DOI: 10.20535/SRIT.2308-8893.2018.2.02

АВТОМАТИЗИРОВАННОЕ ОБНАРУЖЕНИЕ ИЗМЕНЕНИЙ ГОРОДСКОЙ ЗАСТРОЙКИ ПО МУЛЬТИСПЕКТРАЛЬНЫМ СПУТНИКОВЫМ СНИМКАМ СУБМЕТРОВОГО РАЗРЕШЕНИЯ

д.к. мозговой

Аннотация. Предложен метод повышения эффективности автоматизированного обнаружения изменений городской застройки по мультиспектральным спутниковым снимкам субметрового пространственного разрешения видимого и инфракрасного диапазонов с применением преобразования главных компонент (РСА) для данных всех спектральных каналов В результате обработки разновременных снимков со спутника Pleiades-1A получены векторные слои обнаруженных изменений городской застройки и подтверждена высокая эффективность данного метода. Благодаря высокой степени автоматизации процессов обработки спутниковых снимков разработанная методика позволяет существенно снизить трудоемкость и тем самым повысить оперативность обновления карт.

Ключевые слова: спутниковый мониторинг, городская застройка, разновременные снимки, обработка изображений, преобразования главных компонент, обновление карт.

Актуальность тематики исследований. Интенсивное развитие новейших технологий строительства в последние десятилетия стало одной из основных причин стремительного роста динамики изменений городской застройки во всем мире. Причем эта тенденция наблюдается как в секторе жилищного строительства (высотного и малоэтажного), так и в секторе возведения промышленных и коммерческих объектов. Поэтому задача разработки высокоэффективных методов автоматизированного обнаружения изменений городской застройки является важной и актуальной задачей в сфере информационных технологий.

Текущее состояние. Для регулярного обновления баз пространственных данных при актуализации карт городов традиционно использовались данные наземных измерений и аэрофотоснимки. При этом периодичность обновления карт городов была чрезвычайно низкой (обычно один раз в несколько лет), что было обусловлено высокой трудоемкостью сбора и обработки данных. Благодаря значительному прогрессу в области разработки оптико-электронных спутниковых сканеров субметрового пространственного разрешения (см. таблицу) [1, 2] в последние годы для оценки динамики изменений наземных объектов и актуализации карт городов все шире используются спутниковые снимки [3–5].

Постановка проблемы. Для обнаружения изменений на разновременных спутниковых снимках субметрового пространственного разрешения обычно используются разностные изображения, позволяющие выявить из-

менения в застройке по различию значений пар пикселей, имеющих одинаковые географические координаты на двух снимках, приведенных к одинаковому пространственному разрешению [6–8]. При этом, как правило, используют данные панхроматического канала, обеспечивающего наилучшую детальность и чувствительность. Однако такой метод при своей простоте обладает существенным недостатком: он не позволяет обнаружить изменения в тех случаях, когда сравниваемые объекты имеют разные значения яркости в мультиспектральных каналах, но одинаковые в панхроматическом канале.

Цель и задачи исследований. Основной задачей исследований является повышение эффективности автоматизированного обнаружения изменений городской застройки по мультиспектральным спутниковым снимкам субметрового пространственного разрешения видимого и инфракрасных диапазонов за счет использования данных всех спектральных каналов с целью повышения оперативности и достоверности обновления карт городов.

Спутники с оптико-электронными сканерами субметрового разрешения

	Год запуска	Страна- оператор	Разрешение			Полоса	Точность
Спутник			PAN/MS,	Радиоме- трич, бит	Количе- ство каналов	захва- та, км	геопри- вязки, м*
EROS-B	2006	Израиль	0,7	10	1	7	н.д.
Cartosat-2	2007	Индия	0,8	10	1	9,6	н.д.
WorldView-1	2007	США	0,5	11	1	17,6	5
GeoEye-1	2008	США	0,4/1,6	11	4	15	23
WorldView-2	2009	США	0,46/1,84	11	8	16	5
Cartosat-2B	2010	Индия	0,8	10	1	9,6	н.д.
Pleiades-1A	2011	Франция	0,5/2	12	4	20	4,5
Kompsat-3	2012	Корея	0,5/2	14	4	17	13
Pleiades-1B	2012	Франция	0,5/2	12	4	20	4,5
SkySat-1	2013	США	0,8/2,0	11	4	8	н.д.
Gaofen-2	2014	Китай	0,8/3,24	10	4	45	50
ASNARO-1	2014	Япония	0,5/2,0	11	6	10	10
WorldView-3	2014	США	0,3/1,2	11/14	8	13	3,5
SkySat-2	2014	США	0,8/2,0	11	4	8	н.д.
Kompsat-3A	2015	Корея	0,4/1,6	14	4	12	13
PeruSat-1	2016	Перу	0,7/2,0	12	4	10	н.д.
SkySat-37	2016	США	0,8/2,0	11	4	8	н.д.
Gokturk-1A	2016	Турция	0,7/2,8	12	4	20	10
SuperView-1A/B	2016	Китай	0,5/2	11	4	12	20
WorldView-4	2016	США	0,3/1,2	11	4	13	3
Mohammed-VIA	2017	Марокко	0,7/2,8	12	4	20	н.д.
SkySat-813	2017	США	0,8/2,0	11	4	8	н.д.
SuperView-1C/D	2018	Китай	0,5/2	11	4	12	20

^{*}н.д. – нет данных

Исходные данные для исследований. В качестве тестового участка для отработки методов повышения эффективности автоматизированного обнаружения изменений городской застройки была выбрана территория го-

рода Хилдсбург (рис. 1), расположенного в штате Калифорния (США). Это обусловлено тем, что в различных регионах данного штата наблюдается достаточно высокая динамика развития городской инфраструктуры, в том числе изменения застройки, в особенности жилья и коммерческих объектов. Кроме того, через Хилдсбург проходят крупнейшие нефтегазопроводы, вблизи которых согласно нормативам необходимо регулярно контролировать изменения застройки.

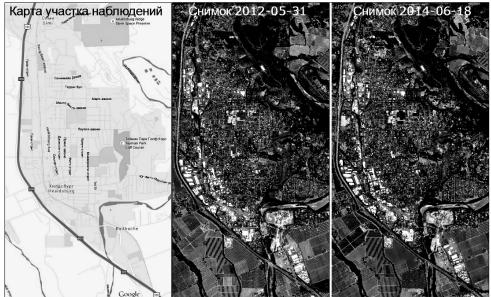


Рис. 1. Территория съемки и исходные спутниковые снимки

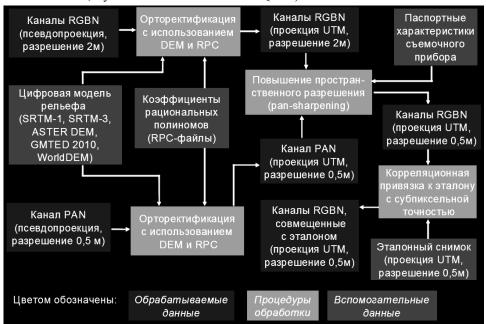
В качестве мультиспектральных данных для анализа были выбраны разновременные снимки видимого и инфракрасного диапазонов со спутника Pleiades-1A за 31 мая 2012 г. и 18 июня 2014 г. (рис. 1).

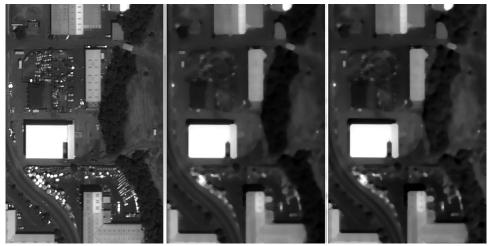
Методология исследований. Работы, проведенные в рамках исследований, включали следующие этапы обработки и анализа снимков [9, 10]:

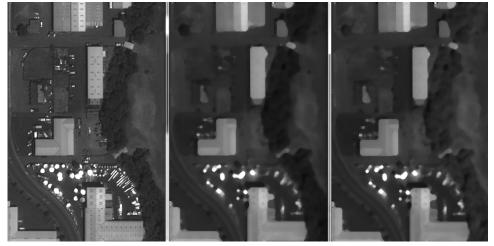
- предварительную обработку (нормализацию) разновременных спутниковых снимков, одинаковую для старого и нового снимков, включающую орторектификацию, повышение пространственного разрешения и корреляционную привязку к эталону (рис. 2);
- тематическую обработку нормализованных спутниковых снимков, включающую фильтрацию теней и малоразмерных подвижных объектов (машины, лотки выносной торговли и т.п.), расчет первой главной компоненты, двухпороговую бинаризацию, морфологическую и объектную фильтрацию и векторизацию распознанных изменений (рис. 3).

Требования к программному и аппаратному обеспечению. Размеры файлов мультиспектральных снимков высокого пространственного разрешения, как правило, достаточно большие (например, одна сцена, снятая в видимом и инфракрасном диапазоне, может занимать несколько гигабайт). Поэтому для оперативной обработки снимков со спутника SuperView-1A в реальном времени желательно использовать современные компьютеры с многоядерными процессорами класса Intel I—7 или выше и объемом оперативной памяти не менее 64 Гбайт. Программное обеспечение может быть как платным (ERDAS, ENVI, ArcGIS и т.п.), так и свободным (SNAP, SAGA, GRAAS, QGIS и т.п.), работающим как в среде MS Windows, так и в среде

Linux. Для обеспечения большей степени автоматизации процедур обработки возможно использование соответствующих инструментов (например, Imagine Model Maker в пакете ERDAS, Graph Builder в пакете SNAP) или языков программирования и специализированных утилит (например, IDL впакете ENVI, Python + GDAL в системе QGIS).



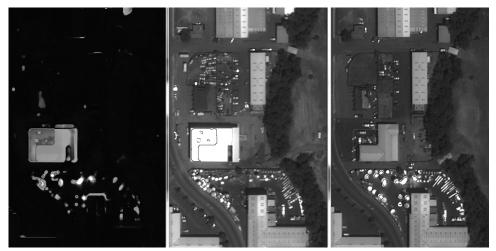

Рис. 2. Основные этапы предварительной обработки спутниковых снимков


Рис. 3. Основные этапы тематической обработки спутниковых снимков

Результаты исследований. После нормализации и фильтрации мультиспектральных данных видимого и инфракрасного диапазонов со спутника Pleiades-1A были получены 1-е главные компоненты снимков за

31 мая 2012 г. (рис. 4) и 18 июня 2014 г. (рис. 5), по которым определялись изменения застройки (рис. 6).

Нормализованный снимок Фильтрация мелких объектов 1-я главная компонента $Puc.\ 4$. Результаты обработки нормализованного снимка за 31 мая 2012 г.



Нормализованный снимок Фильтрация мелких объектов 1-я главная компонента *Рис.* 5. Результаты обработки нормализованного снимка за 18 июня 2014 г.

На различных тестовых участках территории съемки получено достаточно точное выделение границ распознанных изменений застройки и подтверждена высокая устойчивость предложенного метода даже без использования дополнительных масок растительности и водных объектов.

Основные преимущества предложенной методики по сравнению с существующими методами, которые используют только данные панхроматического канала, заключаются в способности обнаружить изменения в тех случаях, когда сравниваемые объекты имеют одинаковые значения альбедо на старом и новом снимках в панхроматическом канале, что позволяет существенно повысить достоверность выявления изменений. Высокая степень автоматизации процессов обработки спутниковых снимков позволяет с ис-

пользованием разработанной методики существенно снизить трудоемкость и тем самым повысить оперативность обновления карт.

Обнаруженные изменения Вектор и старый снимок Вектор и новый снимок *Рис.* 6. Обнаруженные изменения и векторные слои, наложенные на растр

Практическое применение предложенной методики достаточно обширна, поскольку она позволяет проводить автоматизированного обнаружение изменений не только городской застройки, но и любых других природных и антропогенных объектов (дорожная сеть, растительные и водные объекты и т. п.). Поэтому она может быть использована в интересах как различных государственных служб, так и частных компаний и коммерческих структур. При программной реализации данной методики в виде геоинформационного веб-сервиса [11, 12] она может быть использована для оперативного информирования широких слоев населения — наиболее массового пользователя.

Направления дальнейших исследований. В настоящее время ведется отработка предложенной методики с использованием многоспектральных снимков различных участков Земли, полученных с действующих спутников субметрового разрешения, с целью определения оптимальных параметров обработки для основных типов современных бортовых сканеров с учетом региона и условий съемки. Проводится модернизация методики в части использования дополнительных масок растительности и водных объектов с целью повышения устойчивости и качества распознавания.

выводы

Предложена методика повышения эффективности автоматизированного обнаружения изменений городской застройки по мультиспектральным спутниковым снимкам субметрового пространственного разрешения видимого и инфракрасного диапазонов, обеспечивающая повышение оперативности и достоверности обновления карт городов.

ЛИТЕРАТУРА

- 1. Satellite Missions Database. Available at: https://directory.eoportal.org/web/ eoportal/satellite-missions
- 2. *Борзов С.М.* Обнаружение антропогенных зон на основе поиска пространственных аномалий в крупномасштабных спутниковых изображениях / С.М. Борзов, О.И. Потатуркин // Автометрия. 2012. № 5. С. 104–111.
- 3. *Арбузов С.А.* Разработка методики автоматизированной обработки аэро- и космических снимков для мониторинга городских территорий: автореф. дисс. на соискание ученой степени канд. техн. наук. Новосибирск: ФГБОУ ВПО «Сибирская государственная геодезическая академия», 2011.
- 4. *Барладін О.В.* Геоінформаційний підхід та проблематика щодо оновлення планово-картографічних матеріалів з використанням аеро- та космічних знімків / О.В. Барладін, Л.І. Миколенко, О.Ю. Скляр // Геодезія, картографія і аерофотознімання. 2009. Вип.. 71. 76 с.
- 5. Алипбеки О.А. Контроль и мониторинг изменений инфраструктуры города Астаны по космическим данным ДЗЗ со спутника KazEOSat-1 / О.А. Алипбеки, Т.М. Мырзагалиев // Геоматика. 2016. № 1. С. 55–58.
- 6. *Філіпович В.Є*. Особливості космічного моніторингу урбанізованих ландшафтів / В.Є. Філіпович // Фізична географія та геоморфологія. 2013. Вип.3. С.143–150.
- 7. Хлебникова Е.П. Особенности обнаружения изменений инженернотехнических сооружений при интерпретации и анализе космических изображений / Е.П. Хлебникова, М.Т. Абишева // Интерэкспо ГЕО-Сибирь-2016. XII Междунар. науч. конгр., 18–22 апреля 2016 г., Новосибирск: Междунар. науч. конф. «Дистанционные методы зондирования Земли и фотограмметрия, мониторинг окружающей среды, геоэкология»: сб. материалов: в 2 т. Новосибирск: СГУГиТ, 2016. Т. 1. С. 9–14.
- 8. *Мясников Ф.С.* Анализ алгоритмов обнаружения на космических снимках / Ф.С. Мясников // Сборник научных трудов «Передача, обработка, восприятие текстовой и графической информации». Екатеринбург, 2015. С. 66–70.
- Satellite monitoring of deforestation as a result of mining / V.V. Hnatushenko, D.K. Mozgovoy, V.V. Vasyliev. — Available at: http://www.nvngu.in.ua/index.php/en/monographs/1489-engcat/archive/2017-eng/contents-5-2017/environmental-safety-labour-protection/4138-satellite-monitoring-of-deforestation-as-a-result-of-mining.
- 10. Satellite Monitoring of Consequences of Illegal Extraction of Amber in Ukraine / V.V. Hnatushenko, D.K. Mozgovoy, V.V. Vasyliev, O.O. Kavats. Available at: http://www.nvngu.in.ua/index.php/en/component/jdownloads/finish/67-02/8619-02-2017-hnatushenko/0.
- 11. *Мозговой Д.К.* Геоинформационные веб-сервисы EOS DA / Д.К. Мозговой, В.В. Васильев, М.В. Черненко // Междунар. науч.-практ. форум «Наука и бизнес». 1 июля 2016 года, Днепр. С. 54–61.
- 12. *Мозговой Д.К.* Мониторинг природных и антропогенных процессов с помощью веб-сервиса Landsat Viewer / Д.К. Мозговой, В.В. Васильев // Вісник ДНУ. Ракетно-космічна техніка. 2016. Вип. 13. Т. 24. № 4. С. 95–101.

Поступила 02.04.2018