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ON SOME TOPOLOGICAL PROPERTIES FOR SPECIAL
CLASSES OF BANACH SPACES. PART 1

P. KASYANOV, |V. MEL'NIK

We consider some classes of infinite-dimensional Banach spaces with integrable
derivatives. A compactness lemma for nonreflexive spaces is obtained. However
some main topological properties for the given spaces are obtained.

Method of monotony and method of compactness represent fundamental ap-
proaches to study nonlinear differential-operator equations, evolutionary inclu-
sions and variational inequalities in Banach spaces. The general idea is the
following: using the corresponding approximation scheme the approximate
solutions of a problem are constructed, for them some approaching a priori
estimations are established, at last they prove the existence of sequence of
approximate solutions, that converges to the exact solution of problem. In many
cases the aim is obtained by using both a method of compactness and a method of
monotonicity.

In the present paper we obtain a new of compact embedding theorems for
Banach spaces, suggested by researches about differential-operational inclusions
in function spaces. Moreover, we introduce some constructions to prove the con-
vergence of Faedo—Galerkin method for evolution variation inequalities with w, —

pseudomonotone maps [1-5].
In the following referring to Banach spaces X,Y, when we write

XcY
we mean the embedding in the set-theory sense and in the topological sense.
For n>2 let {X;}/.; be some family of Banach spaces.
Definition 1. The interpolation family is refers a family of Banach spaces

{X;}; such that for some locally convex linear topological space (LTS) Y we
have

X;cY forall i=1,_n.
As n=2 the interpolation family is called the interpolation pair.
Further let {X,}"_, be some interpolation family. On the analogy of ([6], p.

23), in the linear variety X =N, X; we consider the norm

n
by =2y, vxeX, (1)
i-
where ||||X is the normin X .
1

Proposition 1. Let {X,Y,Z} be an interpolation family. Then
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XN nZ)=(XNnY)nZ=XNYNnZ, XNnY=YnX

both in the sense of equality of sets and in the sense of equality of norms.
We also consider the linear space

n n
Z:= ZXi = {in
i=1 i=1

e i:l,—n}

with the norm

n
||z||Z :=inf {111_1?31( ||xl~||Xi x;eX,;, Hxl. = z} VzelZ. 2
Proposition 2. Let {X,}, be an interpolation family. Then X =N}, X;

and Z = ZLX ; are Banach spaces and it results in

XcX,cZ forall i=1n 3)
Proof. Since X is a linear space, from properties of |||| Y. and from the
1

definition of || . || y on X it follows that || . || Y is the normon X .

Let us prove the completeness of X . From the definition of || . || v on X it
follows that every Cauchy sequence {x,},»; in X is fundamental, so it
converges in X; andin Y Vi =1,_n, where Y is the LTS in the definition 1.

Hence, due to {X;}; is the interpolation family and to the uniqueness of the

limit of a sequence {x,},s; in LTS Y it follows that for some x< X and for all

i=1,n

X,—=>x in X; as n—oo.

So, x, >x in X as n—>o.

Now let us check that || . || P is the normon Z .

If ||z||Z =0, then thanks to (2) for each m>1 there exists x,,;, € X; (i =1,_n)
such that

L 1
2= X il <=
i=1 Loon

For every i=1,n the sequence x, tends to 0 in X,, and so in ¥ too. Thus
Z:l:lxmi —0 in Y as m—>+o and z=0. On the other hand, let z=0. Then

1, <maxo], 0.

The another norm properties for |||| p follow from the properties of inf,

max and norms ||||X, i=l,_n.
1
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Let us check Z under the above norm is complete space. Let {z,,}, be a
Cauchy sequence in Z . It contains a subsequence {z,, " } > with the property

-k
< >
Hzmk ka—l H 2 for k>2.

From (2) for every k>2 there exists
n
Zwg = Fmy = DM
=1

where Uy er,

u,gH <2'"* for each j=1,_n and k >2. Further,
X

n —
Zp, :Z“Ua u;eX;, j=Ln.
J=1

For every k21 let us put

k _
kaZZuij, j=1,n.
i=1

Hence
n
Zmy :Zxkj Vk=>1.
j=1
Forall j=1,n the sequence x;; converges in X ; (according to its construction)

n
to some x; er.Letus set z=2xj . Then we have
=

z—z H Smal“x~—xk-“ YVk=>1.
H Ml T Y G

From here it follows that z,, ~converges to z in Z as k—+co. From the

estimation

o=zl <=z, w2,

and taking into account that the sequence {z,,},,>; is fundamental we obtain

lim ||z -z, ||Z =0.
m—>0

The embedding (3) follows from the definition of Banach spaces (X,
and (Z, -||Z).

Remark 1. ([6], p. 24). Let Banach spaces X and Y satisfy the following
conditions

'”X)

XcY, X is dense in Y,
Iy <7

|x||X VxeX, y=const.
Then
Y ex, |t <ol vrer
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Moreover, if X is reflexive, then Y *isdensein X .
Let {X;}; be an interpolation family such that the space X :=}_; X, with
the norm (1) is dense in X; forall i= l,_n Due to remark 4 the space X ,* may be

considered as subspace of X . Thus we can construct Z;X ; and

*

ZX c(ﬂXJ 4)

i=1

n _
Under the given assumptions X is dense in Z:= ZX ; forevery i=1,n. So
i=1

. . . *
X; is dense in Z too. Thanks to remark 1 we can consider space Z as a

i
subspace of Xl-* forall i=1,n, and also as a subspace of 17 Xl-* , L.e.

(ZX J - mX (5)

i=1
Theorem 1. Let {X,}/.; be an interpolation family such that the space

n —_
X := X, with the norm (1) is dense in X, forall i=1,n. Then
i=1

ZX (ﬂX j and [ZX J =
both in the sense of sets equality and in the sense of the equality of norms.

Proof. We consider the space X':= H;X ; with the norm

}’l

i= 1

||{x1,x2,...,xn}||X =i||x[||X[ Vx={x,Xy,.,X,} €X;
let £ be the subspace of X deﬁln_el:d by
L={{x,x,..,x}}xe X}.
For a fixed feX* let us set
u({x,x,..,x})=f(x) VxeX.

Hence u is a linear functional on £ with the norm ||u||* =|| f || +*- By Hahn—

Banach theorem for the functional u# there exists a linear functional v defined on
X such that
Ivl=

For every i=1,_n we set
2, (x)=v({0,..,0,x,,0,..,0}) Vx; eX,.

Hence it is clear that g, € X l* for all i =1,_n and
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max ;] + <M+ =[]+
=i z X

By the construction,

F@=Ye() VrexX,

i=1

Le. f= Z;gi € Z;Xi*' Thus it follows

Isr g smaslel <l

On the other hand
|71

F= s @<

n j—
S Il =

n
g eX;, ) g =f}£
i=1

X} x”X,-

< sup inf{i”gi|

n -:1
Sh = U
i=1

*
X;

i

n
Sinf{max”gi| g €X; ,Zg,:f}:”f"y X
i=1,n i-1 =

The latest inequalities and (4) prove the first part of the theorem.
Let us prove the remaining part.
Lemma 1. Let feN' X, .

1

(i= I,_k) such that z:;lxi = Zleyl- =:x we have

k k
D)= )= (). (6)
i=1 i=1

Proof. We prove this statement arguing by induction.

Then for every k=2,_n and x;,y; € X;

Let x;,y;€X; (i=1,2) such that x,+x,=y,+y, =:x. Then x -y, =
:yz_X2 eleXz and

SCD)=SOD)=f =y =f(ra—x3)= f(12)— f(x7).

From the last the necessary statement is follows.

Now we assume that for some k=2,n—1 and for arbitrary x,,y; € X;
I k k
(i=1,k) such that in = Zy[ =:x equality (6) is valid.
i=1 i=1
k+1 k+1
Let x;,y; € X; (i=1,k +1) such that Zx,- :Zy[ =:x. Thus
i=1 i=1

k k
Xt = Vi1 = D (Vi —%;) € [ZXi]ﬂana
i1

i=1

and so, by the induction assumption, we obtain
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k k
SO = f W) = g = Vi) = f[Z(yi —X; )J =Y (S-S ()

i=1 i=1
and the lemma follows.

According to lemma 1 let us continues any fixed functional f e’ ;X ,* to
some functional on Z in such way:

for z= Z 1l,where x;eX; Vi=Ln

f(@)=21(x).
i=1

From relation (6) it follows that the given definition is correct and does not
depend on the representation of z as Z?lei . Since

x;,€X;, ) x; —z} { j”z”z,
i=1

then feZ and ||f||Z* S”f”m;,:lXi*. Taking into account (5) we have Z =

f(o)< mf{

=N, X ,* as equality of the sets. In order to prove the equality of norms it is

sufficient to show the inequality || f "ﬂ” x* < || f || - Forevery £>0 there exists
i=1%i

x; € X; such that

< f(x;)+é&n, ”xi”)(l- =1

o3

<||f |2 maxllf |, +e =Ml +e

=l,n

Hence

oy

n
z* sz
i=1

I
z

and from here the delivered conclusion follows.

Now let ¥ be some Banach space, Y " its topological conjugated space, S
be some compact time interval. We consider the classes of functions defined on

S and imagines in Y (orin Y : ).
The set L,(S;Y) of all measured by Bochner functions [6] as 1< p <+o0

with the natural linear operations with the norm

l/p
bl s - [Jnymn”dr]

is a Banach space. As p=+x© L, (S;Y) with the norm
., (s:v) = vrai max |y,
teS

is a Banach space.
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The next theorem shows that under the assumption of reflexivity or
separability of ¥ the conjugated to L, (S;Y), 1< p <+, space (L,(S;Y ))* may
be identify with L, (S;Y"), where g issuchthat p~' +¢~' =1.

Theorem 2. If the space Y is reflexive and 1< p <+oo, then each element

fe(L,(SY ))* has the unique representation

S0 = [(€@O. (@) ydt for every yeL,(S;Y)
S

with the function §e L, (S;Y *) , p_1 + q_l =1. The correspondence f — &, with
fe(L,(S;Y))" is linear and

s "(LP(S;Y))* ||5||Lq(S;Y*)-

Now let us consider the reflexive separable Banach space /' with the norm
||||V and the Hilbert space (H,(,,)y) with the norm |||| o and for the given
spaces let the next conditions be satisfied

VcH,V isdensein H ,

EI;/>0:||V||HS||V||V Yvel. @)
Due to remark 1 under the given assumptions we may consider the

conjugated to H space H “asa subspace of V" that is conjugated to V. As V

is reflexive then H~ is densein V" and
Iy <Ay v Set,
where || - ||V* and || : || + are the norm in vV andin H, respectively.

Further, we identify the spaces H and H * . Then we obtain
VcHcCV?
with continuous and dense embedding.

Definition 2. The triple of spaces (V;H V"), that satisfy the latter conditions
will be called the evolution triple.

Let us point out that under identification H with H " and H" with some

subspace of V", an element ye€H isidentified with some f, € V" and

(yﬂx):<f 7x>V VXEV,
where (-}, is the canonical pairing between ¥~ and V . Since the element y
and f, are identified then, under condition (7), the pairing (-,-),, will denote the

inner product on H (-,-).
We consider p;, r;, i=1,2 such that 1<p, <r, <+, p; <4w. Let
q; 21y 21 well-defined by
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piltrgr = T =1 V=12,

Remark that 1/00=0.

Now we consider some Banach spaces that play an important role in the
investigation the differential-operator equations and evolution variational
inequalities in non-reflexive Banach spaces.

Referring to evolution triples (V;; H ;Vi* ) (i=1,2) such that
the set V; NV, is dense in the spaces V;, V, and H ®)
we consider the functional Banach spaces (proposition 2)
X; = X;(S)=L, (S;V,)+L,, (S;H), i=1.2

with norms

bl =it sl 57 bl g5 |

32 EL%‘ (S;Vl-*), Vs ELG” (S$;H), y=y1+y, },

forall ye X;, and
X=X(S)=L, (S;V)) +L, (S;V,) +L, (S;H)+L, (S;:H)
with

A =inf tmax bl sys Wil (sormy b @2, (S

Yo €L, (S:H), i=12; y=y; 1 +yip +ya +yni,

for each ye X . As r; <40, due to theorem 1 and to theorem 2 the space X; is
reflexive. Analogously, if max{r,r,} <+c0, the space X is reflexive.

Under the latter theorems we identify the conjugated to X;(S), X ,* =X ; (S),
with LV;’ (S;H)mLpi (S:V;), where
Ml = ”y"Lri (S;H) * ”y"Lpl_ Sy VYEXi
and, respectively, the conjugated to X (S) space X T=xT (S) we identify with
L,1 (S;H)er2 (S;H)mLp1 (S;Vl)r\Lp2 S;Vy),

where

M5y =11 L, (S:H) b L, (S:H) * ||/V||Lp1 s+ ||/V||Lp2 () TrEX .
On X(S)XX*(S) we denote by

L= = [ @@y de+ [ @@y dr+
N S
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U @@y et [ (D). 0(@)y, d7 =
S S
= [(/@.y@pdr VieXex',
N

where f'= fiy+ fio + fa1 + fo2s fii €Ly, (SH), [ €Ly (SV7), i=12.

Let V=V,nV,, F(V) be a filter of all finite-dimensional subspaces from
V. As V is separable, there exists countable monotone increasing system of
subspaces {H.}., < F (V) complete in V', and consequently in /. On H, we
consider inner product induced from H , that we denote again as (-,-). Moreover

let P,:H — H, c H be orthogonal projection from H on H, operator:

for every he H P,h=argmin h—-h, p.
h,eH,

Definition 3. We say that the triple ({H enViH ) satisfies condition (y ), if

sgll) ||Pn ||L(V,V) <+, i.e. there exists such C >1 that for every veV and n>1
nz

[Elly <€, - ©)

Some constructions that satisfy condition ( 7 ) were presented in [7].

Remark 2. It is easy to notice that there exists such complete orthonormal in
H vector system {A;},; cV that for any n>1 H, is a linear capsule stretched
on {h;},. Then condition () means that the given system is a Schauder basis
in the space V' ([8], p. 403).

Remark 3. Due to the identification of H" and H it follows that H : and
H, are identified too.

Remark 4. Since P, e||Pn||L(V - for every n>1 we get P, €|P,

"™ v™y

*

and "Pn”z:(V,V) =P,

n

L It is clear that for every he H P,h= Pn*h . Hence,

we identify P, with its conjugate Pn* for every n>1. Then, condition () means
that for every ve V' and n>1 it results in
[P, <€, and [P,y

S C”V

o (10)

For each n>1 we consider the Banach spaces
X, =X,(S)=L, (S;H,)= X, X, =X,(S)= L, (S:H,)c X7,
where pg :=max{r,n}, qo' +py =1 with the natural norms. The space

qu (S;H,) is isometrically isomorphic to the conjugate space X: of X,,

moreover, the map

X, x X, fox = [ (f@x@) g, de = [ (/@) x@)dT=(f 2y,
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is the duality form on X, x X . This statement is correct due to

Ly (S:H,) C Ly (SsH) < Ly, (SsH)+ Ly, (S:H)+ Ly (Si77)+ Ly, (Si75).

Let us remark that (-,-) ¢ |X (SX(S) = <.’.>Xn (S)-

Proposition 3. For every n>1 X, =P, X ,i.e.

={P.OIfO X},
Moreover, if the triple ({H Vi H ) i=1,2 satisfies condition (y) with
C=C;, then
for every feX and n>1 ||Pn||X Smax{Cl,Cz}”f”X.

Proof. Let us fix an arbitrary number n>1. For every yeX let
Y,():=P,y(), ie. y,(t)=P,y(t) for almost all £€S. Since P, is linear and
continuous on Vl*, on Vz* and on H we have that y, € X, < X . It is immediate

that the inverse inclusion is valid.

Now let us prove the second part of this statement. We suppose that
condition (y ) holds, let us fix feX and n>1. Then from condition (y) it

follows that for every fh-eLrl.,(S;H) and fzieLqi(S;V,-*) such that
S =+ fia+ fo1 + fn wehave

|2 11 L, (S:H) * |7 12||Lr2, (521 + Pt 21||qu Sy T

1

+||Pnf22"Lq2 S~ [J."P f11(2')||’1 dz’} (J.”P f12(7)||’2 dTJ

1

1
(J”P le(T)" dTJ 1 ,["Pnfzz(f)”zf dT}% <
2

1 1

< [I @ drjrl I |2 @) 2 dr]
S

v

1

q q
+ Cl[f @l df] o c{ I @13 df] 2
5 N
< max {CI,CZ}[” Fitll, cssny +Mhely, sy *
4 f21||qu (ST 12|, 0 (S73) J :
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because C;,C, =1. Therefore, due to the definition of norm in X we complete
the proof.

Proposition 4. For every n>1 itresultsin X, =P, X", i.e.

X, ={ByO)|y()e X},
and

SoB)=(f.y) VyeX and [eX,.
Furthermore, if the triple ({H i3 Vi H ), i=1,2 satisfies condition (y ) with
C=C_,, then we get

VyeX* and n>1.

2]

E <max {C},C, }|y] X"

Proof. For every ye X" we set Y,(O):=P,y(), 1e. y,(t)=P,y(t) for a.e.
teS. As the operator P, is linear and continuous on V;, on V, and on H we

* * . . . . .
have that y, € X » < X . The inverse inclusion is obvious.

Due to condition (¥ ) and to the definition of || . ||L () and || . ||L (S:H)
P AT
it follows that
vl L, (57;) =Ci '||y||Lpl_ sy ad |y, ”Lrl_ (S;H) < "y”Lri (S;H)"

Thus ||yn||X* <max{C, C2}||y||X* .
Now let us show that for every f e X,

Loy =0
As fe Lpo (S;H,)), then we have

o) = [(f@.y@)dr = [ (f(@), P,y(@)dT =
=[S @0, @z =(f.3,).

because for every n>1, he H and ve H itresults in
(h=PB,hyv)y=(h—P,h,v)y =0.

The proposition is proved.

Proposition 5. Under the condition max{r,7, } <+oo the set UX " is dense

n=1

in(X*,

)
X
Proof. a) At first we prove that the set L (S;V) is dense in space

*

x,

X

Letus fix xe X .
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Then for every n>1 we consider

‘0 ::{ x(t) @), <n.

0, elsewhere.

(11

Obviously x, € L, (S;V). The continuous embedding of V' into H assures

the existence of some positive } such that for i=1,2 and a.e. €S we have

b, -5, <7, 0~ 0.

[, @) = x(@)),, <[}x, O =x@), >0, as n—> e, (12
0l <l [, @, <), (13)
Further let us set
Biy (1) =[x, () = x(@) ;7 ¢£ ()=, (1) - x(t)llﬁl_" :
So, from (12) and (13) we obtain
¢ () >0, ¢Z(t)—>0 as n—o for ae teS (14)

and for almost every t € S
|95 (127 [x ()] =20 (). 147 (D127 ||x(z)||£j P=igy (). (15)

Since xe X, then Oy ’¢V1 ,¢V2 € L,(S). Thus, due to (14) and (15), we can

apply the Lebesgue theorem with integrable majorants ¢, , ¢V1 and ¢V2

respectively. Hence it follows that ¢, >0 and ¢I’,j —0 in Li(S) as i=1,2.
Consequently ||xn —x|| v >0asn—>w.
b) Further, for some linear variety L from V' we set
Y(L):={ye(S—L)|y is a simple function}
([6], p.152). Let us show that set Y(})) is dense in the normalized space

(Loo (Sa V), : "X
{x,},51 < Y(V) such that

«). Let be x fixed in L_(S,V); so, there exists a sequence

x,(H) >x(t) in V asn—oo forae teS. (16)

Since xe L, (S,V) we have ess sup||x(t)||V =:c<+o0 . Forevery n>1 letus
teS

introduce

Yo (t):= (17)

0, else.

{xn O, |x, @), <2,

From (16) and (17) it follows that y, € Y(V') as n>1 and moreover,

y,&)—>x(@) in V asn—>o forae. teS.
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Hence, taking into account V' — H, as i=1,2 and for a.e. 1€S we obtain the
following convergences

y,O)—>x@) in H, y,@¢)>x@) inV,, y,@)>x()inV, as n—>o.
As in a), assuming
by = ¢Vl = ¢V2 =max {(3¢c)",(3¢)"2,B3cy) 0} € Ly (5))
we obtain that y, - x in X " as n—> . So, Y(V) is dense in
Lo (S|

¢) Since the set span {%,},-, = U H, is dense in (V,
n>1

¥

) and ¥V < H with

”V

continuous embedding it follows that the set

Y( U H,JI UY(H,) is dense in (Y(V),|-|| ).

n>1 n>1

In order to complete the proof we point out that for every n>1
Y(H,))cX *. The proposition is proved.

Now we consider Banach space W= {reX ’ | v"e X} with the norm
v =Pl 1
where the derivative )’ of an element ye X " is in the sense of the scalar
distribution space D" (S;V") = L(D(S);V,), where V. be equals to ¥~ with
topology G(V*;V) [9].

1

Together with wi=w" (S) we consider the Banach space

W =W (S)={yel, (SV)y'eX©S), i=12,
with the norm

”y"Wl* :”y"Lpi (S;V) +||y'||X Vye Wz*
We also consider the space WO* = WO* S = Wl* S Wz* (S) with the norm

Wl = ||y||Lp1 AN ||y||Lp2 sy Wl vyews.
The space W is continuously embedded in Wl-* for z'=0_,2.
Theorem 3. It results in Wl-* CC(S;V*) with continuous embedding for
i=02.

t
Proof. Let i=1,2 be fixed, yeW,-* and V¢),teS we set §(t)=Jy'(r)dr

‘0
which has sense in the virtue of the local integrability of y'. It is obvious that
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e - &), <[l @l e vs=1

from which follows e C(S;V"). Then &=y, it means that y(r)=&(¢) + z for
a.e. teS and some zeV . Therefore, the function y also belongs to C(S;V*).

Note, that S is compact. Then in virtue of X < L;(S ;V*) we obtain

le@l, < [ly'@l,«de<kly], vies.
S

Then due to the continuity of embedding V; < V" we have

||z ,* (mes ()i :(J.”Z 5*’ ds)'Pi :”y_é:”Lp[ s =
s

<k ("y"Lpi AN & ”C(S;V*) )<ky(ly], 2 (S 1) (18)

where k, does not dependon ye Wl-* .
Now let yeW, < C(S;¥"). In virtue of (18) for i=1,2 there exists k; >0
that ||y||C(S;V*) <ks "y”Wo forall ye WO* .

Remark 5. From the definition of norms in the spaces W and WO* we
obtain W CC(S;V*) with continuous embedding for the compact S in the
natural topology of the space we.

Theorem 4. The set C'(S;V)NW, is dense in 17, .
Proof. We prove this statement for more general case. At the beginning we
suppose S =R . Let us choose such a function K € Cy (S) that J.K (r)dr =1 and

s
use the Sobolev mid-value method. Let us set for definiteness
72
_Juexp{- y for |7I<],
K(7) 21
0 for |7]>1,

where u is the constant of normalization and suppose K, (7) =nK(nt) for every

7€ S and n>1.1Itis obvious that K, € Cy (S) and

an(r)dr=1 V1.
N

For every y € WO* let us define the sequence of functions

()= [K, (1 =0)p(0)dr. (19)
N
It is easy to check that y, € C '(S;7) and
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Vi = [Kne - 0y(@)dr = K, (t - 0)y'(0)dr. (20)
S S

Besides y, ELP;’ (S;V;) and y, - y in Lp[ (S;V;) for (i=1,2). The last
follows from the inequality Hyn||Lpi (S) < ||K||L1(S)||y||Lpi (SV;) and from fol-

lowing estimations:

t+l/n
o =217 (s =1 ] Kale=2)0@) = yo)dlf dr <
! S t-1/n
1/n 1/n
< [ 1K, 1% dsy" 0 [yt +5) =y dsyae <
S -l/n —1/n
n . 1/n .
<2 [ (I +s) -yl doyds.
-1/n S

Pointing out that for arbitrary ye L P (S;V;)(1< p; <o) and for every h
the function

y(t+h) for t+hels,
yp()=
0 for t+he¢S

belongs to L, (S;¥;) and s _yHLp_(S;Vl-) —0 as h—0 [6, lemma IV.1.5],

then

li —y||Pi < lim (2u)"i —y||Pi =0 for i=12.
ngl;loHJ’n yHLp[-(S;Vi) m;( 1) sup ||y yHLp[-(S;Vi) or 1

o s|<1/n
Now we prove the convergence of derivatives. Let y'e X and y'=
=& + & +n +1, where &; equ, (S;Vl.*) , 1 eLrl,, (S;H), i=1,2. By the anal-
ogy with (19) we suppose

i) =K, (t=0) & (D)d7, 1,,(0)= [ K, (t=2)n,(x)dT for i=12.
S N

Then in virtue of (20) by the analogy to the previous case, y, =&, +

n,l
+ &2t M F 102 and besides fn,,- — ¢ in qu_ (S; V,-*) and Nni =M in
L., (S;H) for i=1,2. By definition of |- Il x » it follows

{Hé:n,l - §‘|qu (S,Vl*), Hé:nﬂ _(;:Hqu (S,VZ*) 5

lim ||y, — »'|| y < lim max
n—>o0 n—»0

Mt =1 ys 12 =1 gy (=0
1200 =7l (5203 17002 H%wﬁ&

From here we conclude that for every n>1 y, e C'(S; V)mWO* and the se-

quence {y, },> convergesto y e Wo* in WO*.
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Now let us consider the case when S is semi-bounded. Without loss of gen-
erality we suppose S =[0,0). For y e WO* = WO* (S) we put y,(¢t) = y(¢t+h) for
every 4 >0. Then, in virtue of [6, lemma IV.1.5] it is easy to show that for
i=12 y, >y in L, (S;V;) and v, =y in X as h— 0+. Remark that
Y eWO*. To complete the proof it is sufficient to show that for every fixed
Ve WO* (S) and for 2#>0 the element y, € WO* can be sufficiently exactly ap-
proximated by the functions from C LSy WO* .

For some y € WO*(S ) and & >0 let us consider the function

_|e@)y(+h) for t>-h,
f(t)_{o for t<-h,

where g e C'(R), o(t)=1 if tz—g and @(¢)=0 if t<—-h. Then for every

t>20 &(¢)=y;,(t) and due to definition of derivative in sense of scalar distribu-
tion space D (S V*) it follows that
£ - {(p'(t)y(t +h)+ )y (t+h) for t>-h,
0 for t<-h.
Let us prove that & € W; (R). Since y, € WO* () we have &g € X*(S) .
Because of &, ;=0 it remains to consider the section [4,0) .

From sup |@(s)|=1 we have
se[—h,0)

0 0
[l ds< [ 1o Iyt + w7 ds <
—h —h

0 h
< [Ivts+wIf ds = [ly@ll de - i=12).
~h 0

Thus, &l_p0€L ’; ([=h,0);V;) for i=1,2. Similarly we can prove that
&'e X(R). So, &€ WO* (R) and in virtue of the previous case there exists a se-
quence of elements &, € C ! R;Vym WO* (R) that converges to £ in WO* (R).

Now we set ¢, =&, |SEC1(S;V)mWO*(S) for every n>1. Here ¢, >y,
in WO*(S) as n — oo, because & |g=y),.

Let us consider, at last, the case when S is bounded. For every y e Wo* S
(where S =[a,b], a <b) we put

_ ot)y(t) for tela,b],
s() {0 for t>b,
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0 for t<a.

n(t):{(l—w(t))y(t) for ¢e[a,b],

Let @ be such function from C 1(S ) that @(¢) =0 in some neighborhood of
the point » and ¢@(t)=1 in some neighborhood of the point a. Note that

y()=&(t)+n(t) for all teS. It is easy to check that feWo*([a,oo)) and

ne WO* ((—o0,b]) . Therefore, due to the previous case, there exist such sequences

s < Cl([a,0)7) NI ([a, %))
and
{1, < C'((=0,b);V) W, ((—o0,b)),
that
£, — & in W, ([a,0)) and 7, —> 75 in W, ((—0,b)) as n—>w.

So, (&, +1,)s—y in W5 (S).
The theorem is proved.
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