +20(s)(¥'(s), y(s))}ds — 2]( V'(s), y(s))ds <
STea;q(pl(s) | 'HyHC(S;V*) Al sy + 2'!((0(3) =D('(s), y(s))ds <
S1?:1574|(0'(5)||b’|’C(S;V*)H)’HLl(S;V) +
+2maxle( -1 '[”51”% sy, (s + ”52”%2 sy, s+
Hlmlly, (s, (s:my +lmally,  (s:m)DL, (S;H))S

sl?eagx|(/7'(S)|||J/||C(S;V*)(IIyIILPl (Symes (s)" +||)/|le2 (S:77,)mes (S)l/‘12)+
+2 max | p(s) -1 |(H§1HL(]1(S;V1*) +”§2HL(]2(S;V2*) "‘Hm”Lrl,(S;H) +H772HLr2,(S;H)JX

seS

I 1
X(HyHLpl(S;VD +||y||Lp2 (SiVy) +llces.arymes () + [yl c(s.erymes (S) rz)

Hence, due to [1, theorem 3], definition of ||-| y, if we take in last inequal-
t

ity p(t)= b_ ? forall teS we obtain
—da
2 2
Ivllcs:my <Ca HJ’HWS +C; ”)’HWJ IWlleessen» (2)
where C, is the constant from inequality |[|y| « SCi |yl « for every
c(Siv) W
ye WO*a
C .
C,=2+ L C; =2max {mes(S)“ minin,2} |

min {mes (S)""!, mes (5)"72}

Remark that 1 0, C,,C;>0.From (2) it obviously follows that

+ o©
[¥llees:ay < Ca ”yHWS for all yeC'(S;V), 3)
Cy +4/CF +4C
where C, = s 23 2 does not depend on y.

Now let us apply [1, theorem 4]. For arbitrary y e WO* let {y,},> bea
sequence of elements from C'(S;V) converging to y in W, . Then in virtue of
relation (3) we have

1Vn = Villegs:ry < Callyy _kaW(;" -0,
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therefore, the sequence {y,},>; converges in C(S;H) and it has only limit
7 € C(S;H) such that for a.e. teS y(¢t) = y(¢). So, we have y € C(S;H) and

now the embedding WO* c C(S;H) is proved. If we pass to limit in (3) with
y=y, as n— o we obtain the validity of the given estimation V ye WO*. It
proves the continuity of the embedding w" into C(S;H).

Now let us prove formula (1). For every y,¢ e WO* and for corresponding
approximating sequences {y,,&,},s < C L(s; V') we pass to the limit in (1) with
y=y,, §=¢&, as n — . In virtue of Lebesgue's theorem and WO* c C(S;V*)

with continuous embedding formula (1) is true for every y e WO* .

The theorem is proved.

In virtue of W W, with continuous embedding and due to the latter
theorem the next statement is true.

Corollary 1. W™ < C(S;H) with continuous embedding. Moreover, for
every y,& €W and s,t €S formula (1) takes place.

For every n>1 let us define the Banach space Wn* = {y € X: | y' e Xn}
with the norm

Wl =il +1,
where the derivative y' is considered in sense of scalar distributions space
D*(S;Hn). As far as

D'(8:H,) = L(D(S):H,) < LID(S):V,) =D (S:¥7)
it is possible to consider the derivative of an element ye X, in the sense of

D*(S;V*) . Remark that for every n>1 W, W,

n n

*

a4 C W
Proposition 1. Forevery ye X and n>1 P,y'=(P,y)", where derivative

of element x € X is in the sense of the scalar distributions space D (S; V*) .
Remark 1. We pay our attention that in virtue of the previous assumptions
the derivatives of an element x € X : in the sense of D(S; V*) and in the sense of
D(S;H,) coincide.
Proof. It is sufficient to show that for every p € D(S) P,y'(¢)=(P,») ().

In virtue of definition of derivative in sense of D~ (S; V*) we have

VpeD(S) Py'(9)=-Py(@)=-F,[v@)¢(x)dr =
N

=[P y(@)p'(2)dr = ~(P,y)(@) = (P, ) (9).
S

The proposition is proved.
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Due to [1, propositions 3, 4] it follows the next

Proposition 2. For every n>1 W, =P,W", i.e.

W, ={ByO |y ey,
Moreover, if the triple ({H itV H ), j =1,2 satisfies condition (7 ) with
C = C; . Then for every yeW and n>1

12,50 » <max{C;.Co}yO -

Theorem 2. Let the triple ({H,-},-ZI;VJ-;H), j =12 satisfy condition ()
with C=C;. We consider bounded in X “set Dc X and Ec X that is
bounded in X . For every n >1 let us consider

D, = {yn eX |ly,eD and y! ePnE}c W,

Then
Wl » <IDI, +CIE], for all n=1 and y, €D, 4)

where C = max{Cy,C,}, [|D|l, =supllyl| + and [|E]l, = sup]|/l] .
yeD feE

Remark 2. Due to proposition 2 D, is well-defined and D, — Wn* is true.

Remark 3. A priori estimates (like (4)) appear at studying of solvability of
differential-operator equations, inclusions and evolutional variational inequalities
in Banach spaces with maps of w,-pseudomonotone type by using Faedo—

Galerkin method (see [2, 3]) at boundary transition, when it is necessary obtain a

priori estimates of approximate solutions y, in X " and of its derivatives Vo
in X.
Proof. Due to proposition 2 for every n>1 and y, €D,

all ,x =Mwall o+ + 1yl <UDl + 1B, Ell <D +max{Cy, Co 3]

The theorem is proved.
Further, let B, B, B, be some Banach spaces such, that

By, B, are reflexive B, c B; with compacting embedding 5)
By c B, ¢ B, with compacting embedding. (6)

Lemma 1. ([4] lemma 1.5.1, p.71) Under the assumptions (5), (6) for an
arbitrary 17 > 0 there exists C,, > 0 such that

Ixlls, <7lixlls, + Cyllxlls, VxeBy.

Corollary 2. Let the assumptions (5), (6) for the Banach spaces B,, B; and
B, are verified, p; €[1;+], S =[0,7] and the set K — Lp1 (S;B,) such that

a) K is precompact set in LPl (S;B,);
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b) K is bounded setin L o (S;By) .
Then K is precompact setin L Pl (S;By).

Proof. Due to lemma 1 and to the norm definition in L Pl (S;B;), i=0,2 it

follows that for an arbitrary 77 > 0 there exists such C, >0 that
< )
||J/||Lp1 ($:B) < 277”)’HLP1 (S:B)) * 2C;7||J/||Lp1 (S;B,) VIVEL,(S:By) (D)

Let us check inequality (7), when p, €[0,4) (the case p; =+ is direct
corollary of lemma 1):

Hy”i’,jlm;gl) = [Iv@I5! dr < [y @, +C,yly @5, 17 di <
N S
-1
<M {77”1 Jly@lgtar+c fivolg! 4 -
N S

_on~l p p
{77 HyHLpl(SSBo) 7 HyHLpl(S;Bz)

P
<P .
<2 0ol (sityy + Gl simy | I (SiB0).

The last inequality follows from

Pl Pl
wﬁ(a—kb)p] sz"l‘l(apl +b"1) Ya,b>0.

Now let {y,},>; be an arbitrary sequence from K . Then by the conditions
of the given statement there exists { Yy Vis1 ©{nta> that is a Cauchy

subsequence in the space Lp1 (S;B,). So, thanks to inequality (7) for every

k,m=>1

Hynk _yl’lmHLpl (S;Bl) < 277”');”1‘ _y”mHLPl (S;BO) ’

+2C,7||ynk _ynm”Lpl(SQBz) SUC+2C,7Hynk _y"mHLpl(S;BZ)’

where C > 0 is a constant that does not depend on m, k,7 . Therefore, for every
&£ >0 we can choose 7 >0 and N >1 such that

nC<eg/2 and 2C,7||ynk _y”m”Lpl(S;Bz) <el2 Vmk>=N
Thus,
Ve>0 IN2=1: ||ynk _y”m||Lpl(S;Bl)<g Vm,k>N.

This fact means, that {ynk }r>) converges in Lp1 (S;B;). The corollary is

proved.
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Theorem 3. Let conditions (5), (6) for By, B,,B, are satisfied, p,,p, €
€[1;+), S be a finite time interval and K c L l (S;B,) be such, that

a) K is bounded in Lp1 (S;By);

b) for every & > 0 there exists such > 0 that from 0 </ < ¢ it results in

_ﬂ\u(r)—u(r+h)”520dr<g Vuek . (8)
s
Then K is precompact in Lmin{po; pl}(S ;B1).

Furthermore, if for some ¢>1 K is bounded in L (S;B,), then K is
precompact in L, (S;B,) forevery p e[l,q).
Remark 4. Further we consider that every element x € (S — B;) is equal to

0 out of the interval S

Proof. At the beginning we consider the first case. For our goal it is enough
to show, that it is possible to choose a Cauchy subsequence from every sequence
{Yptus1 €K in Lmin{po;pl}(S;Bl)' Due to corollary 2 it is sufficient to prove

this statement for L . 0iP1) (S;B,).

Forevery xe K VhA>0 VteS we put

t+h

1
x,():=— | x(r)dr,
p0=- j (0)
where the integral is regarded in the sense of Bochner integral. We point out that
Vh>0 x, €C(S;By)cC(S;B,).

Fixing a positive number &, we construct for a set

KchO (S;BO)CLP0 (S;B,)

a final ¢ -web in Lp0 (S;B,). For ¢>0 we choose 0 >0 from (8). Then for

every fixed 4 (0 </ <) we have:

t+u+h t+h
b +0) =2, Ollg, = Il | 2@z = [ x(@)de] 5, =

t+h t+h t+h

=%|| jx(r+u)dr— Jx(r)drHBz < JHx(r-l—u)—x(r)HBzdf.

t

1
h
Moreover, from the H o 1der inequality we obtain

1

1t+h 1 p— t+h »0
- j||x(r+u)—x(r)||32drg(ﬂ O Ik +w) = x@lp0dr | <
t

t
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1

. 1
— (T pO —
<[ LV e 4wy - x@Podz | <[£]7 vrek, vo<u<s, vies.
h BZ h

0

Therefore the family of functions {x, } , . ¢ is equicontinuous.
Since Vx € K V¢e S itresults in

t+h t+h

1 1
b @lla, =1l [ ¥(@)dellg, < [Ix(@)lg,dr <

1 L | L 1
Ay h o [ n C\p
< (Z) P { ! IIx(T)\Ifzl dr} < (2) P [!)'Hx(r)ué’zl dz} < (fj n

the family of functions {x,},.x is uniformly bounded, because of the constant
C >0 does not depend on x € K . Hence, VA:0<h < the family of functions
) rex is precompact in C(S;58,),s0in L, 4 (S5 By) too.

On the otherhand, VO<h<6, VxeK, VteS

t+h
[+ - %40, < [0 —(6)y e <

1 L

1 1 ro b Po Po
Szg|x(t)—x(t+z')||32drﬁ(;) £||x(t)—x(z+r)|132 dr| .

From here, taking into account inequality (8) we receive:

1
T

T o h o
[ £ [ROEEAGTA dtj "< ( | % £||x(z) —x(t+ 030 drdtJ "

0

1
h 1

1
hT o o —
1 p Py 1 0] _p
:(Z'(‘;‘(!HX(I)_X(I+1)||BZO dtdr} <[;J.gdr] =¢"0,

0
Hence, by virtue of the precompactness of system {x,}..x in
Lmin{po,pl}(S;Bz) VO0<h<¢o we have that K 1is a precompact set in

Lmin{po,pl} (S;B5).
Let us consider the second case. Assume that for some ¢ >1 the set K is

bounded in L, (S;B,). Similarly to the previous case, it is enough to show that
for every pe[l;q) and {y,},-; = K there exists a subsequence {ynk} w1

S{Vutyz and y € L,(S;B)) so that

Vg = in L,(S;B)) as k—oo.
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Because of y, — y in Lmin{po,pl}(S; B,), up to a subsequence, as n — o, we

have El{ynk Yist ©4Vutas1 such that /1(Bnk )—>0 as k— o, where B,:=
={teS||y,® - y(t)HBl >1} forevery n>1, A is the Lebesgue measure on S'.
Then for every £ >1

[y =yl ds = [ v, ()= ()l ds +
N

A”k

* j [y, (S)_y(S)HgldS = f i (S)—y(s)Hf;lder
4

B”k s

P
o (Illynk )~y dsJ ", N =, 4,
N

where 4, =S\ B, forevery n>1.
It is clear that J”k —0 as k — . Let us consider I”k . Since {ynk Yisp 1S

precompact in Lmin{po,pl}(S;Bl)’ there exists such {ymk s © {ynk}kZI that

Vimy (t) > y(¢) in B, as k — oo almost everywhere in S'. Setting

W =3Ol . 14,

0, otherwice,

Vk=1, VteS (pmk(t):=

using definition of A sequence {gomk} > satisfies the conditions of the

mp >
Lebesgue theorem with the integrable majorant ¢ =1. So Py —0 in Li(S) as
k — oo Thus, within to a subsequence, y, — y in L (S;B;).

The theorem is proved.
Let Banach spaces B, B;, B, satisfy all assumptions (5), (6),
Do, P €[1;+0) be arbitrary numbers. We consider the set with the natural

operations
W={ve LPo (S;By)V' eLp1 (S;By)},

where the derivative v' of an element ve L o (S;By) is considered in the sense

of the scalar distribution space D(S;B,). It is clear, that
WCLPO (S;By) .
Theorem 4. The set W with the natural operations and the graph norm
[vlw :||V||Lp0(5;30) +|v ||Lp1 (S:B,)

is a Banach space.
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Proof. The executing of the norm properties for ||-||;; immediately follows

from its definition. Now we consider the completeness of W referring to just
defined norm. Let {v,},.; be a Cauchy sequence in W . Hence, due to the

completeness of L 20 (S;By) and L Pl (S;B,) it follows that for some
yeLpo (S;By) and ve[,p1 (S;B,)

Y, >y in LpO(S;BO) and y, -V in Lpl(S;Bz) as n—»+w.

Due to [5, lemma IV.1.10] and in virtue of continuous dependence of the
derivative by the distribution in D’(S;B,) (see [5, p. 169) it follows, that
y'=veLp1 (S;B,) .

The theorem is proved.

Theorem 5. Under conditions (5), (6) W < C(S;B,) with the continuous

embedding.
Proof. For a fixed y € W let us show that y € C(S;B,) . Let us put

t
E(t) = jy'(r)dr Viy,teS.
0
The integral is well-defined because y’ € L;(S;B,). On the other hand, from the
inequality [5, p. 153]

160 - EG s, < [V @lp,dr Fs>1, ses

it follows that & e C(S;B,). Due to [5] (lemma IV.1.8) &'=y', so from
[5] (lemma IV.1.9) it follows that

y()=<&(@)+z for ae. teS.

for some fixed z € B, .
Thus the function y also lies in C(S;B;).
In virtue of the continuous embedding of L Pl (S;B,) in L;(S;B,) we have

that for some constant £ > 0, which does not depend on y,
< ! < !
I1€@5, < g\y @l dr <kl (s:5,) VIS

From here, due to the continuous embedding B, c B, , we have

l/pl
1/
2], (mes($)' {mzné’; dsJ =lly =l (5.8, <
N

<8l (s *I9lecsay |01, i #1553y )
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where mes (S) is the “length™ (the measure) of S, k, > 0 is a constant that does
not depend on y € W . Therefore, from the last two relations there exists k3 >0
such that

Hy“c(s;gz) < k3 ||y||W VyeWw.

The theorem is proved.

The next result represents a generalization of the compactness lemma [4,
theorem 1.5.1, p. 70] into the case p,, p; €[1;+0).

Theorem 6. Under conditions (5), (6), for all p,, p; €[1;+o) the Banach
space W is compactly embedded in L 20 (S;B)) .

Proof. At the beginning we prove the compact embedding of W in
Li(S;B,).

Forevery ye W and h e R let us take

Y+ h), if t+hesS,
J’h(t):{ —

0, otherwice.

In virtue of theorem 5 the given definition is correct.
Lemma 2. Forevery yeW and heR

Hy_yh”Ll(S;Bz) Sth,Hh(S;Bz)' ©)

Proof. Let y e W be fixed. Then

t+h

= yall,(5:8,) = I+ B =yl g,de = Il | y' )7l g, i
N N

t+h
Letusput g,(1)= J V'(@ydr=y(@+h)—y(t) VteS, i=1,2. Due to
t
theorem 5 the element g, € C(S;B,). So, as § is a compact set, we have that

g, €L,(S;B,) . Therefore, due to proposition [6, p.191] with X = L,(S;B,) and

to [1, theorem 2] it follows the existence of %, € L., (S; B;) = X" such that

J-Hgy(t)HBzdt:J.<hy(t)9gy(t)>32 dt and ||hyHL (S;B%) =1
S s o

Hence,
t+h
£ [y(@adr| ar= £ e, @) 5, 4= i{hy (t).g, (z)}B2 dt =
t B2
t+h t+h
=j<hy (t), j y'(r)dr> dt = j j <hy(t), y'(r)>B drdt =
N t B, St 2
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St—h S \t—h

= J' j‘ <hy (t),y'(r)> 5 didr = j< j' h, (t)dt, y'(z-)> dr <
By

Sesssup [l (0} 3 !uy @l dz <Al (5:8,)-

So, we have obtained necessary estimation (9).

The lemma is proved.

Let us continue the proof of the given theorem. Let K — W be an arbitrary
bounded set. Then for some C > 0

< ' <
Hy”LpO(S;BO) <C, |y HLpl(S;BZ) <C VyeKk. (10)

In order to prove the precompactness of K in L;(S;B;) let us apply
theorem 4 with By =B,, B =B,, B, =B,, py =1, p; = p;. Due to estimates
(9) and (10) the all conditions of the given theorem hold. So, the set K is
precompact in L;(S;B;) and hence in L;(S;B,). In virtue of theorem 5 and the
Lebesgue theorem it follows that the set K is precompact in L, (S;B,) . Hence,
due to corollary 2 we obtain the necessary statement.

The theorem is proved.
Proposition 3. Let Banach spaces B,,B;,B, satisfy conditions (5), (6),

Po» P €[1:40), {uptper <Ly (S3Bg), where 1=(0,6) cR,, §=[a,b] such
that
a) {uy} s 1s bounded in L, (S;By)

b) there exists such ¢:/ — R, that lim c(b_naj=0 and

n—>0 2

Vhel juuh(t) —uy (t+ h)||§2° dt < c(h)h?0 .
S

Then there exists {A,},» <1 (h,\0+ as n—>c0) so that {u; §,

converges in Lmin{po,pl} (S;By).

Remark 5. We assume u, (¢) = 0 when t>b.
Remark 6. Without loss of generality let us consider S =[0,1].
Proof. At first we prove this statement for L 7o (S;B,). In virtue of

Minkowski inequality for every /4= LN el and k>1
2

1

L » PO 1 ) P
-ﬂ‘uh(t)_“i(t)ugzodt < _ﬂ‘uh(z)_uh(t+h)“320dt 4
0 2k 0
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1

1 » 2] 1 » 2]
+ J.Huh(t+h)—ui(t+h)H320dt + _ﬂ\ui(t+h)—ui(t)HBzodt <
0

2k 0 2k 2k
o ; po 2l i+1
<™ b+ fluy @) =u y @1F0de |+ 3 J.uh(wrz—khj—
h 2k =010 k

1

_ Po |po 1 1
—uh(HLkhj dt SCPO(h)h+2kikc”0(h/2")+
2 2
By
1
- 1 1
1 pPo - -
+ J.||uh(t)—ui(z)||§20dt <H PO (h)+¢ 70 (h2%) |+
h

2k
1 L
1 p 70 1 p Py
# flun @ = uy @ mIZOdr | | flug e+ my—u g G+m|F0dr |+
h h ok
Rl
| fle s e+ my=uy (r)||§2°dz <. <2h] PO (h)+ PO (h2F) |+

o ok ok

1

1 — 1 1
+ _[”Uh(t)—uh(t+h)ngOdfjp0 <. <2V B PO () + PO (h2F) |=
2h
1 1
=c?0 (h)+cP0 (h2%).
So, forevery N >1 and k£ >1 it results in
1

L 1
1 P (1Y pof 1
,[Hul/z]\’ (0 =t Nk (t)ngo dt} selt (Z_Nj el (2N+k j :
0

. . 1
In virtue of assumption b) we can choose {4, },5 < {—m} ﬂ[ such that
2 m=1

c(h,) > 0 as n — oo. So, the sequence {uhn }u>1 1s fundamental in Lp0 (S;B5).
Because of B, — B, with compact embedding, the sequence {u h, } 4> 1S bounded

Lmin{pO’ ) (S;By); due to corollary 2 it follows that {u h, }u>1 1s fundamental

Lmin{po,pl}(S;Bl)'
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The proposition is proved.

Now we combine all results to obtain the necessary a priori estimate.

Theorem 7. Let all conditions of theorem 2 are satisfied and V' < H with
compact embedding. Then (4) be true and the set

UD,, is bounded in C(S;H) and precompact in L,(S;H)
nx1
for every p>1.
Proof. Estimation (4) follows from theorem 2. Now we use compactness
theorem 6 with By =V, B, =H, B, =V*, Po =1, p;=1. Remark that
X c L(S;V) and X < L(S;V") with continuous embedding. Hence, the set

UDn is precompact in L;(S;H).

n1
In virtue of (4) and theorem 1 on continuous embedding of w" in C(S;H),
it follows that the set
D, is bounded in C(S;H).

n>1

Further, by using standard conclusions and the Lebesgue theorem we obtain
the necessary statement.

The theorem is proved.
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