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We consider some classes of Frechet spaces with integrable derivatives. Important 
compactness lemmas for nonreflexive spaces are obtained. Some main topological 
properties for the given spaces are obtained.  

Method of monotony and method of compactness represent fundamental ap-
proaches to study nonlinear differential-operator equations, evolutionary inclu-
sions and variational inequalities in Banach spaces. The general idea is the fol-
lowing: using the corresponding approximation scheme, the approximate 
solutions of a problem are constructed, for them the approaching a priori esti-
mates are established, at last they prove the existence of sequence of approximate 
solutions, that converges to the exact solution of problem. In many cases the 
aim is obtained by using both a method of compactness and a method of 
monotonicity. 

Now we introduce some constructions to prove the convergence of Faedo–
Galerkin method for a global solvability of differential-operational equations, in-
clusions and evolution variation inequalities with λw –pseudomonotone maps [1, 
2, 3, 4]. Moreover, we obtain a new theorems of compact embedding for Frechet 
spaces, suggested by researches of differential-operational inclusions in function 
spaces. 

For a pair of Banach spaces YX ,  the notation YX ⊂  further will mean the 
embedding both in the set-theory sense and in the topological sense. 

Let Y  be some Banach space; *Y  be its topologically conjugated space; I  
be some compact time interval. We consider the classes of functions defined on I  
and imagines in Y  (or in *Y ). 

The set );( YILp  of measured by Bochner functions (see [5]) as +∞≤≤ p1  
with the natural linear operations is a Banach space with the norm 
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As +∞=p  we have a Banach space );( YIL∞  with the norm 

 .)(maxess=);( Y
It

L tyYIy
∈∞

 

The next theorem proves that under the reflexivity or separability of Y  the 
conjugated to );( YILp , +∞≤ <1 p , *));(( YILp  may be identify with 

);( *YILq , 1=11 −− + qp . 

Theorem 1. (Rietz) If the space Y  is reflexive or separable and +∞≤ <1 p , 

then each element *));(( YILf p∈  gives the unique representation 

 );(everyfor)(),(=)( YILydttytyf pY
I

∈〉〈∫ ξ  

with the function );( *YILq∈ξ , 1=11 −− + qp . The correspondence ξ→f , 
*));(( YILf p∈  is linear and  

 .);(= **));(( YIf
qLYIpL

ξ  

Now let us consider the reflexive separable Banach space V  with the norm 
V⋅  and the Hilbert space )),(,( HH ⋅⋅  with the norm H⋅ , and let the next con-

ditions are valid: 

 
.:0>

,indenseis,
Vvvv

HVHV

VH ∈∀≤∃
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γγ
 (1) 

Under these assumptions we may consider the conjugated to H , *H , as a 
subspace *V  that is conjugated to V . As V  is reflexive then *H  is dense in *V  
and 
 ,*

** Hfff
HV

∈∀≤ γ  

where *V
⋅  is the norm in *V , *H

⋅  is the norm in *H . 

Further, we identify the spaces H  and *H . Then we obtain ∗⊂⊂ VHV  
with continuous and dense embedding. 

Definition 1. The triple of spaces ( *;; VHV ), that satisfies the latter condi-
tions is called the evolution triple.  

Let us note that under identification of H  with *H  and *H  with some sub-
space of *V , an element Hy∈  coincides with some *Vf y ∈  and =),( xy  

Vy xf 〉〈= ,  Vx∈∀ , where V⋅〉〈⋅,  is the canonical pairing between *V  and V . 

Since the element y  and yf  are identified then, under condition (1), the pairing 

V⋅〉〈⋅,  and the inner product on H  will be denoted the same notation ),( ⋅⋅ . 
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By the analogy with [7] we consider ip , ir , 1,2=i  such that ≤ip<1  

+∞≤≤ ir , +∞<ip . Let 1≥≥ ii rq  well-defined defined by =+ −− 11
ii qp  

1=11 −
′

− += ii rr  1,2=i∀ . Remark that 0=1/∞ . 
Now we consider some Banach spaces that play an important role in the in-

vestigation on differential-operator equations and evolution variation inequalities 
in non-reflexive Banach spaces. 

For evolution triples ( *;; ii VHV ) ( 1,2=i ) such that  

 HVVV and,spacestheindenseissetthe 2121 ∩   (2) 

and for some compact time interval we consider the functional Banach spaces  

 1,2=),;();(=)( * iHILVILIX
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for each Xy∈ . We remark that if +∞<ir  then the space )(IX i  is reflexive. 
Analogously, if +∞<},{max 21 rr , then the space )(IX  is reflexive. 

Following by [7] we identify )(* IX i , conjugated to )(IX i , with 
( ; ) ( ; )r p ii i

L I H L I V∩ , where );();(=)(* iipL
ir

LiX VIyHIyIy +  ∈∀ y  

)(* IXi∈  and )(* IX , conjugated to )(IX , with ∩∩ );();(
21

HILHIL rr  

);();( 2211
VILVIL pp ∩∩ , where ++ );();(=)( 21

* HIyHIyIy
rLrLX

 

)();();(
*

2211
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pLpL ∈∀++ . 

On )()( * IXIX ×  we denote the duality form by the rule: 

 ++〉〈 ∫∫ ττττττ dyfdyfyf H
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  *,))(),((= XXfdyf
I

∈∈∀∫ τττ ,  

where 22211211= fffff +++ , );(1 HILf
iri ′

∈ , );( *
2 iiqi VILf ∈ , 1,2=i . 

Let 21= VVV ∩ , )(VF  be a filter of all finite-dimensional subspaces from 
V . As V  is separable, there exists a countable monotone increasing system of 
subspaces )(}{ 1 VH ii F⊂≥  complete in V , and consequently in H . On nH  we 
consider inner product induced from H , that we denote again as ),( ⋅⋅ . Moreover 
let HHHP nn ⊂→:  be the operator of orthogonal projection from H  on nH : 

 .minarg=everyfor Hn

nnh
n hh

H
hPHh −

∈
∈  

Definition 2. We say that the triple ( )HVH ii ;;}{ 1≥  satisfies condition (γ ), 
if +∞

≥
<sup ),(

1
VVn

n
P L , i.e. there exists such 1≥C  that for every Vv∈  and 1n ≥   

 .VVn vCvP ≤  (3) 

Some constructions that satisfy the above condition were presented in [6]. 
Remark 1. It is easy to check that there exists such complete orthonormal in 

H  vector system Vh ii ⊂≥1}{  such that for every 1≥n  nH  is a linear capsule 

stretched on n
iih 1=}{ . Then condition )(γ  means that the system is a Schauder ba-

sis in the space V  (see [9], p.403). 

Remark 2. From the identification between *H  and H  it follows that *
nH  

and nH  are also identified. 
Remark 3. In virtue of ),( VVPn L∈  for every 1≥n  the conjugate operator 

),( *** VVPn L∈  and )*,*(
*

),( = VVnVVn PP LL . It is obvious that for every 

Hh∈  hPhP nn
*= . Hence, we identify nP  with its conjugate *

nP  for every 1≥n . 
Then, the condition )(γ  will mean that for every Vv∈  and 1≥n   

 .and ** VVnVVn vCvPvCvP ≤⋅≤  (4) 

Let us denote by S  a subset of a real line which can be presented as no more 
than numerable join of convex sets in R . We denote by Θ∈αα }{=)( ISBC  the 
family of all convex bounded sets from S , distinct from a point.  

Remark 4. Notice that )(= SΘΘ , i.e. the set of indexes depends on the set 
S . Further, Θ  will mean )(SΘ .  

Furthermore we set  

 { )}(||:= *loc
αα

α IXyVSyX I ∈Θ∈∀→ , 

where *
2

*
1

* = VVV + . In this space the local base of topology is the following: 
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where for every Θ∈α  and 0>ε : 
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Lemma 1 XB  is local base of some topology Xτ  in locX , which converts 
the given space in a separable locally convex linear topological space and, more-
over, 

a) Xτ  is compatible with the set of seminorms  

 loc
( on})=)({ XIX Θ∈⋅⋅ αααρ ; (5) 

b) a set locXE ⊂  is bounded only when Θ∈∀α  αρ  is bounded on E .  
Proof. We prove the system of seminorms Θ∈ααρ }{  divides points on 

locX . Let }0{\locXu∈ , then 0>)0)(|( ≠∈ tuStλ , where λ  is Lebesgue meas-
ure on R . Because of S  is a subset of a real line which can be presented as no 
more than numerable join of convex sets in R , we have :0 Θ∈∃α  

0>)
0

( αIXu . From here it follows 0>)(
0

uαρ , as it was to be shown. 

From [12, theorem 1.37] it follows, that the system of seminorms Θ∈ααρ }{  

generates some locally convex topology Xτ  on locX , which converts the given 
space in locally convex linear topological space, whose local base we obtain by 
final intersections of such sets:  

 { }0>,|}<)(|{=),( loc εαερε αα Θ∈∈ uXuIV . 

The statement b) follows from the same theorem. 
The lemma is proved.  
Let  

 { })(||:= ***
loc αα

α IXyVSyX I ∈Θ∈∀→ . 

In this space the local base of topology is the following:  
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where for every Θ∈α  and 0>ε :  
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Lemma 2. *X
B  is local base of some topology *X

τ  in *
locX , which con-

verts the given space in a separable locally convex linear topological space and, 
moreover, 
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a) *X
τ  is compatible with the set of seminorms  

 *
loc* on})(=)({ XIX Θ∈⋅⋅ α

α
αρ ; (6) 

b) a set *
locXE ⊂  is bounded only when Θ∈∀α  αρ  is bounded on E . 

Proof. As well as in lemma 1 it is enough to show that system of seminorms 

Θ∈ααρ }{  divides points on *
locX . Let }0{\*

locXu∈ , then ≠∈ )(|( tuStλ  

0>)0≠ . Because of S  is a subset of a real line which can be presented as no 
more than numerable join of convex sets in R , we have :0 Θ∈∃α  

0>)(
0

*
αI

u
X

. From here it follows 0>)(
0

uαρ , as it was to be shown. 

From [12, theorem 1.37] it follows, that the given system of seminorms 

Θ∈ααρ }{  generates some locally convex topology *X
τ  on *

locX , which converts 

the given space in locally convex linear topological space, whose local base we 
obtain by find intersections of such sets:  

  { }0>,|}<)(|{=),( *
loc εαερε αα Θ∈∈ uXuIV . 

The statement b) follows from same theorem. 
The lemma is proved. 

Remark 5. Let us note that for every )(SBCI ∈  the space )(* IX  is topo-

logically conjugated to )(IX , but *
locX  is not topologically conjugated to locX . 

For every 1≥n  and )(SBCI ∈  we consider the Banach spaces 

 )();(=)(),();(=)( *
0

*
0

IXHILIXIXHILIX npnnqn ⊂⊂ , 

where },{max=: 210 rrp , 1=1
0

1
0

−− + pq  with the natural norms. The space 
);(

0 nq HIL  is isometrically isomorphic to )(* IX n , the conjugate space of 
)(IX n , moreover, the map 

 ∫ ∫ 〉〈→∋×
I I

nXnHnn IxfdxfdxfxfIXIX )(,=))(),((=))(),((),()()( * ττττττ  

is the duality form on )()( * IXIX nn × . This statement is correct in virtue of 

 );();();();();();( 22112100
∗∗
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Let us point out that )(,=|,
)()( * InXIXIXI

nn
⋅〉〈⋅⋅〉〈⋅

×
. 

Let us also consider the space  

 { )}(||:=loc
αα

α IXyHSyX nInn ∈Θ∈∀→ , 
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which topology is compatible with the set of seminorms ,})({ Θ∈⋅ ααInX  and  

 { })(||:= **
loc αα

α IXyHSyX nInn ∈Θ∈∀→ , 

which topology is compatible with the set of seminorms .})({ * Θ∈⋅ α
αInX

  

Proposition 1. For every 1≥n  we have locloc = XPX nn , i.e. 

 { }.)(|)(= locloc XffPX nn ∈⋅⋅  

Moreover, if the triple ( )HVH ijj ;;}{ 1≥ , 1,2=i  satisfies the condition (γ ) with 

iCC = , then for each locXf ∈ , 1≥n  and )(SBCI ∈  it results in ≤)(IXn fP  

)(21 },{max IXfCC≤ . 

Proof. To prove this proposition we will use [7] (proposition 3). Now we 
consider the first part. 

“⊂ ” Let loc
nXx∈  be arbitrary fixed. Then for almost all St∈  

)(=)( txtxPn . Moreover, for every )(SBCI ∈  )()(| IXIXx nI ⊂∈ . Thus, 
locXPx n∈ . 

“⊃ ” Let locXPx n∈  be arbitrary fixed. Then for some locXy∈  
)(=)( txtyPn  for almost all St∈ . In virtue of [7](proposition 3) and the defini-

tion of locX  it follows that for every )(SBCI ∈  )(|=| IXyPx nInI ∈ . Thus, 
loc
nXx∈ . 

The second part of the given proposition is the direct corollary of [7] (propo-
sition 3). This completes the proof.  

Proposition 2. For every 1≥n  we have *
loc

*
loc = XPX nn , i.e. 

},)(|)({= *
loc

*
loc XyyPX nn ∈⋅⋅  and IIn yfyPf 〉〈〉〈 ,=,  )(SBCI ∈∀ , *

locXy∈ , 
loc
nXf ∈ . Furthermore, if the triple ( )HVH ijj ;;}{ 1≥ , 1,2=i  satisfies condition 

(γ ) with iCC = , then it results in )(},{max)( *21* IyCCIyP
XXn ≤  

)(SBCI ∈∀ , 1and*
loc ≥∈ nXy   

Proof. To prove this proposition we use [7] (proposition 4). Now we con-
sider the first part. 

“⊂ ” Let *
locnXf ∈  be arbitrary fixed. Then for almost all St∈  

)(=)( tftfPn . Moreover, for every )(SBCI ∈  )()(| ** IXIXf nI ⊂∈ . Thus, 
*
locXPf n∈ . 

“⊃ ” Let *
locXPf n∈  be arbitrary fixed. Then for some *

locXg∈  
( ) = ( )nP g t g t  for almost all t S∈ . In virtue of [7](proposition 4) and the defini-
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tion of *
locX  it follows that for every )(SBCI ∈  )(|=| * IXfPf nInI ∈ . Thus, 

*
locnXx∈ . 

The last statements of the proposition is direct corollary of [7] (proposi-
tion 4). 

Proposition is proved.  

Proposition 3 Under the condition +∞<},{max 21 rr , the set *
loc

1
n

n
X∪

≥

 is 

dense in *
locX . 

Proof. Arguing by contradiction, let us assume that for some *
locXf ∈  there 

is an open set from the base of topology of the locally convex linear topological 
space *

locX   
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is open in )(
0

*
αIX , due to [7](proposition 5) the set  
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and from (7) we obtain the contradiction. 
The proof is concluded.  
Now for an arbitrary )(SBCI ∈  we consider Banach space 

 )}(|)({=)( ** IXyIXyIW ∈′∈  
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with the norm  ,)(*)(*)( IXIXIW
yyy ′+=  where we mean the derivative y′  

of an element *)(IXy ∈  in the sense of the scalar distribution space 

));((=);( ***
wVIVI DLD , where *

wV  is equal to *V  with topology );( * VVσ  
[10]. 

Together with *)(IW  we consider the Banach space 

 1,2=)},(|);({=)(* iIXyVILyIW iipi ∈′∈ ,  

with the norm  

 ).();()(
*

)(* IWyyVIyIy iIXiipLiW
∈∀′+=  

Also we consider the space )()(=)( *
2

*
1

*
0 IWIWIW ∩  with the norm  

 )();();(=)(
*
0)(2211

*
0

IWyyVIyVIyIy IXpLpLW
∈∀′++ . 

Notice that the space )(* IW  is continuously embedded in )(* IWi  for 
0,2=i . 

Let us set  },|);();({= loc
2

loc
21

loc
1

*
loc0 XyVSLVSLyW pp ∈′∩∈  where the 

derivative y′  of an element );();( 2
loc

21
loc

1
VSLVSLy pp ∩∈  is regarded in the sense 

of space of distributions );( ** VSD  and in this space a subbase of topology σ  is 
assigned through the following sets:  

 
⎩
⎨
⎧

⎩
⎨
⎧

++∈ );();(=),(=
2211

*
loc0 VIuVIuWuU

pLpL αα
εαC  

 }
⎭⎬
⎫Θ∈′+ 0>,<)( εαε

αIXu .  

Lemma 3. C  is a subbase of some topology σ  in *
loc0W , which turns the 

given space into separable locally convex linear topological space and, moreover: 
a) σ  is compatible with the set of seminorms  

 Θ∈′++ αααααρ }));();(=)({ (2211
IXpLpL uVIuVIuu , 

divides points on *
loc0W ; 

b) a set *
loc0WE ⊂  is bounded only when for every Θ∈α  αρ  is bounded 

on E . 
Proof. As well as in lemma 1 it is enough to show that system of 

seminorms Θ∈ααρ }{  divides points on *
loc0W . Let }0{\*

loc0Wu∈ , then 

0>)0)(|( ≠∈ tuStλ . Because of S  is a subset of a real line which can be 
presented as no more than numerable join of convex sets in R , we have 
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Θ∈∃ 0α : 0>)(
0

*
0 αI

u
W

. From here it follows 0>)(
0

uαρ , as it was to be 

shown. 
From [12, theorem 1.37] it follows that the system of seminorms Θ∈ααρ }{  

generates some locally convex topology σ  on *
loc0W , which converts the given 

space in locally convex linear topological space, whose local base we obtain by 
final intersections of such sets:  

  { }0>,|}<)(|{=),( *
loc0 εαερε αα Θ∈∈ uWuIV . 

The statement b) follows from the same theorem. 
The lemma is proved. 
For a subset of a real line S  which can be presented as no more than 

numerable join of convex sets in R , distinct from a point, let us denote by 
∆∈αα }{=)( ISBCC  the family of all convex compact sets from S , distinct from a 

point. We notice that the family of all subset of a real line S  which can be 
presented as no more than numerable join of convex sets in R , distinct from a 
point, coincides with the family of all subset of a real line S  which can be 
presented as no more than numerable join of convex compact sets in R , distinct 
from a point. 

Let us also consider the space  

 { )};(||:=);(loc HICyHSyHSC I αα
α ∈∆∈∀→  

which topology is compatible with the set of seminorms ∆∈⋅ αα
});{ ( HIC . 

Theorem 2. It results in );(loc*
loc0 HSCW ⊂  with continuous embedding. 

Moreover, for every *
0, Wy ∈ξ  and Sts ∈, : ts <  and )(),( SBCts ∈ , the next 

formula of integration by parts takes place  

 .))}(),(())(),({(=))(),(())(),(( ττξττξτξξ dyyssytty
t

s

′+′− ∫  (8) 

In particular, when ξ=y  we have: 

 τττ dyysyty
t

s
HH ))(),((=))()((

2
1 22 ′− ∫ . 

Proof. At first let us prove the embedding );(loc*
loc0 HSCW ⊂  in the sense 

of the set theory. Let *
loc0Wy∈  be fixed. Then for every St∈ , due to the set S  

can be presented as no more than numerable join of convex compact sets in R , 
distinct from a point, there is )(SBCCI ∈  such that It ∈ . Moreover, we can 
consider that t  is an interior point of I  in the space |)|,( ⋅S . Hence, due to the 

definition of *
loc0W  and [7, theorem 5] it follows that );()(| *

0 HICIWy I ⊂∈ . 
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Thus the function HSy →:  is continuous in the point t . The necessary 
statement follows from the arbitrary of St∈ . 

Now let us prove the continuous embedding );(loc*
loc0 HSCW ⊂ . Since the 

set S  can be presented as no more than numerable join of convex compact sets in 
R , distinct from a point, there exists ∆⊂Ξ  ( 0card ℵ≤Ξ ) such that SI =α

α
∪
Ξ∈

. 

So, it is enough to show that for every Ξ∈α  there is a continuous seminorm 
R→);(: loc HSCαµ  and a constant 0>αC  such that 

 *
loc0*

0
)()( WuuCIy

W
∈∀≤ αα

α
µ . 

This fact follows from [7](theorem 5) because of for every Ξ∈α  )(SBCCI ∈α . 
At last we obtain formula (8) by using [7] (theorem 5) with ],[ tsS = . 
The theorem is proved. 

Let us consider the space },|{= loc**
loc XyXyW loc ∈′∈  which topology is 

compatible with the set of seminorms Θ∈⋅ α
α

})({ * IW
. 

In virtue of *
loc0

*
loc WW ⊂  with continuous embedding and due to the latter 

theorem the next statement is true. 

Corollary 1. );(loc*
loc HSCW ⊂  with continuous embedding. Moreover, for 

every *
0, Wy ∈ξ  and Sts ∈, : ts <  and )(),( SBCts ∈ , formula (8) takes place. 

For every 1n ≥  and ( )I BC S∈  let us introduce the Banach space 

 { })(|)(=)( ** IXyIXyIW nnn ∈′∈  

with the norm  ,)()(=)( ** IyIyIy
nXnXnW

′+  where the derivative y′  is 

considered in sense of scalar distributions space );(*
nHID  and the space   

 }|{= loc*
loc

*
loc nnn XyXyW ∈′∈ , 

which topology is compatible with the set of seminorms Θ∈⋅ α
α

})({ * InW
. 

As far as );(=));(());((=);( **** VSVSHSHS nn DDLDLD ω⊂  it is 

possible to consider the derivative of an element )(* SXy n∈  in the sense of 

);( ** VSD . Notice that for every 1≥n  *
loc

*
loc1

*
loc WWW nn ⊂⊂ + . 

Proposition 4. For every *
locXy∈  and 1≥n  it results in )(= ′′ yPyP nn , 

where we mean the derivative of an element of *
locX  in the sense of the scalar 

distributions space );( ** VSD . 
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Remark 6. We point out that in virtue of the previous assumptions the de-
rivatives of an element of *

locnX  in the sense of );( *VSD  and in the sense of 
);( nHSD  coincide. 

Proof. It is sufficient to show that for every )(SD∈ϕ  )()(=)( ϕϕ ′′ yPyP nn . 

In virtue of definition of derivative in sense of );( ** VSD  we have  

 =)()(=)(=)()( ττϕτϕϕϕ dyPyPyPSD
S

nnn ′−′−′∈∀ ∫  

 ).()(=))((=)()(= ϕϕττϕτ ′′−′−∫ yPyPdyP nnn
S

 

The proposition is proved.  
From the propositions 2, 1, 4 it follows the next 
Proposition 5. For every 1≥n  *

loc
*
loc = WPW nn , i.e. 

 }.)(|)({= *
loc

*
loc lnn WyyPW ∈⋅⋅  

Moreover, if the triple ( )HVH jii ;;}{ 1≥ , 1,2=j  satisfies condition (γ ) with 

jCC = , then for every *
locWy∈ , 1≥n  and Θ∈α  it results in 

)()(},{max)()( *21*
αα IyCCIyP

WWn ⋅≤⋅ . 

Theorem 3. Let the triple ( )HVH jii ;;}{ 1≥ , 1,2=j  satisfy condition (γ ) 

with jCC = . Moreover, let *
locXD ⊂  be bounded in *

locX  set and locXE ⊂  
bounded in locX . For every 1≥n  let us consider { ∈= nn yD :  

} *
loc

*
loc and | nnnnn WEPyDyX ⊂∈′∈∈  Then for each Θ∈α , 1≥n  and 

nn Dy ∈   

 ,)(*
αα

α
++ ⋅+≤ ECDIy

Wn  (9) 

where },{max= 21 CCC , )(sup= *
α

α
IyD

XDy∈
+  and )sup= ( α

α
IX

Ef
fE

∈
+ , i.e. 

the set  
 *

loc
1

inboundedis WDn
n
∪
≥

  

and, consequently, bounded in );(loc HSC . 

Remark 7. Due to proposition 1 nD  is well-defined and *
locnn WD ⊂ . 

Remark 8. A priori estimates (like (9)) appear at studying of global solvabil-
ity of differential–operator equations, inclusions and evolutional variational ine-
qualities in nonreflexive Banach and Frechet spaces with maps of λw -
pseudomonotone type by using Faedo–Galerkin method (see [1, 2]) at boundary 
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transition, when it is necessary to obtain a priori estimates of approximate solu-
tions ny  in *

locX  and its derivatives ny′  in locX . 
Proof. The assertion of the theorem is immediate consequence of the ine-

quality  

 ≤+∈Θ∈≥∀ ))(=)(,1, (
'

** ααα
α IXnXnWnnn yIyIyDyn  

 ,},{max 21
αααα
++++ +≤+≤ ECCDEPD n  

that is valid in virtue of proposition 1. 
Further, let 0B , 1B , 2B  be some Banach spaces such that  

 embeddingcompactwith,reflexiveare, 1020 BBBB ⊂  (10) 

 embeddingcontinuouswith210 BBB ⊂⊂  (11) 

)[1;, 10 ∞+∈pp  be arbitrary numbers. For every )(SBC∈α  we consider the set 
with the natural operations )};(|);({=)( 2100

BILvBILvIW pp ααα ∈′∈ , where 

the derivative v′  of an element );( 00
BILv p α∈  is considered in the sense of the 

scalar distribution space );( 2BIαD . It is obvious that ).;()( 00
BILIW p αα ⊂  Let 

us also consider the set 

 )};(|);({= 2
loc

10
loc

0
loc BSLyBSLyW pp ∈′∈ . 

It is clear, that ).;( 0
loc

0
loc BSLW p⊂   

Theorem 4. locW  with the natural operations, which is topologically com-
patible with set of seminorms Θ∈⋅⋅ αααρ })=)({ (IW  is a Frechet space. 

Proof. Since the set S  can be presented as no more than numerable join of 
convex sets in R  there exists Θ⊂Ξ  ( 0card ℵ≤Ξ ) such that  

 α
α

IS ∪
Ξ∈

= . 

Thus, as well as in lemma 3, we can prove that the no more than numerable 
system of seminorms Ξ∈⋅ ααρ )}({  divides points on locW . Thus, the families of 
seminorms Ξ∈⋅ ααρ )}({  and Θ∈⋅ ααρ )}({  are equivalent and the locally convex 

linear topological space ( )Ξ∈⋅ ααρ )}({,locW  is metrizable. 

Now let us prove that the metrizable space locW  is complete. Let us consider 
a Cauchy sequence loc

1}{ Wy nn ⊂≥ ; without loss of generality we can assume 
that for every Ξ∈βα , : βα ≠  it follows that ∅∩ =βα II . We also consider 

 ...}.<<<...<<{= 121 +Ξ nn αααα  



P. Kasyanov, V. Mel'nik  , A.-M. Piccirillo 

ISSN 1681–6048 System Research & Information Technologies, 2007, № 4 106

)1i  Because of loc
1}{ Wy nn ⊂≥  is a Cauchy sequence also 

11
|

≥⎭⎬
⎫

⎩⎨
⎧

n
Iny
α

 is a 

Cauchy sequence in )(
1α

IW . Thus in virtue of [7] (theorem 8) there is a subse-

quence 11, }{ ≥nnv  of 1}{ ≥nny  that converges in )(
1α

IW  to some )(
11 αIWx ∈ ; 

2 )i  analogously to )1i , due to loc
11, }{ Wv nn ⊂≥  is a Cauchy sequence the 

same follows for 
12

1, |
≥⎭⎬

⎫
⎩⎨
⎧

n
Inv
α

 in )(
2α

IW . Thus there is a subsequence 

12, }{ ≥nnv  of 11, }{ ≥nnv  that converges in )(
2α

IW  to some )(
22 αIWx ∈ ; 

)mi  due to loc
1, }{ Wv nnm ⊂≥  is a Cauchy sequence the same follows for 

1
, |

≥⎭⎬
⎫

⎩⎨
⎧

nm
Inmv
α

 in ( )
m

W Iα . Thus there is a subsequence 1, 1{ }m n nv + ≥  of , 1{ }m n nv ≥  

that converges in ( )
m

W Iα  to some ( )m m
x W Iα∈  . 

Thanks to 1 2), ),i i … , using the diagonal Cantor method, we can choose a 
subsequence 1 , 1{ } = { }n k n n nk

y v≥ ≥  from 1{ }n ny ≥  that converges in ( )
m

W Iα  to 

)(
mm IWx α∈  for every 1≥m . 

By setting )(=)( txty m , 
m

It α∈ , 1≥m  we obtain that for every Ξ∈α  

0)( →− yy
knαρ  as ∞→k . 

To conclude the proof we remark that locWy∈  in virtue of the definition 
locW  and the condition: Ξ∈∀ βα , : βα ≠  it follows that ∅∩ =βα II . 

The theorem is proved.  
Analogously with the proof of theorem 4 we can obtain the next: 
Theorem 5. The set *

locW  (respectively *
lociW , 0,2=i ) with the natural op-

erations, which topology is compatible with the set of seminorms Θ∈⋅ α
α

})({ * IW
 

(respectively Θ∈⋅ α
α

})({ * IiW
, 0,2=i ) is a Frechet space. 

Theorem 6. Under conditions (10)–(11), we have );( 2
locloc BSCW ⊂  with 

the continuous embedding. 

Proof. At first let us prove the embedding );( 2
locloc BSCW ⊂  in the sense 

of the set theory. Let locWy∈  be fixed. Then for every St∈ , since the set S  can 
be presented as no more than numerable join of convex compact sets in R , dis-
tinct from a point, there is )(SBCCI ∈  such that It ∈ . Moreover, we can con-
sider that t  is an interior point of I  in the space |)|,( ⋅S . Hence, due to the defini-

tion of locW  and [7, theorem 5] it follows that );()(| 2BICIWy I ⊂∈ . Thus the 
function 2: BSy →  is continuous in the point t . 
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Now let us prove the continuous embedding );( 2
locloc BSCW ⊂ . Since the 

set S  can be presented as no more than numerable join of convex compact sets in 
R , distinct from a point, there exists ∆⊂Ξ  ( 0card ℵ≤Ξ ) such that SI =α

α
∪
Ξ∈

. 

So, it is enough to show that for every Ξ∈α  there is a continuous seminorm 
R→);(: 2

loc BSCαµ  and a constant 0>αC  such that 

 loc
*
0

)()( WuuCIy
W

∈∀≤ αα
α

µ . 

In fact for every Ξ∈α  )(SBCCI ∈α . Thus the above inequality is true in virtue 
of [7, theorem 9]. 

The theorem is proved. 
The next result represents a generalization of the classical compactness 

lemma [11] (theorem 1.5.1, p.70) into the case )[1;, 10 +∞∈pp . 
Theorem 7. [7, theorem 10] Under conditions (10)–(11), for every 

)[1;, 10 +∞∈pp  the Banach space W  is compactly embedded in );( 10
BSLp .  

The proof follows from the next lemmas:  
Lemma 4. [7, lemma 3] For every Wy∈  and R∈h  it results in 

,);();( 2121 BSyhBSyy LLh ′≤−  where 
⎩
⎨
⎧ ∈++

.otherwice,0
,),(

=)(
Shifthty

tyh  

Lemma 5. [7, theorem 7] Let conditions (10)–(11) for 210 ,, BBB  are valid, 
)[1;, 10 +∞∈pp , S  a finite time interval and );( 01

BSLK p⊂  such that  

);;(inboundedis) 01
BSLKa p  

b) for all 0>ε  there exists 0>δ  such that from δ<<0 h  it results in  

 Kudphuu B
S

∈∀+−∫ ετττ <)()( 0
2

. 

Then K  is precompact in );(}; 110{min BSpL p . 

Furthermore, if for some 1>q  K  is bounded in );( 1BSLq , then K  is pre-

compact in );( 1BSLp  for every )[1,qp∈ . 

Lemma 6. [7, corollary 2] Let assumptions (10)–(11) for the Banach spaces 

0B , 1B  and 2B  are valid, ][1;1 +∞∈p , ][0,TS =  and the set );(
1

VSLK p⊂  

such that 
a) K  is precompact set in );( 21

BSLp ; 

b) K  is bounded set in );( 01
BSLp . 

Then K  is precompact set in );( 11
BSLp . 
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The next result is a generalization of the compactness lemma [8] (theorem 2) 
into the case )[1;, 10 +∞∈pp .  

Theorem 8. Under above assumptions, the embedding locW  in );( 1
loc

0
BSLp  

is compact, that is, an arbitrary bounded in locW  set is precompact in );( 1
loc

0
BSLp . 

Proof. Arguing by contradiction, let loc
1}{ Wy nn ⊂≥  be bounded in locW  

sequence that has no any accumulation point in );( 1
loc

0
BSLp . From [12, theorem 

1.37] it follows, that for every convex bounded set SS ⊂α   

 +∞⎟
⎠
⎞

⎜
⎝
⎛ ′+

≥
<);();(sup

21001
BSyBSy

pLnpLn
n αα

. (12) 

As on real line the arbitrary convex set can be presented as join no more, 
than numerable number of bounded convex sets. Without loss of generality we 
suppose α

α
SS ∪

Ξ∈

= , where αS  is bounded convex set in R  Ξ∈∀α  and 

0card ℵ≤Ξ . Further we consider only those Ξ∈α  for which 0>)( αλ S . 

Let it be 1}{= ≥Ξ nnα , then: 

1)i  from (12) and theorem 7 about compactness we obtain there is a subse-

quence 1, 1{ }n nv ≥  of 1{ }n ny ≥ , that is fundamental in the space 10 1
( ; )pL S Bα ; 

2 )i  analogously to 1)i , from (12) and theorem 7 about compactness it fol-

lows, there exists 2, 1 1, 1{ } { }n n n nv v≥ ≥⊂  that is fundamental in 10 2
( ; )pL S Bα ; 

)mi  from (12) and theorem 7 about compactness it follows, there exists 

11,1, }{}{ ≥−≥ ⊂ nnmnnm vv , that is fundamental in );( 10
BSL

mp α ; 

Thanks to …),), 21 ii , using the diagonal Cantor method, we can choose a 
subsequence 1,1 }{=}{ ≥≥ nnnkkn vy  from 1}{ ≥nny  that is fundamental in 

);( 1
loc

0
BSLp . This is a contradiction. 

The theorem is proved.  
By the analogy with the last theorem, due to the lemma 6, we can obtain the 

next: 
Theorem 9. Let assumptions (10)–(11) for the Banach spaces 0B , 1B  and 

2B  are valid, )[1;1 +∞∈p , ][0,= TS  and the set );(loc
1

VSLK p⊂  such that 

a) K  is precompact set in );( 2
loc

1
BSLp ; 

b) K  is bounded set in );( 0
loc

1
BSLp . 
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Then K  is precompact set in );( 1
loc

1
BSLp .  

Now we combine all results to obtain the necessary a priori estimates. 
Theorem 10. Let all conditions of theorem 3 are satisfied and HV ⊂  with 

compact embedding. Then estimate (9) is true and the set  

 );(inprecompactand);(inboundedis locloc

1
HSLHSCD pn

n
∪
≥

 

for every 1≥p . 
Proof. Estimation (9) follows from theorem 3. Now we apply the com-

pactness theorem 8 with 1=1,=,=,=,= 10
*

210 ppVBHBVB . Notice that 

);(loc
1

*
loc VSLX ⊂  and );( *

1
loc VSLX ⊂  with continuous embedding. Hence, the 

set  

 );(inprecompactis loc
1

1
HSLDn

n
∪
≥

. 

In virtue of (9) and of theorem 2 on continuous embedding *
locW  in 

);(loc HSC  it follows that the set  

 );(inboundedis loc

1
HSCDn

n
∪
≥

. 

Further, we complete the proof by using standard conclusions, Lebesgue 
theorem and the diagonal Cantor method. 
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