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Abstract. Every year the edge between the real and digital worlds is becoming more 
and more blurred. Augmented and virtual reality rapid development creates new op-
portunities for more productive work and entertainment, revolution in 3D printing 
technologies begets boost in multiple DIY communities appearance and sharing 
economy growth. All these factors require new technologies that allow making 3D 
models from real world objects, but most of these solutions are either very expensive 
or require complex technical knowledge that most ordinary people do not have. This 
paper provides a review and comparison of modern methods for 3D models of phys-
ical objects real time reconstruction that can be used in present-day mobile solu-
tions. 

Keywords: 3D model, 3D object, simultaneous localization and mapping problem, 
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INTRODUCTION 

Nowadays a rapid transition from two-dimensional to three-dimensional informa-
tion space can be observed: flat interfaces are becoming less popular, three-
dimensional printing technology has achieved great success in a wide range of 
different industries, virtual and augmented reality are no longer only ideas of sci-
ence fiction. 

Each of the examples above requires a certain electronic volumetric repre-
sentation — a 3D-model. 3D interface requires a layout in space, 3D printing 
technology requires a model of a 3D object, virtual and augmented reality are 
both, in essence, just a manipulation and display of various 3D models. 

However, the creation of three-dimensional content is a very difficult and 
painstaking work. Designers and 3D illustrators spend a lot of resources to de-
velop even a simple model despite the fact that we see many of them in our daily 
lives, and those we don’t see are often only modifications of objects from the real 
world. We use the following methods directly to solve such problems. Those 
methods provide a possibility to turn your smartphone into a monocular 3D scan-
ner — it’s very convenient to have a model, which is ready for further modifica-
tion and use of other software, just a few minutes after you saw it.  

METHODS CLASSIFICATION 

Today, having special knowledge, 3D model can be reconstructed with a number 
of methods that solve the problem described in the literature as the problem of 
simultaneous localization and mapping (i.e. SLAM). There are many different 
implementations of this problem and they can be classified by: 
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1. The way algorithm analyze image information: 
a. Ones which do not use features or key points (feature-less); 
b. Ones which do use features (feature-based). 

2. The type of sensor used to capture images: RGB camera, RGB-D camera 
[1], laser range finders [2]. 

3. The number of cameras the video stream is received from: 
a. Ones which use one camera (monocular); 
b. Ones which use two or more cameras (stereo). 

ORB-SLAM METHOD 

ORB-SLAM [3] is a feature-based monocular SLAM system which can operate in 
real time, in all kinds of environments. The system is robust to sharp and fast mo-
tion, allows fast loop closing algorithm and relocalization algorithm. Also it in-
cludes automatic initialization. It uses a survival of the fittest strategy that aimed 
to select unique points and key frames, which leads to excellent robustness and 
generates a compact map that grows only when environment varies in time.  

Main design idea of ORB-SLAM system is that the same remembered key 
features are used by the mapping, tracking, and for place recognition to perform 
relocalization and loop closing. This allows to avoid the need to calculate the 
depths of recognized features. ORB-SLAM system requires algorithm which can 
extract features from image in less than 33ms per image, which excludes the 
popularSIFT (~300 ms) [4], SURF (~300 ms) [5] or the recent A-KAZE (~100 
ms) [6]. To obtain general place recognition capabilities, it also requires rotation 
invariance, which excludes BRIEF [7] and LDB [8]. 

ORB-SLAM uses ORB [9] method. It is extremely fast, while it has good 
invariance to viewpoint. This boosts the accuracy of bundle adjustment. 

ORB-SLAM system incorporates three components which are running si-
multaneously: tracking component, local mapping component and loop closing 
component.  

The tracking component is responsible for localizing the camera with every 
frame and deciding when to create a new key frame. Algorithm performs feature 
comparison between current and previous frame and optimize the pose using mo-
tion-only bundle adjustment. If the tracking for any reason is lost (e.g. because of 
occlusions or sharp movements), the place recognition module is responsible to 
perform a global relocalization. When there is an initial estimation of the camera 
position and feature matchings, a local visible map is reclaimed using the covisi-
bility graph consisting of key frames that is remembered by the system. Then 
matches with the local map points are searched by reprojection, and camera posi-
tion is optimized again with all found matches. Finally the tracking thread is in-
serting a new key frame if needed.  

All visual SLAM works in the literature agree that running bundle adjust-
ment with all the points and all the frames is not feasible. The work of Strasdat et 
al. [10] showed that the most cost effective approach is to keep as much points as 
possible, while keeping only non-redundant key frames. One approach is to insert 
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key frames very cautiously to avoid an excessive growth of the computational 
complexity. This restrictive key frame insertion algorithm makes the tracking fail 
in hard exploration conditions. ORB-SLAM uses survival of the fittest strategy 
which achieves unprecedented robustness in difficult scenarios by inserting key 
frames as quickly as possible, and removing later the redundant ones, to avoid the 
extra cost. This permits a flexible map expansion during exploration, which in-
creases tracking robustness in hard conditions (e.g. camera rotation, fast and sharp 
movements), while its size is bounded in continual revisits to the same environ-
ment, i.e. lifelong operation. 

The local mapping is responsible for processing new key frames added by 
previous components and performs local bundle adjustment, which leads to opti-
mal reconstruction in areas, close to camera position. It is looking for a new fea-
tures in all new key frames by a comparison to connected key frames in the map, 
and when it founds new feature it generates a new point. Based on the information 
gathered during the work of the system, special algorithm is applied to cut all re-
dundant remembered points and save only most informative ones. Also it cuts all 
redundant key frames. 

Each key frame iK  stores:  

1. The camera pose iwT , which is a rigid body transformation that trans-

forms points from the world to the camera coordinate system. 
2. The camera intrinsics, including focal length and principal point.  
3. All the ORB features extracted in the frame, associated or not to a map 

point, whose coordinates are undistorted if a distortion model is provided. 

Each map point ip  stores:  

1. Its 3D position iwX ,  in the world coordinate system.  

2. The viewing direction in , which is the mean unit vector of all its viewing 

directions (the rays that join the point with the optical center of the key frames 
that observe it).  

3. A representative ORB descriptor iD , which is the associated ORB de-

scriptor whose hamming distance is minimum with respect to all other associated 
descriptors in the key frames in which the point is observed.  

4. The maximum maxd  and minimum mind  distances at which the point can 

be observed, according to the scale invariance limits of the ORB features.  
The loop closing searches for loops with every new key frame. If a loop is 

detected, it computes a similarity transformation that informs about the drift ac-
cumulated in the loop. Then both sides of the loop are aligned and duplicated 
points are merged. Finally algorithm performs a pose graph optimization over 
similarity constraints to achieve global consistency.  

Running ORB-SLAM system is demonstrated on fig. 1. At the bottom left 
corner there is a current frame with features highlighted with green. At the right 
side there is a built map: remembered features displayed with red dots, green 
square is a current camera position and blue squares are key frames.  
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LSD-SLAM METHOD 

Large-Scale Direct Monocular SLAM (LSD-SLAM) [11] — a direct (feature-
less) monocular SLAM algorithm. Along with highly accurate pose estimation 
based on direct image alignment, it provides the 3D environment real-time recon-
struction as a graph of key frames with semi-dense depth maps. These are ob-
tained by a huge number of pixel-by-pixel comparisons.  

The fundamental idea behind feature-based approaches is to split the overall 
problem — estimating geometric information from images — into two sequential 
steps: first, a set of feature observations is extracted from the image. Second, the 
camera position and scene geometry is computed as a function of these feature 
observations only. While this decoupling simplifies the overall problem, it comes 
with an important limitation: only information that conforms to the feature type 
can be used. In particular, when using keypoints, information contained in straight 
or curved edges — which especially in man-made environments make up a large 
part of the image — is discarded.  

Direct visual odometry methods circumvent this limitation by optimizing the 
geometry directly on the image intensities, which enables using all information in 
the image. In addition to higher accuracy and robustness in particular in 
environments with little keypoints, this provides substantially more information 
about the geometry of the environment, which can be very valuable for robotics 
or augmented reality applications. 

A condensed summary of the relevant mathematical concepts is given in the 
next paragraphs. 

2Ω  is the set of normalized pixel coordinates, i.e., they include the in-
trinsic camera calibration. 

d  is used to denote the inverse of the depth z  of a point, i.e., 1   zd . 
(3)SO  is a rotations around a fixed point in three-dimensional Euclidean 

space group, which consists of orthogonal 33  matrices with a determinant 
equals to 1. 

Fig 1. Running ORB-SLAM system 
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A 3D rigid body transform (3)SEG  denotes rotation and translation in 
3D, i.e. is defined by 

 3and (3)  with 
10
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During optimization, a minimal representation for the camera pose is re-
quired, which is given by the corresponding element (3)  SE  of the associated 

Lie-algebra. Elements are mapped to  3SE  by the exponential map 

)(exp (3)  seG , its inverse being denoted by   GSE 3log . With a slight 

abuse of notation, element of (3)se  can be used to represent pose and written as 

vector 6R .  

The transformation moving a point from frame i  to frame j  is written as 

jiξ . For convenience, the pose concatenation operator (3)(3)(3): sesese   

should be defined as 

 ))(exp)((explog (3)(3)(3) jisekjseSEjikjki   . 

Further, 3D projective warp function ω  should be defined, which projects an 
image point p  and its inverse depth d  into a by ξ  transformed camera frame 
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A 3D similarity transform (3) Sim S  denotes rotation, scaling and transla-
tion, i.e. is defined by 
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As for rigid body transformations, a minimal representation is given by ele-
ments of the associated Lie-algebra (3) simξ  , which now have an additional 

degree of freedom, that is 7R . The exponential and logarithmic map, pose 

concatenation and a projective warp function s  can be defined analogously to 

the (3)se  case. 

Propagation of uncertainty is a statistical tool to derive the uncertainty of the 
output of a function )(Xf , caused by uncertainty on its input X . Assuming X  

to be Gaussian distributed with covariance XΣ , the covariance of )(Xf  can be 

approximated (using the Jacobian fJ  of f ) by  

 T
fXff JJ   . 



3D-Model reconstruction with use of monocular RGB camera 

Системні дослідження та інформаційні технології, 2017, № 4 25

The algorithm consists of three major components: tracking, depth map es-
timation and map optimization. 

The tracking component continuously tracks new camera images. That is, it 
estimates their rigid body pose (3)se  with respect to the current key frame, 
using the pose of the previous frame as initialization. 

The depth map estimation component uses tracked frames to either refine or 
replace the current key frame. Depth is refined by filtering over many per-pixel, 
small-baseline stereo comparisons coupled with interleaved spatial regularization. 
If the camera moves too far away from the existing map, a new key frame is cre-
ated from the most recent tracked image. Algorithm threshold a weighted combi-
nation of relative distance and angle to the current key frame: 

 jijiji W T)(dist , 

where W  is a diagonal matrix containing the weights.  
Each key frame iK  consists of a camera image iiI  Ω: , an inverse 

depth map  
iDiD  Ω: , and the variance of the inverse depth 

ii DV  Ω:  

 . Note that the depth map and variance are only defined for a subset 
of pixels iDi

ΩΩ   , containing all image regions in the vicinity of sufficiently 

large intensity gradient, hence semi-dense. Edges jiE  between key frames contain 

their relative alignment as similarity transform (3)sim ji , as well as the corre-

sponding covariance matrix ji . 

Once a key frame is replaced as tracking reference — and hence its depth 
map will not be refined further — it is incorporated into the global map by the 
map optimization component. To detect loop closures and scale-drift, a similarity 
transform (3)sim  to close-by existing key frames (including its direct prede-

cessor) is estimated using scale-aware, direct (3)sim — image alignment.  

To bootstrap the LSD-SLAM system, it is sufficient to initialize a first key 
frame with a random depth map and large variance. Given sufficient translational 
camera movement in the first seconds, the algorithm “locks” to a certain configu-
ration, and after a couple of key frame propagations converges to a correct depth 
configuration. 

Starting from an existing key frame ),,( iiii VDIK  , the relative 3D pose 

(3)ξ seij   of a new image jI  is computed by minimizing the variance-

normalized photometric error 
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where 
δ

  is the Huber norm applied to the normalized residual 
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The residual’s variance 2
), (σ

jip pr   is computed using covariance propagation 

as described above, utilizing the inverse depth variance iV  and assuming Gaus-

sian image intensity noise 2
Iσ . 

Running LSD-SLAM system is demonstrated on fig. 2. At the top left corner 
there is a current frame captured by the camera. At the bottom left there is a cur-
rent key frame with color-coded depth map (from red — close objects, to blue — 
far objects). At the right side there is a built point cloud with red square as a cur-
rent camera position and blue ones as camera trajectory.  

The authors of this work were able to obtain promising results using the 
LSD-SLAM method (see fig. 3–6). 

Fig 2. Running LSD-SLAM system 

Fig 3. Experiment 1. Object 
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METHODS COMPARISON 

It’s convenient to compare those methods with a following table. 

LSD-SLAM compared to ORB-SLAM 

Method Trajectory loss Relocalization Point cloud Speed of work 

LSD-SLAM 
Method is unstable, 

trajectory 
 is often lost 

Slow and not 
precise 

Monochrome point 
cloud from RGB 

camera 

Works in real 
time, but re-

quires fast GPU 

ORB-SLAM 

Method is robust, 
trajectory is lost  

only for very sharp 
movements in the 

direction  
of non-scanned areas

Fast  
and precise 

Colored point cloud 
only from RGB-D 

camera 

Works in real 
time, fast GPU 
 is not required 

Fig. 5. Experiment 2. Object 

Fig. 6. Experiment 2. Result 

Fig. 4. Experiment 1. Result 
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CONCLUSIONS 

The analysis of these methods and their comparison give the following results. If 
the task is to only localize camera position and build movement trajectory it is 
clearly necessary to choose ORB-SLAM. In case the user can handle RGB-D 
camera it is also possible to build colored point cloud representing the three-
dimensional model of the environment or object. Instead, if it is crucial to build a 
3D model a user needs to choose LSD-SLAM even though the scans may have 
worse quality. 
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