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ON SOME TOPOLOGICAL PROPERTIES FOR SPECIAL 
CLASSES OF BANACH SPACES. PART 1 

P. KASYANOV,  V. MEL'NIK 

We consider some classes of infinite-dimensional Banach spaces with integrable 
derivatives. A compactness lemma for nonreflexive spaces is obtained. However 
some main topological properties for the given spaces are obtained.  

Method of monotony and method of compactness represent fundamental ap-
proaches to study nonlinear differential-operator equations, evolutionary inclu-
sions and variational inequalities in Banach spaces. The general idea is the 
following: using the corresponding approximation scheme the approximate 
solutions of a problem are constructed, for them some approaching a priori 
estimations are established, at last they prove the existence of sequence of 
approximate solutions, that converges to the exact solution of problem. In many 
cases the aim is obtained by using both a method of compactness and a method of 
monotonicity. 

In the present paper we obtain a new of compact embedding theorems for 
Banach spaces, suggested by researches about differential-operational inclusions 
in function spaces. Moreover, we introduce some constructions to prove the con-
vergence of Faedo–Galerkin method for evolution variation inequalities with λw –
pseudomonotone maps [1–5]. 

In the following referring to Banach spaces YX , , when we write  

 YX ⊂  
we mean the embedding in the set-theory sense and in the topological sense. 

For 2≥n  let n
iiX 1=}{  be some family of Banach spaces. 

Definition 1. The interpolation family is refers a family of Banach spaces 
n
iiX 1=}{  such that for some locally convex linear topological space (LTS) Y  we 

have  
 .1,=allfor niYX i ⊂  

As 2=n  the interpolation family is called the interpolation pair. 

Further let n
iiX 1=}{  be some interpolation family. On the analogy of ([6], p. 

23), in the linear variety i
n
i XX 1== ∩  we consider the norm  

 Xxxx
iX

n

i
X ∈∀∑

1=
=: , (1) 

where 
iX⋅  is the norm in iX . 

Proposition 1. Let },,{ ZYX  be an interpolation family. Then  
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 XYYXZYXZYXZYX ∩∩∩∩∩∩∩∩ =,=)(=)(  

both in the sense of equality of sets and in the sense of equality of norms. 
We also consider the linear space 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈∑∑ niXxxXZ iii

n

i
i

n

i
1,=,==:

1=1=
  

with the norm  

 .=,maxinf=:
1=1,=

ZzzxXxxz i

n

i
iiiXi

niZ ∈∀
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈ ∑  (2) 

Proposition 2. Let n
iiX 1=}{  be an interpolation family. Then i

n
i XX 1== ∩  

and i
n
i XZ ∑ 1==  are Banach spaces and it results in  

 .1,=allfor niZXX i ⊂⊂  (3) 

Proof. Since X  is a linear space, from properties of 
iX⋅  and from the 

definition of X⋅  on X  it follows that X⋅  is the norm on X . 

Let us prove the completeness of X . From the definition of X⋅  on X  it 

follows that every Cauchy sequence 1}{ ≥nnx  in X  is fundamental, so it 

converges in iX  and in Y  ni 1,=∀ , where Y  is the LTS in the definition 1. 

Hence, due to n
iiX 1=}{  is the interpolation family and to the uniqueness of the 

limit of a sequence 1}{ ≥nnx  in LTS Y  it follows that for some Xx∈  and for all 

ni 1,=   
 .as ∞→→ nXinxx in   

So, xxn →  in X  as ∞→n . 
Now let us check that Z⋅  is the norm on Z . 

If 0=Zz , then thanks to (2) for each 1≥m  there exists imi Xx ∈  ( ni 1,= ) 
such that 

 
n

xxz
iXmimi

n

i

1<,=
1=
∑ . 

For every ni 1,=  the sequence mix  tends to 0  in iX , and so in Y  too. Thus 

01= →∑ mi
n
i x  in Y  as +∞→m  and 0=z . On the other hand, let 0=z . Then 

0=0max
1,= iXniZz ≤ . 

The another norm properties for Z⋅  follow from the properties of inf , 

max  and norms 
iX⋅ , ni 1,= . 
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Let us check Z  under the above norm is complete space. Let 1}{ ≥mmz  be a 
Cauchy sequence in Z . It contains a subsequence 1}{ ≥kkmz  with the property 

 2.for2<
1

≥− −
−

kzz k
Zkmkm  

From (2) for every 2≥k  there exists  

 ,=
1=

1 kj

n

j
kmkm uzz ∑−

−  

where jkj Xu ∈ , k
Xkju −12<  for each nj 1,=  and 2≥k . Further,  

 njXuuz jj

n

j
jm ,1,, 1

1
11

=∈=∑
=

. 

For every 1≥k  let us put 

 .1,=,=
1=

njux ij

k

i
kj ∑  

Hence 

 1.=
1=

≥∀∑ kxz kj

n

j
km  

For all nj 1,=  the sequence kjx  converges in jX  (according to its construction) 

to some jj Xx ∈ . Let us set j

n

j
xz ∑

1=
= . Then we have 

 1.max
1,=

≥∀−≤− kxxzz
jXkjj

njZkm   

From here it follows that 
kmz  converges to z  in Z  as +∞→k . From the 

estimation  
 

ZmkmZkmZm zzzzzz −+−≤−  

and taking into account that the sequence 1}{ ≥mmz  is fundamental we obtain  

 0.=lim Zmm
zz −

∞→
 

The embedding (3) follows from the definition of Banach spaces ),( XX ⋅  

and ),( ZZ ⋅ . 

Remark 1. ([6], p. 24). Let Banach spaces X  and Y  satisfy the following 
conditions  

 
.const=,

,indenseis,
γγ Xxxx

YXYX

XY ∈∀≤
⊂

 

Then 
 ., *

**
** YfffXY YX ∈∀≤⊂ γ  
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Moreover, if X  is reflexive, then *Y  is dense in *X . 
Let n

iiX 1=}{  be an interpolation family such that the space i
n
i XX 1==: ∩  with 

the norm (1) is dense in iX  for all ni 1,= . Due to remark 4 the space *
iX  may be 

considered as subspace of *X . Thus we can construct *
1= i

n
i X∑  and 

 .
*

1

*

1=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊂

=
∑ i

n

i
i

n

i
XX ∩  (4) 

Under the given assumptions X  is dense in i

n

i
XZ ∑

1=
=:  for every ni 1,= . So 

iX  is dense in Z  too. Thanks to remark 1 we can consider space *Z  as a 

subspace of *
iX  for all ni 1,= , and also as a subspace of *

1= i
n
i X∩ , i.e.  

 .*

1

*

1=
i

n

i
i

n

i
XX

=
⊂⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∩  (5) 

Theorem 1. Let n
iiX 1=}{  be an interpolation family such that the space 

i
n

i
XX

1
=:

=
∩  with the norm (1) is dense in iX  for all ni 1,= . Then 

 
*

1

*

1=
= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∑ i

n

i
i

n

i
XX ∩  and *

1

*

1=
= i

n

i
i

n

i
XX

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∩  

both in the sense of sets equality and in the sense of the equality of norms. 

Proof. We consider the space i
n
i

X∏ 1=
=:X  with the norm 

 XX ∈∀∑ },...,,{==},...,,{ 21
1=

21 niXi

n

i
n xxxxxxxx ; 

let L  be the subspace of X  defined by  

 = {{ , ,..., }| }.x x x x X∈L  

For a fixed *Xf ∈  let us set  

 .)(=}),...,,({ Xxxfxxxu ∈∀  

Hence u  is a linear functional on L  with the norm .= ** Xfu  By Hahn–
Banach theorem for the functional u  there exists a linear functional v  defined on 
X  such that  
 .== ** Xfuv   

For every ni 1,=  we set 

 iiii Xxxvxg ∈∀})0,...,0,,0,...,0({=)( . 

Hence it is clear that *
ii Xg ∈  for all ni 1,=  and 
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 ***
1,=

=max XZiXi
ni

fvg ≤ . 

By the construction, 

 ,)(=)(
1=

Xxxgxf i

n

i
∈∀∑   

i.e. *
1=1== i

n
ii

n
i Xgf ∑∑ ∈ . Thus it follows 

 .max **
1,=

*
1

XiXi
nii

n
i

fgXf ≤≤
=Σ  

On the other hand  
 ≤

∑
)(sup

1=
=

1=

* xff

iXf
n
i

X  

 ≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=∈≤ ∑∑
===∑

=

n

i
iiiX

n

i
Xi

x

fgXgxg
iin

i iX
1

*

11

,infsup *

1

 

 ∑ =⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈≤ ∑ n
i iXi

n

i
iiiX

ni
ffgXg

1
*==,gmaxinf

1=

*
*i

1,=
. 

The latest inequalities and (4) prove the first part of the theorem. 
Let us prove the remaining part. 
Lemma 1. Let *

1= i
n
i Xf ∩∈ . Then for every nk 2,=  and iii Xyx ∈,  

( = 1,i k ) such that xyx i
k
ii

k
i :== 1=1= ∑∑  we have  

 ).(:=)(=)(
1=1=

xfyfxf i

k

i
i

k

i
∑∑  (6) 

Proof. We prove this statement arguing by induction. 

Let iii Xyx ∈,  ( 1,2=i ) such that xyyxx :== 2121 ++ . Then =− 11 yx  

2122 XXxy ∩∈−=  and  

 ).()(=)(=)(=)()( 22221111 xfyfxyfyxfyfxf −−−−  

From the last the necessary statement is follows. 
Now we assume that for some 12,= −nk  and for arbitrary iii Xyx ∈,  

( ki 1,= ) such that xyx i

k

i
i

k

i
:

1=1=
==∑∑  equality (6) is valid. 

Let iii Xyx ∈,  ( 11, += ki ) such that xyx i

k

i
i

k

i
:

1

1=

1

1=
==∑∑

++
. Thus 

 ,)(= 1
1=1=

11 +++ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∈−− ∑∑ ki

k

i
ii

k

i
kk XXxyyx ∩  

and so, by the induction assumption, we obtain  
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 ))()((=)(=)(=)()(
1=1=

1111 ii

k

i
ii

k

i
kkkk xfyfxyfyxfyfxf −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−− ∑∑++++  

and the lemma follows. 
According to lemma 1 let us continues any fixed functional *

1= i
n
i Xf ∩∈  to 

some functional on Z  in such way: 

 for i
n
i xz ∑ 1== , where ii Xx ∈  ni 1,=∀ , 

 ).(=)(
1=

i

n

i
xfzf ∑  

From relation (6) it follows that the given definition is correct and does not 
depend on the representation of z  as i

n
i x∑ 1= . Since  

 ZiX

n

i
i

n

i
iiiXiiX

n

i
zfzxXxxfzf ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈≤ ∑∑∑ *
1=1=

*
1=

=,inf)( , 

then *Zf ∈  and .*
1=

*
i

n
iZ Xff ∩≤  Taking into account (5) we have =*Z  

*
1= i

n
i X∩=  as equality of the sets. In order to prove the equality of norms it is 

sufficient to show the inequality **
1= Zi

n
i

fXf ≤∩ . For every 0>ε  there exists 

ii Xx ∈  such that  
 1=,/)(*

iXiiiX xnxff ε+≤ . 

Hence 

 ≤+≤+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤ ∑∑∑∩ εε

Z
i

n

i
Zi

n

iiX

n

ii
n
i

xfxffXf
1=

*
1=

*
1=

*
1=

=  

 εε ++≤ *
1,=

* =max ZiX
ni

Z fff  

and from here the delivered conclusion follows. 
Now let Y  be some Banach space, *Y  its topological conjugated space, S  

be some compact time interval. We consider the classes of functions defined on 
S  and imagines in Y  (or in *Y ). 

The set );( YSLp  of all measured by Bochner functions [6] as +∞≤≤ p1  
with the natural linear operations with the norm  

 
p

p
Y

S
pL dttyYSy

1/

)(=);( ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫  

is a Banach space. As +∞=p  );( YSL∞  with the norm  

 Y
St

L tyYSy )(maxvrai=);(
∈∞

  

is a Banach space. 
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The next theorem shows that under the assumption of reflexivity or 
separability of Y  the conjugated to );( YSLp , +∞≤ <1 p , space *));(( YSLp  may 

be identify with );( *YSLq , where q  is such that 1 1 = 1p q− −+ . 

Theorem 2. If the space Y  is reflexive and +∞≤ <1 p , then each element 
*));(( YSLf p∈  has the unique representation 

 );(everyfor)(),(=)( YSLydttytyf pY
S

∈〉〈∫ ξ  

with the function );( *YSLq∈ξ , 1=11 −− + qp . The correspondence ξ→f , with 
*));(( YSLf p∈  is linear and  

 .);(=));( **( YSYSf
qLpL ξ  

Now let us consider the reflexive separable Banach space V  with the norm 

V⋅  and the Hilbert space )),(,( HH ⋅⋅  with the norm H⋅ , and for the given 
spaces let the next conditions be satisfied  
 VHV ,⊂  is dense in H , 

 Vvvv VH ∈∀≤>∃ :0γ .  (7) 

Due to remark 1 under the given assumptions we may consider the 
conjugated to H  space *H  as a subspace of *V  that is conjugated to V . As V  
is reflexive then *H  is dense in *V  and  

 ,*
** Hfff HV ∈∀≤ γ  

where *V⋅  and *H⋅  are the norm in *V  and in *H , respectively. 

Further, we identify the spaces H  and *H . Then we obtain  

 V H V ∗⊂ ⊂  
with continuous and dense embedding. 

Definition 2. The triple of spaces ( *;; VHV ), that satisfy the latter conditions 
will be called the evolution triple. 

Let us point out that under identification H  with *H  and *H  with some 
subspace of *V , an element Hy∈  is identified with some *Vf y ∈  and 

 ,,=),( Vxxfxy Vy ∈∀〉〈   

where V⋅〉〈⋅,  is the canonical pairing between *V  and V . Since the element y  
and yf  are identified then, under condition (7), the pairing , V〈⋅ ⋅〉  will denote the 
inner product on H  ( , )⋅ ⋅ . 

We consider ip , ir , 21,=i  such that +∞≤≤ ii rp<1 , +∞<ip . Let 
1≥≥ ′ii rq  well-defined by  
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 1,2=1== 1111 irrqp iiii ∀++ −
′

−−− . 

Remark that 0=1/∞ . 
Now we consider some Banach spaces that play an important role in the 

investigation the differential-operator equations and evolution variational 
inequalities in non-reflexive Banach spaces. 

Referring to evolution triples ( *;; ii VHV ) ( 1,2=i ) such that  

  HVVVV and,spacestheindenseissetthe 2121 ∩  (8) 

we consider the functional Banach spaces (proposition 2) 

 1,2=),;();(=)(= * iHSLVSLSXX
iriiqii ′

+  

with norms 

 
⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

);(;);(maxinf=
'

2*1 HSyVSyy
ir

LiiqLiX  

 
⎭
⎬
⎫+∈∈

′ 212
*

1 =),;(),;( yyyHSLyVSLy
iriiq ,  

for all iXy∈ , and 

 * *
1 21 2 2 1

= ( ) = ( ; ) ( ; ) ( ; ) ( ; )q q r rX X S L S V L S V L S H L S H
′ ′

+ + +  

with 
 );(|});(;);({max{inf= *

12*1
1,2=

iiqi
ir

LiiiqLi
iX VSLyHSyVSyy ∈

′
, 

 }=1,2;=),;( 222112112 yyyyyiHSLy
iri +++∈
′

, 

for each Xy∈ . As +∞<ir , due to theorem 1 and to theorem 2 the space iX  is 
reflexive. Analogously, if +∞<},{max 21 rr , the space X  is reflexive. 

Under the latter theorems we identify the conjugated to )(SX i , )(= ** SXX ii , 
with );();( iipir

VSLHSL ∩ , where 

 *
* );();(= iiipL

ir
LiX XyVSyHSyy ∈∀+ , 

and, respectively, the conjugated to )(SX  space )(= ** SXX  we identify with 

 );();();();( 221121
VSLVSLHSLHSL pprr ∩∩∩ , 

where 

 *
221121

* );();();();(=)( XyVSyVSyHSyHSySy
pLpLrLrLX ∈∀+++ . 

On )()( * SXSX ×  we denote by 

 ++〉〈〉〈 ∫∫ ττττττ dyfdyfyfyf H
S

H
S

S ))(),(())(),((=,=, 1211  
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 =)(),()(),(
222121 ττττττ dyfdyf V

S
V

S

〉〈+〉〈+ ∫∫  

 *,))(),((= XXfdyf
S

∈∈∀∫ τττ , 

where 22211211= fffff +++ , );(1 HSLf
iri ′

∈ , );( *
2 iiqi VSLf ∈ , 1,2=i . 

Let 21= VVV ∩ , ( )VF  be a filter of all finite-dimensional subspaces from 
V . As V  is separable, there exists countable monotone increasing system of 
subspaces 1{ } ( )i iH V≥ ⊂ F  complete in V , and consequently in H . On nH  we 
consider inner product induced from H , that we denote again as ( , )⋅ ⋅ . Moreover 
let HHHP nn ⊂→:  be orthogonal projection from H  on nH  operator: 

 .minarg=everyfor Hn
nnh

n hh
H

hPHh −
∈

∈  

Definition 3. We say that the triple ( )HVH ii ;;}{ 1≥  satisfies condition (γ ), if 
+∞

≥
<  sup ),(

1
VVLn

n
P , i.e. there exists such 1≥C  that for every Vv∈  and 1≥n   

 VVn vCvP ≤ . (9) 

Some constructions that satisfy condition (γ ) were presented in [7]. 
Remark 2. It is easy to notice that there exists such complete orthonormal in 

H  vector system Vh ii ⊂≥1}{  that for any 1≥n  nH  is a linear capsule stretched 

on n
iih 1=}{ . Then condition ( )γ  means that the given system is a Schauder basis 

in the space V  ([8], p. 403). 

Remark 3. Due to the identification of *H  and H  it follows that *
nH  and 

nH  are identified too. 

Remark 4. Since ),( VVLnn PP ∈  for every 1≥n  we get 
),(

**
** VVLnn PP ∈  

and 
),(

*
),( **=

VVLnVVn PP L . It is clear that for every Hh∈  hPhP nn
*= . Hence, 

we identify nP  with its conjugate *
nP  for every 1≥n . Then, condition )(γ  means 

that for every Vv∈  and 1≥n  it results in  

 .and ** VVnVVn vCvPvCvP ≤≤  (10) 

For each 1≥n  we consider the Banach spaces 

 ,);(=)(=,);(=)(= *
0

**
0

XHSLSXXXHSLSXX npnnnqnn ⊂⊂  

where },{max=: 210 rrp , 1=1
0

1
0

−− + pq  with the natural norms. The space 

);(
0 nq HSL  is isometrically isomorphic to the conjugate space *

nX  of nX , 

moreover, the map  

 
nXSnHSnn xfdxfdxfxfXX 〉〈→∋× ∫∫ ,=))(),((=))(),((,* ττττττ  
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is the duality form on *
nn XX × . This statement is correct due to 

 );();();();();();( 22112100
∗∗

′′
+++⊂⊂ VSLVSLHSLHSLHSLHSL qqrrqnq . 

Let us remark that )(,=)()(|, * SSXS nXnnXS ⋅〉〈⋅×⋅〉〈⋅ . 

Proposition 3. For every 1≥n  XPX nn = , i.e. 

 { }XffPX nn ∈⋅⋅ )(|)(= . 

Moreover, if the triple ( )HVH ijj ;;}{ 1≥ , 1,2=i  satisfies condition (γ ) with 

iCC = , then 
 XXn fCCPnXf },{max1andeveryfor 21≤≥∈ . 

Proof. Let us fix an arbitrary number 1≥n . For every Xy∈  let 
)(:=)( ⋅⋅ yPy nn , i.e. )(=)( tyPty nn  for almost all St∈ . Since nP  is linear and 

continuous on *
1V , on *

2V  and on H  we have that XXy nn ⊂∈ . It is immediate 
that the inverse inclusion is valid. 

Now let us prove the second part of this statement. We suppose that 
condition (γ ) holds, let us fix Xf ∈  and 1≥n . Then from condition (γ ) it 

follows that for every );(1 HSLf
iri ′

∈  and );( *
2 iiqi VSLf ∈  such that 

22211211= fffff +++  we have 

 +++
′′

);();();( *
11

21
2

12
1

11 VSfPHSfPHSfP
qLnrLnrLn  

 +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ ′′ ∫∫

'
2

'
1

1

2
12

1

1
11*

22
22 )()(=);(

rr
Hn

S

rr
Hn

S
qLn dfPdfPVSfP ττττ   

 ≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+ ∫∫

2

1

2
*
2

22
1

1

1
*

1
21 )()(

q

Vn
S

q

Vn
S

dqfPdqfP ττττ  

 +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤

′
′

′
′ ∫∫

2

1

2
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1
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S
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⎜
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*
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*
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V
S
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V
S
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⎝

⎛ ++≤
′′

);();(},{max
2
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1
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⎠

⎞
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because 1, 21 ≥CC . Therefore, due to the definition of norm in X  we complete 
the proof. 

Proposition 4. For every 1≥n  it results in ** = XPX nn , i.e. 

 },)(|)({= ** XyyPX nn ∈⋅⋅  
and 
 .and,=, *

nn XfXyyfyPf ∈∈∀〉〈〉〈   

Furthermore, if the triple ( )HVH ijj ;;}{ 1≥ , 1,2=i  satisfies condition (γ ) with 

iCC = , then we get 

 1and},{max *
*21* ≥∈∀≤ nXyyCCP XXn . 

Proof. For every *Xy∈  we set )(:=)( ⋅⋅ yPy nn , i.e. )(=)( tyPty nn  for a.e. 
St∈ . As the operator nP  is linear and continuous on 1V , on 2V  and on H  we 

have that ** XXy nn ⊂∈ . The inverse inclusion is obvious. 
Due to condition (γ ) and to the definition of );( iipL VS⋅  and );( HS

ir
L⋅  

it follows that  
 .);();(and);();( HSyHSyVSyCVSy

ir
L

ir
LniipLiiipLn ≤⋅≤  

Thus *21* },{max XXn yCCy ≤ . 

Now let us show that for every nXf ∈  

 .,=, 〉〈〉〈 yfyf n   

As );(
0 np HSLf ∈ , then we have  

 =))(),((=))(),((=, ττττττ dyPfdyfyf nSS ∫∫〉〈  

 ,,=))(),((= 〉〈∫ nnS
yfdyf τττ  

because for every 1≥n , Hh∈  and nv H∈  it results in 

 0=),(=),( Hnn vhPhvhPh −− . 

The proposition is proved. 
Proposition 5. Under the condition +∞<},{max 21 rr  the set *

1
n

n
X∪

≥

 is dense 

in ),( *
*

XX ⋅ . 

Proof. a) At first we prove that the set );( VSL∞  is dense in space  

 ),( *
*

XX ⋅ . 

Let us fix *Xx∈ . 
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Then for every 1≥n  we consider 

 
⎪⎩

⎪
⎨
⎧ ≤

=
.elsewhere,0

,)()(
:)(

ntxtx
tx V

n  (11) 

Obviously );( VSLxn ∞∈ . The continuous embedding of V  into H  assures 
the existence of some positive γ  such that for 1,2=i  and a.e. St∈  we have 

 
⎪⎭

⎪
⎬
⎫

∞→→−≤−

→−≤−

,as,0)()()()(

,0)()()()(

ntxtxtxtx

txtxtxtx

VnVn

VnHn

i

γ
  (12) 

 .)()(,)()(
iViVnHHn txtxtxtx ≤≤  (13) 

Further let us set 

 .)()(=)(,)()(=)( 0 ip

iVniV
p
Hn

n
H txtxtntxtxt −− φφ  

So, from (12) and (13) we obtain 

 Stntnt
iV

n
H ∈∞→→→ .a.eforas0)(0,)( φφ  (14) 

and for almost every St∈  

 )(:=)(2|)(|),(:=)(2|)(| 00 tptxtnttxt
iV

i
iV

ip
iVH

p
H

pn
H φφφφ ≤≤ . (15) 

Since *Xx∈ , then )(,, 121
SLVVH ∈φφφ . Thus, due to (14) and (15), we can 

apply the Lebesgue theorem with integrable majorants Hφ , 
1Vφ  and 

2Vφ  

respectively. Hence it follows that 0→n
Hφ  and 0→n

iVφ  in )(1 SL  as 1,2=i . 

Consequently 0* →− Xn xx  as ∞→n . 

b) Further, for some linear variety L  from V  we set 

 }functionsimpleais|)({=:)( yLSyL →∈ϒ  

([6], p.152). Let us show that set )(Vϒ  is dense in the normalized space 
)),,(( *XVSL ⋅∞ . Let be x  fixed in ),( VSL∞ ; so, there exists a sequence 

)(}{ 1 Vx nn ϒ⊂≥  such that  

 StnVtxtxn ∈∞→→ a.e.forasin)()( . (16) 

Since ),( VSLx ∞∈  we have +∞
∈

<:=)(supess ctx V
St

. For every 1≥n  let us 

introduce  

 
⎪⎩

⎪
⎨
⎧ ≤

=
.else,0

,2)(),(
:)(

ctxtx
ty Vnn

n  (17) 

From (16) and (17) it follows that )(Vyn ϒ∈  as 1≥n  and moreover, 

 StnVtxtyn ∈∞→→ a.e.forasin)()( . 
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Hence, taking into account HV ⊂ , as 1,2=i  and for a.e. St∈  we obtain the 
following convergences 

 ∞→→→→ nVtxtyVtxtyHtxty nnn asin)()(,in)()(,in)()( 21 . 

As in a), assuming 

 ))(})(3,)(3,){(3max 1
021

21
SLccc ppp

VVH ∈≡≡≡ γφφφ  

we obtain that xyn →  in *X  as ∞→n . So, )(Vϒ  is dense in  

 ).),,(( *XVSL ⋅∞  

c) Since the set n
n

nn Hh
1

1 =}{span
≥

≥ ∪  is dense in ),( VV ⋅  and HV ⊂  with 

continuous embedding it follows that the set  

 )(=
11

n
n

n
n

HH ϒ⎟
⎠
⎞

⎜
⎝
⎛ϒ

≥≥
∪∪  is dense in )),(( *XV ⋅ϒ . 

In order to complete the proof we point out that for every 1≥n  

nn XH *)( ⊂ϒ . The proposition is proved. 

Now we consider Banach space }|{= ** XyXyW ∈′∈  with the norm 

 ,= ** XXW yyy ′+  

where the derivative y′  of an element *Xy∈  is in the sense of the scalar 

distribution space * * *( ; ) = ( ( ); )wS V S VD L D , where *
wV  be equals to *V  with 

topology );( * VVσ  [9]. 

Together with )(= ** SWW  we consider the Banach space  

 1,2,=)},(|);({=)(= ** iSXyVSLySWW iipii ∈′∈  

with the norm 
 .);(= *

* iXiipLiW WyyVSyy ∈∀′+  

We also consider the space )()(=)(= *
2

*
1

*
0

*
0 SWSWSWW ∩  with the norm  

 .);();(= *
02211

*
0

WyyVSyVSyy XpLpLW ∈∀′++  

The space *W  is continuously embedded in *
iW  for 0,2=i . 

Theorem 3. It results in );( ** VSCWi ⊂  with continuous embedding for 

0,2=i . 

Proof. Let 1,2=i  be fixed, *
iWy∈  and Stt ∈∀ ,0  we set ττξ dy

t
t

t

)()(
0

′= ∫  

which has sense in the virtue of the local integrability of y′ . It is obvious that 



P. Kasyanov, V. Mel'nik  

ISSN 1681–6048 System Research & Information Technologies, 2008, № 1 140

 tsdyst V

s

t
V ≥∀′≤− ∫ ττξξ ** )()()(  

from which follows );( *VSC∈ξ . Then y′′ =ξ , it means that ztty += )()( ξ  for 

a.e. St∈  and some *Vz∈ . Therefore, the function y  also belongs to );( *VSC . 

Note, that S  is compact. Then in virtue of );( *
1 VSLX ⊂  we obtain  

 Stykdyt XV
S

V ∈∀′≤′≤ ∫ ττξ ** )()( . 

Then due to the continuity of embedding *VVi ⊂  we have  

 ≤−∫ )*;(
1/

*
1/

* =)(=))(mes( VS
ipL

ipi
V

S

ip
V ydspzSz ξ  

 ));(()));(( 2*;(*1 XiipLVSC
ipL yVSykVSyk ′+≤+≤ ξ  (18) 

where 2k  does not depend on *
iWy∈ . 

Now let );( **
0 VSCWy ⊂∈ . In virtue of (18) for 1,2=i  there exists 03 ≥k  

that 
03*;( ) WVSC yky ≤  for all *

0Wy∈ . 

Remark 5. From the definition of norms in the spaces *W  and *
0W  we 

obtain );( ** VSCW ⊂  with continuous embedding for the compact S  in the 

natural topology of the space *W . 
Theorem 4. The set *

0
1 );( WVSC ∩  is dense in *

0W . 
Proof. We prove this statement for more general case. At the beginning we 

suppose R=S . Let us choose such a function )(0 SCK ∞∈  that 1=)( ττ dK
S
∫  and 

use the Sobolev mid-value method. Let us set for definiteness  

 
⎪⎩

⎪
⎨
⎧

≤
−

−

1,|>|for0

1,||for}
1

{exp=)( 2

2

τ

τ
τ
τµτK  

where µ  is the constant of normalization and suppose )(=)( ττ nnKKn  for every 

S∈τ  and 1≥n . It is obvious that )(0 SCKn
∞∈  and  

 11=)( ≥∀∫ ndKn
S

ττ . 

For every *
0Wy∈  let us define the sequence of functions 

 .)()(=)( τττ dytKty n
S

n −∫  (19) 

It is easy to check that );(1 VSCyn ∈  and  
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 .)()(=)()(= ττττττ dytKdytKy n
S

n
S

n ′−−′′ ∫∫  (20) 

Besides );( iipn VSLy ∈  and yyn →  in );( iip VSL  for ( 1,2=i ). The last 

follows from the inequality );()();( 1 iipLLiipLn VSySKVSy ≤  and from fol-

lowing estimations: 

 ≤−−− ∫∫
+

−

dtpdtyytKp
VSyy i

iVn

nt

ntS

i
iipLn τττ ))()()((=);(

1/

1/

 

 ≤−+≤ ∫∫∫
−−

dtdsptystyqdssK i
iV

n

n

iipiq
n

n

nS

})()(/)|)(|{(
1/

1/

1/

1/

 

 dsdtptystyn i
iV

S

n

n

ip ))()(()(2
2

1/

1/

−+≤ ∫∫
−

µ . 

Pointing out that for arbitrary )<(1);( ∞≤∈ iiip pVSLy  and for every h  

the function 

 
⎩
⎨
⎧

∈/+
∈++

Sht
Shthty

tyh for0
,for)(

=)(  

belongs to );( iip VSL  and 0);( →−
iipLh VSyy  as 0→h  [6, lemma IV.1.5], 

then 

 1,2=for0=);(sup)(2lim);(lim
1/||

ip
VSyyp

VSyy i
iipLs

ns

ip

n
i

iipLn
n

−≤−
≤∞→∞→

µ . 

Now we prove the convergence of derivatives. Let Xy ∈′  and =′y  

2121 ηηξξ +++=  where );( *
iiqi VSL∈ξ , );( HSL

iri ′
∈η , 1,2=i . By the anal-

ogy with (19) we suppose  

 ∫∫ −=−=
S

inin
S

inin dtKtdtKt ττητηττξτξ )()()(,)()()( ,,   for  2,1=i . 

Then in virtue of (20) by the analogy to the previous case, +′ ,1= nny ξ  

,2,1,2 nnn ηηξ +++  and besides iin ξξ →,  in );( *
iiq VSL  and iin ηη →,  in 

);( HSL
ir ′

 for 1,2=i . By definition of X⋅ , it follows 

 
⎩
⎨
⎧

−−≤′−′
∞→∞→ );(;);(maxlimlim *

22
,2*

11
,1 VSVSyy

qLn
qLnnXnn

ξξξξ ; 

 0=);(;);(
2

,2
1

,1
⎭
⎬
⎫−−

′′
HSHS rLnrLn ηηηη  

From here we conclude that for every 1≥n  *
0

1 );( WVSCyn ∩∈  and the se-

quence 1}{ ≥nny  converges to *
0Wy∈  in *

0W . 
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Now let us consider the case when S  is semi-bounded. Without loss of gen-
erality we suppose )[0,= ∞S . For )(= *

0
*
0 SWWy ∈  we put )(=)( htytyh +  for 

every 0>h . Then, in virtue of [6, lemma IV.1.5] it is easy to show that for 
1,2=i  yyh →  in );( iip VSL  and yyh ′→′  in X  as +→ 0h . Remark that 

*
0Wyh ∈ . To complete the proof it is sufficient to show that for every fixed 

)(*
0 SWy∈  and for 0>h  the element *

0Wyh ∈  can be sufficiently exactly ap-

proximated by the functions from *
0

1 );( WVSC ∩ . 

For some *
0 ( )y W S∈  and > 0h  let us consider the function 

 
⎩
⎨
⎧

−
−≥+

,<for0
,for)()(

=)(
ht
hthtyt

t
ϕ

ξ   

where )(1 RC∈ϕ , 1=)(tϕ  if 
2
ht −≥  and 0=)(tϕ  if ht −< . Then for every 

0≥t  )(=)( tyt hξ  and due to definition of derivative in sense of scalar distribu-

tion space );( ** VSD  it follows that 

 
⎩
⎨
⎧

−
−≥+′++′

′
.<for0
,for)()()()(

=)(
ht
hthtythtyt

t
ϕϕ

ξ  

Let us prove that )(*
0 RW∈ξ . Since )(*

0 SWyh ∈  we have )(| *
)[0, SX∈∞ξ . 

Because of 0=| );( h−−∞ξ  it remains to consider the section ,0)[ h− . 

From 1|=)(|sup
,0)[

s
hs

ϕ
−∈

 we have 

 ≤+≤ ∫∫
−−

dsphsysdsps i
iV

ip

h

i
iV

h

)(|)(|)(
00

ϕξ  

 .1,2)=()(=)(
0

0

idpydsphsy i
iV

h
i

iV
h

ττ∫∫ +≤
−

 

Thus, ),0);([| ,0)[ iiph VhL −∈−ξ  for 1,2=i . Similarly we can prove that 

)(RX∈′ξ . So, )(*
0 RW∈ξ  and in virtue of the previous case there exists a se-

quence of elements )();( *
0

1 RR WVCn ∩∈ξ  that converges to ξ  in )(*
0 RW . 

Now we set )();(|= *
0

1 SWVSCSnn ∩∈ξζ  for every 1≥n . Here hn y→ζ  

in )(*
0 SW  as ∞→n , because hS y=|ξ . 

Let us consider, at last, the case when S  is bounded. For every )(*
0 SWy ∈  

(where ],[= baS , ba < ) we put 

 
⎩
⎨
⎧ ∈

,>for0
],,[for)()(

=)(
bt

battyt
t

ϕ
ξ  
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⎩
⎨
⎧ ∈−

.<for0
],,[for)())((1

=)(
at

battyt
t

ϕ
η  

Let ϕ  be such function from )(1 SC  that 0=)(tϕ  in some neighborhood of 
the point b  and 1=)(tϕ  in some neighborhood of the point a . Note that 

)()(=)( ttty ηξ +  for all St∈ . It is easy to check that )),([*
0 ∞∈ aWξ  and 

]),((*
0 bW −∞∈η . Therefore, due to the previous case, there exist such sequences  

 )),([));,([}{ *
0

1
1 ∞∩∞⊂≥ aWVaCnnξ   

and 
 1 *

1 0{ } (( , ); ) (( , )),n n C b V W bη ≥ ⊂ −∞ ∩ −∞  
that 
 ∞→−∞→∞→ nbWaW nn as)),((inand)),([in *

0
*
0 ηηξξ . 

So, ySnn →+ |)( ηξ  in )(*
0 SW . 

The theorem is proved. 
Partially Supported by State Fund of Fundamntal Investigations Grant 

№ Ф25.1/029 

REFERENCES 

1. Kasyanov P.O. Galerkin's method for one class differential-operator inclusions // 
Dopovidi Natcional'noi Academii Nauk Ukraini. — 2005. — № 9. — P. 20–24. 

2. Kasyanov P.O., Mel'nik V.S. Faedo-Galerkin method for differential-operator inclu-
sions in Banach spaces with maps of 

0
wλ -pseudomonotone type // Zbirnik prats 

institutu mathematiki Nacional'noy Akademiy nauk Ukrainy. Part 2. — 2005. — 
№ 1. — P. 82–105. 

3. Mel'nik V.S., Toscano L. About nonlinear differential-operator equations in Banach 
spaces with maps of pseudo-monotone type // System Research & Information 
Technologies. — 2004. — № 3. — P. 63–81. 

4. Zgurovsky M.Z., Mel'nik V.S., Novikov A.N. Applied methods of analysis and 
control of nonlinear processes and fields. — K.: Nauk. Dumka, 2004. — 
588 p. (in Russian). 

5. Ivanenko V.I., Mel'nik V.S. Variational methods in control problems for systems with 
distributed parameters. — K.:Nauk. Dumka, 1988. — 286 p. (in Russian). 

6. Gaevsky H., Greger K., Zaharias K. Nonlinear The operator equations and the opera-
tor-differential equations. — M.:Myr, 1977. — 337 p. (Russian translation). 

7. Kasyanov P.O., Mel'nik V.S., Piccirillo A.M. On Schauder basis in some Banach 
space // Reports NAS of Ukraine — 2006. — № 4. — P. 23–30. 

8. James R.C. Superreflexive spaces with basis // Pacif. Journ. of Math. — 1972. — 41, 
№ 2. — P. 409–419. 

9. Reed M., Simon B. Methods of modern mathematical physics. Part. 1. — M.: Myr, 
1976. — 359 p. (Russian translation). 

Received 05.07.2007 

 

From the Editorial Board: the article corresponds completely to submitted 
manuscript. 


