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We consider some classes of Frechet spaces with integrable derivatives. Important
compactness lemmas for nonreflexive spaces are obtained. Some main topological
properties for the given spaces are obtained.

Method of monotony and method of compactness represent fundamental ap-
proaches to study nonlinear differential-operator equations, evolutionary inclu-
sions and variational inequalities in Banach spaces. The general idea is the fol-
lowing: using the corresponding approximation scheme, the approximate
solutions of a problem are constructed, for them the approaching a priori esti-
mates are established, at last they prove the existence of sequence of approximate
solutions, that converges to the exact solution of problem. In many cases the
aim is obtained by using both a method of compactness and a method of
monotonicity.

Now we introduce some constructions to prove the convergence of Faedo—
Galerkin method for a global solvability of differential-operational equations, in-
clusions and evolution variation inequalities with w,; —pseudomonotone maps [1,
2, 3, 4]. Moreover, we obtain a new theorems of compact embedding for Frechet
spaces, suggested by researches of differential-operational inclusions in function
spaces.

For a pair of Banach spaces X,Y the notation X — Y further will mean the
embedding both in the set-theory sense and in the topological sense.

Let Y be some Banach space; Y * be its topologically conjugated space; [/
be some compact time interval. We consider the classes of functions defined on /

and imagines in Y (or in Y’ ).
The set L,(/;Y) of measured by Bochner functions (see [5]) as 1< p <+o0

with the natural linear operations is a Banach space with the norm
1/p
HyHLp([;Y) = [}f\y(f)HWfJ :
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As p =+ we have a Banach space L, (/;Y) with the norm

Il (7:y) = essmax [y
tel

The next theorem proves that under the reflexivity or separability of ¥ the
conjugated to L,(;Y), 1<p<+wo, (L,(L;Y ))* may be identify with
v* -1 -1 _
LY ), p +q =1
Theorem 1. (Rietz) If the space Y is reflexive or separable and 1< p < 400,

then each element f e (L,(/;Y ))* gives the unique representation

fG)= [, y@)ydt for every yeL,(I;¥)
1

with the function e, (];Y*), p_1 + q_1 =1. The correspondence f — ¢,
fel,; Y))* is linear and

M’(LP(I;Y))* :MHLq(I;Y*)'

Now let us consider the reflexive separable Banach space V' with the norm
|I-|l,; and the Hilbert space (H,(-,)y ) with the norm ||-|| , and let the next con-
ditions are valid:

VcH, V is dense in H,

(1)
Ay >0:|vlg <AV, Vvel.

Under these assumptions we may consider the conjugated to H , H ", asa

subspace V" that is conjugated to V. As V is reflexive then H " is dense in V"
and

e <A "
Wl e <A WfeH",
where ||||V* is the normin ¥~ H||H* is the norm in 4" .
Further, we identify the spaces H and H * . Then we obtain V¥ c H < V*

with continuous and dense embedding.

Definition 1. The triple of spaces (V;H ;V*), that satisfies the latter condi-
tions is called the evolution triple.

Let us note that under identification of H with #~ and H~ with some sub-
space of V", an element yeH coincides with some f) eV’ and (y,x)=
=(f,,X)y VxeV, where (), is the canonical pairing between V' and V.
Since the element y and f, are identified then, under condition (1), the pairing

(-»)y and the inner product on A will be denoted the same notation (-,").
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By the analogy with [7] we consider p;, r;, i=1,2 such that 1<p; <
<r<+0, p; <+o. Let g, 2r; 21 well-defined defined by p{l + qfl =

= rfl + r,-r_l =1 Vi=1,2. Remark that 1/o0o=0.

Now we consider some Banach spaces that play an important role in the in-
vestigation on differential-operator equations and evolution variation inequalities
in non-reflexive Banach spaces.

For evolution triples (V;; H; Vl* ) (i =1,2) such that
the set V; NV, is dense in the spaces V;,, and H )
and for some compact time interval we consider the functional Banach spaces
X;() =L, (LV;)+L, (I;H), i=12
with norms

||J/||Xl.([) :mf{max{nylHLqi(I;Vi*);Hyz”Lri/([;H) Hlyre

€Ly, (V). ys e L (ILH).y =y + 13},

for all yeX;(), and X(I)=L, (I;V1*)+Lq2(I;V2*)+L,,2 (LH)+L, (I;H)
with

IVllx :inf{rl_rzllaéi {y””Lq,(I;V[*); ||y2i||Lrl_,(];H) fvi €Ly, (17},
> i

Vai €L, (LH), i=12; y = y11 + y1a + y21 + o2 »

for each y € X . We remark that if 7; <+oo then the space X;(/) is reflexive.

Analogously, if max {r;,r,} <+oo, then the space X (/) is reflexive.
Following by [7] we identify X ; (I), conjugated to X,;(/), with
L (LH)NL, (I}V}), where HyHXj(]) :HyHLri(];H) +HyHLpl~(1;Vi) Vye

eX;(I) and X'(I), conjugated to X(I), with L, (I;H)NL, (I;H)N
AL, (L)AL, (I;V3), where HyHX*(I):HyHLrI(I;H)+||y||Lr2(1;H)+

+H)’HLP1 (I} +HyHLp2(1;V2) VyeX (I).
On X(I)xX : (1) we denote the duality form by the rule:

o)1 = [ @, y@) g dr + [(fi2(2), (@) g dr +
1 1

[ @y @)y e+ [ (@), (@D, dr =
1 1
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= [ @ @)dr vfeX,eX',
1

where f=fi1 + fio + S + foas S €L, (ILH), fo ELqi(I;Vi*)a i=12.

Let V=V, nV,, F(V) be a filter of all finite-dimensional subspaces from
V. As V is separable, there exists a countable monotone increasing system of
subspaces {H;};5; < F (V) complete in V', and consequently in /. On H, we
consider inner product induced from H , that we denote again as (-,-) . Moreover

let P,: H — H, < H be the operator of orthogonal projection from A on H, :
for every heH Pnh:argmin ||h_hn||H
h,eH,

Definition 2. We say that the triple ({H VsV H ) satisfies condition (7 ),

if sup||P, ||z ) <+o0, i.e. there exists such C >1 that for every veV and n2>1
nl1

12Vl <Clvlly- )

Some constructions that satisfy the above condition were presented in [6].
Remark 1. It is easy to check that there exists such complete orthonormal in
H vector system {A;},,; €V such that for every n>1 H, is a linear capsule

stretched on {%;}}_;. Then condition (y) means that the system is a Schauder ba-
sis in the space V' (see [9], p.403).

Remark 2. From the identification between H  and H it follows that H
and H, are also identified.

Remark 3. In virtue of P, € L(V,V) for every n>1 the conjugate operator
P, eL(V V) and 1Pl vy = ||P:HL(V*,V*) . It is obvious that for every
heH Ph= Pn*h . Hence, we identify P, with its conjugate Pn* forevery n>1.
Then, the condition (y) will mean that for every veV and n >1

1Bvlly <C-|[vlly and [Pyl + <Clv][ ». (4)

Let us denote by S a subset of a real line which can be presented as no more
than numerable join of convex sets in R. We denote by BC(S)=1{[,},co the
family of all convex bounded sets from §, distinct from a point.

Remark 4. Notice that ® = ©(S), i.e. the set of indexes depends on the set
S . Further, ® will mean ®O(S).

Furthermore we set

XIOC:{)/:S_)V*|VC(E® y|[a6X(Ia)}a

where V" = Vl* + Vz* . In this space the local base of topology is the following:
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BX ::{ﬂV(ak:gk)‘gk >Oa ay E@, kzl’n’ I’lZl},
k=1

where for every ¢ €® and ¢ >0:
Vo =fue Xigllul -, | <ef.
o

Lemma 1 B, is local base of some topology 7, in X', which converts

the given space in a separable locally convex linear topological space and, more-
over,
a) 7y is compatible with the set of seminorms

{pa('):H'Hx([a)}ae@ on XIOC; (5)

b) aset E< X' is bounded only when Va € ® p,, is bounded on E .
Proof. We prove the system of seminorms {p,},.e divides points on
X' Let ue X'\ {0}, then A(teS|u(t)=0)>0, where A is Lebesgue meas-

ure on R . Because of S is a subset of a real line which can be presented as no
more than numerable join of convex sets in R, we have FJa,e0:

||u||X(]a0) > 0. From here it follows p, (1) >0, as it was to be shown.

From [12, theorem 1.37] it follows, that the system of seminorms {p, } o

generates some locally convex topology 7, on X loc " which converts the given
space in locally convex linear topological space, whose local base we obtain by
final intersections of such sets:

{V(Ia,g)={u e X |p,(u)<e}|acO, g>o}.

The statement b) follows from the same theorem.
The lemma is proved.
Let

Xy ={y:S—>V* IVae® y ,an*(Ia)}.

In this space the local base of topology is the following:

n
BX*::{]QV(ak’gk)‘gk >O, ay e@, k=1,n, nZl}

where for every ¢ € ® and ¢ > 0:
Ve =fue Xiellul -, | <ef.
a

Lemma 2. B e is local base of some topology 7 in X l*oc , which con-

verts the given space in a separable locally convex linear topological space and,
moreover,
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a) 7 is compatible with the set of seminorms
{pa('):H'HX*(I )}ae® on Xloc; (6)
o

b)aset Ec X, is bounded only when Vo €® p,, is bounded on E .

Proof. As well as in lemma 1 it is enough to show that system of seminorms
{Py}yeo divides points on Xp.. Let ue X, \{0}, then A(reS|u(t)#
¢6) >0. Because of S is a subset of a real line which can be presented as no

more than numerable join of convex sets in R, we have Jg,e€0:

X(Iy)

From [12, theorem 1.37] it follows, that the given system of seminorms

[|u| > 0. From here it follows p, (1) >0, as it was to be shown.
{P,}aco generates some locally convex topology 7+ on X l*oc, which converts
the given space in locally convex linear topological space, whose local base we
obtain by find intersections of such sets:

{V(Ia,5)={ueXl*oc | p, W) <&} ae®, g>o}.

The statement b) follows from same theorem.
The lemma is proved.

Remark 5. Let us note that for every 7 € BC(S) the space X*(I) is topo-

logically conjugated to X(/), but X I*OC is not topologically conjugated to X loc.
For every n>1 and I € BC(S) we consider the Banach spaces

X, (=L, (LH,)cX(I), X,()=L, (IH,)cX (I),

where p, :=max{r,r}, g5 +po' =1 with the natural norms. The space
Ly (3H,) is isometrically isomorphic to X, (/), the conjugate space of

X, (I), moreover, the map

X, (DX X1 (D5 (£:0) > [ (f @ 3@, dr = [ (f@.x@)dr =(f,3) (1)
1 I

is the duality formon X, (/) x X : (1) . This statement is correct in virtue of

Ly (LH,) Ly (LH)YC L, (ILH)+ L, (I,H)+ L, L)+ L, V).

rl ’ V2 ’

Let us point out that (-,-); |Xn([)xX;(1)= <"'>X,1(1) .
Let us also consider the space

X :{y:S—>Hn | Vae® yl, eX,(Uy)}

98 ISSN 1681-6048 System Research & Information Technologies, 2007, Ne 4



On some approximations and main topological descriptions for special classes of Frechet spaces ...

which topology is compatible with the set of seminorms {||-[| (I )} aco» and
n\a

*

X =l:S>H, | Vaec® yl, eXi(,)},

which topology is compatible with the set of seminorms {||- HX* (I )} 2cO-
n\-a

Proposition 1. For every n>1 we have X =P X' je.

X1 =1, fO1 f O X"
Moreover, if the triple ({H Vi H ), i=1,2 satisfies the condition (¥ ) with
C = C;, then for each f'e X, n>1 and [ € BC(S) it results in [|B, f]| y (/) <
<max {Cy, Co | fllxr-

Proof. To prove this proposition we will use [7] (proposition 3). Now we
consider the first part.

“c” Let xeX! be arbitrary fixed. Then for almost all teS
P, x(t) = x(t). Moreover, for every [e BC(S) x|;e X,(I)c X(I). Thus,
xeP, X",

(13

S” Let xeP,X'" be arbitrary fixed. Then for some ye X'
P,y(t) = x(¢t) for almost all # €S . In virtue of [7](proposition 3) and the defini-

tion of X' it follows that for every I e BC(S) x|;=P,y|,€X,(I). Thus,

xeXxle

The second part of the given proposition is the direct corollary of [7] (propo-
sition 3). This completes the proof.
nioc = Py X o> 1e.
Xooe =Py YO € Xige}s and (f,Py); =(f3); YI€BC(S), ye X,
feX ,lloc. Furthermore, if the triple ({H Vi H ), i=1,2 satisfies condition

Proposition 2. For every n>1 we have X

(y) with C=C;, then it results in HP”yHX*(I) Smax{Cl,Cz}HyHX*(])

VIeBC(S), ye X, and n>1

Proof. To prove this proposition we use [7] (proposition 4). Now we con-
sider the first part.

“c” Let feX :loc be arbitrary fixed. Then for almost all reS
P, f(t) = f(t). Moreover, for every 1€ BC(S) f|;eX,(I)c X (I). Thus,
S ePXige.

“D” Let feP X 1*oc be arbitrary fixed. Then for some geX 1*0c
P g(t)=g(t) for almost all ¢ € S. In virtue of [7](proposition 4) and the defini-

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2007, Ne 4 99



P. Kasyanov, |V. Mel'nik|, A.-M. Piccirillo

tion of Xl*oc it follows that for every [ € BC(S) f|1=Pnf|,eX:(I). Thus,
xeX,

nloc*

The last statements of the proposition is direct corollary of [7] (proposi-
tion 4).
Proposition is proved.

Proposition 3 Under the condition max{r,r,} <+, the set UX S e IS

n>1

nloc

. sk
dense in X, .

Proof. Arguing by contradiction, let us assume that for some f e X f;c there
is an open set from the base of topology of the locally convex linear topological

*
space X,

0= ﬂV(akagk)a
k=1

where n2>1 ¢, >0, o, €0, k=1,n,
Ve =fueXig llul oy ) <ef. ace. o0
a

such that

(UX;HOC]HWO) =Q.

n>1

Thus

[UXZIOCJﬂ(fm) :[UXZIOCJﬂ(fwmo,so))=®, (7)

n>1 n>1

1
where €y =—min &; >0, ¢ €O®R):BC(R)> ]‘20 o U ]ak . Because of the
n k=1,n k=1.n

set

(f+ V(a()ago))hao = {f \lao +t8 |1a0 lg e V(amgo)}

is open in X *(I ag ), due to [7](proposition 5) the set

U(X:loc |Iao j= UX:(IQO) is dense in [X*(Ia())’ \-HX*(I(IO)J

n>1 n>1

and from (7) we obtain the contradiction.
The proof is concluded.
Now for an arbitrary / € BC(S) we consider Banach space

Wi ={yeX (D|y X))}
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+['ll x(ry» where we mean the derivative )’

with the norm  ||y|| =]yl

W X"

of an element ye X (1)* in the sense of the scalar distribution space

D (Z; V*) =L(D{); V;) , wWhere V‘: is equal to V" with topology O'(V* V)
[10].
Together with W (1 )* we consider the Banach space

Wi (D ={yel, (V) e XD}, i=12,
with the norm
Wl gy =1, 17y + 15y Yy W @,
Also we consider the space WO* (I)=W, (I) "W, (I) with the norm
Wz cry =0, iy * W, gy + 1 Iy Wy eWo (.

Notice that the space w" (/) 1is continuously embedded in Wl»*(l) for
i=02.
Let us set Woyo, :{yeLlslc(S;Vl)le;; (S;V,)y' € X'°°y,  where  the

derivative y" of an element y e LI;’IC (S;7) N LI;’; (S;V,) is regarded in the sense

of space of distributions D*(S;¥") and in this space a subbase of topology o is
assigned through the following sets:

C= {U(a,e) = {u e Wyie

ll., @m0l 2,)

g,y < ellaco.e> o} .

Lemma 3. C is a subbase of some topology o in WO*IOC, which turns the

given space into separable locally convex linear topological space and, moreover:
a) o is compatible with the set of seminorms

{pa (u):HuHLpl (Ia;Vl) +HuHLP2 (Ia;V2) +Hu HX(]‘Z)}ae(aﬂ
divides points on Wo*loc;

b) a set Ec Wo*loC is bounded only when for every o € ® p, is bounded

on E.
Proof. As well as in lemma 1 it is enough to show that system of

seminorms {p,},.e divides points on ngoc. Let ueWo*loc\{a}, then

At e S|u(t) ¢6) > 0. Because of § is a subset of a real line which can be
presented as no more than numerable join of convex sets in R, we have
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da,€0®: >0. From here it follows Pay (u)>0, as it was to be

Ul =
1)

shown.

From [12, theorem 1.37] it follows that the system of seminorms {p, },co
generates some locally convex topology o on Wo*loc, which converts the given
space in locally convex linear topological space, whose local base we obtain by
final intersections of such sets:

{V(Ia,é'):{uEW;loc |p,(W)<e}|aeO, £>0}.

The statement b) follows from the same theorem.

The lemma is proved.

For a subset of a real line S which can be presented as no more than
numerable join of convex sets in R, distinct from a point, let us denote by
BCC(S)=1{1,}4ca the family of all convex compact sets from S, distinct from a

point. We notice that the family of all subset of a real line S which can be
presented as no more than numerable join of convex sets in R, distinct from a
point, coincides with the family of all subset of a real line S which can be
presented as no more than numerable join of convex compact sets in R, distinct
from a point.

Let us also consider the space

Clo°(S; H) = {y:S —H|VaeA y|, eC(,;H)}
which topology is compatible with the set of seminorms {|-|| . (. H) Y aen -
a’

Theorem 2. It results in Wy, = C'°°(S;H) with continuous embedding.

Moreover, for every y,& e WO* and s,t€S: s<t and (s,t) € BC(S), the next
formula of integration by parts takes place

(V(0,5(®) = (¥(5),5(s)) = J {0V, + ((2),&'(7)}dr. ®)

In particular, when y=¢& we have:
1 t
SOl =) = [/ @), @)z

Proof. At first let us prove the embedding Wy,,. = C'°(S;H) in the sense

of the set theory. Let y € W, be fixed. Then for every 7 €S, due to the set S

can be presented as no more than numerable join of convex compact sets in R,
distinct from a point, there is / € BCC(S) such that ¢ € . Moreover, we can

consider that ¢ is an interior point of / in the space (S,|-|). Hence, due to the

definition of Wy, and [7, theorem 5] it follows that y|,eW, (I)< C(I;H).
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Thus the function y:S — H is continuous in the point 7. The necessary
statement follows from the arbitrary of 1 € S .

Now let us prove the continuous embedding Wo*loC < C°(S; H) . Since the
set S can be presented as no more than numerable join of convex compact sets in
R, distinct from a point, there exists = c A (card 2 <N,) such that UI «=9S.

aes

So, it is enough to show that for every a € = there is a continuous seminorm
4, :C°(S;H) - R and a constant C,, >0 such that

HyHWg(I )Sca/ua(u) Vu e W -
a

This fact follows from [7](theorem 5) because of for every a e & 1, € BCC(S).
At last we obtain formula (8) by using [7] (theorem 5) with S =[s,?].

The theorem is proved.

Let us consider the space W,,. ={ye X, .|y' € X'®}, which topology is

compatible with the set of seminorms {| - ||W* 9 )} 2eo -
a

In virtue of lec c W()*loc with continuous embedding and due to the latter
theorem the next statement is true.

Corollary 1. W,,, = C'*°(S; H) with continuous embedding. Moreover, for
every y,& e WO* and s, € S: s <t and (s,¢) € BC(S), formula (8) takes place.

Forevery n>1 and I € BC(S) let us introduce the Banach space

W=l e X,y e x, ()
with the norm HyHW*(I):||y||X*(I)+||y'HXn(1), where the derivative ' is
n n

considered in sense of scalar distributions space D" (/;H,) and the space

*

|y'€X10C},

n

Wnloc = {y eX

nloc

which topology is compatible with the set of seminorms {|| - ||W* (I )} 2e® -
n o

As far as D' (S;H,)=L(D(S);H,) < LDS)V,)=D (S;V") it is
possible to consider the derivative of an element y e X : (S) in the sense of

*
CVV]OC'

*
n+lloc

D*(S;V") . Notice that for every n >1 W iee ©

Proposition 4. For every yeX,, and n>1 it results in P,y'=(P,y) ,
where we mean the derivative of an element of X I*OC in the sense of the scalar

distributions space D*(S; V*) .
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Remark 6. We point out that in virtue of the previous assumptions the de-
*

rivatives of an element of X, .. in the sense of D(S;V") and in the sense of
D(S;H,) coincide.
Proof. It is sufficient to show that for every ¢ € D(S) P,»'(¢)=(P,y) ().

In virtue of definition of derivative in sense of D~ (S; V*) we have

VoeD(S) P,y'(p)=-P,y(¢)=-P, [y(@)¢ (t)dr =
S

= —f Py(0)¢'(0)dr ==(P,y) (@) =(P,y)(9).
N

The proposition is proved.
From the propositions 2, 1, 4 it follows the next

Proposition 5. For every n>1 W,,.. = P,Wp., i.c.

Wioe = 1PuyO) ] Y() €Wipoc}.
Moreover, if the triple ({H i}l-21;Vj;H ), j=1,2 satisfies condition (y) with
C=C;, then for every yeWp., n>1 and ae® it results in
P . * < max C ,C . * .
H ny()HW (Ia) { 1 2}Hy()HW (Ia)
Theorem 3. Let the triple ({H,-},-Zl; Vj;H), j=1,2 satisfy condition ()
with C=C;. Moreover, let Dc X ;;C be bounded in X l*oc set and E c X,
bounded in X,,.. For every n>1 let us consider D,:= {yn €

eXZloc|yneD andy;lePnE}an*loc Then for each ae®, n=1 and
Yn €D,

ally g SIDIE +C-ENE ©
a

where C=max{C,,C,}, ||D||S =sup ||y|| « and ||E||S = sup||f]| , 1.e.
Y ep XUy Y e X Ug)

the set
UDn is bounded in lec

n>1
and, consequently, bounded in C'°°(S; H).

Remark 7. Due to proposition 1 D, is well-defined and D, — Wn*

loc *

Remark 8. A priori estimates (like (9)) appear at studying of global solvabil-
ity of differential-operator equations, inclusions and evolutional variational ine-
qualities in nonreflexive Banach and Frechet spaces with maps of w-

pseudomonotone type by using Faedo—Galerkin method (see [1, 2]) at boundary
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transition, when it is necessary to obtain a priori estimates of approximate solu-
tions y, in X, and its derivatives y/ in X',

Proof. The assertion of the theorem is immediate consequence of the ine-
quality

Vnzl, a€®, y,eD, ”ynHW*(I ) :HynHX*([ ) +||y;1||X(1a) <
o a
<|[DIIY +[IP,E|l <[ID[|£ + max{Cy, CoHE|E.
that is valid in virtue of proposition 1.

Further, let B, B;, B, be some Banach spaces such that

By,B, are reflexive, By c B; with compact embedding (10)

By c By c B, with continuous embedding (11)
Do, P1 €[1;+ ) be arbitrary numbers. For every o € BC(S) we consider the set
with the natural operations W(l,)={ve LPO (Ly3By)V' e Lp1 (I,;B,)}, where
the derivative v' of an element ve L Po ({,;By) 1s considered in the sense of the
scalar distribution space D(/,,; B,) . It is obvious that W(/,)c L, 0 (I, Bg). Let

us also consider the set

loc _ 1 . ' 1 .
loe — {y EL;:): (S,BO)|y € L;)IC(S,BZ)} .
It is clear, that W'*° < LIZS (S;By).

Theorem 4. W' with the natural operations, which is topologically com-
patible with set of seminorms {p, () =|-[|,, a )} «co 1s a Frechet space.
o

Proof. Since the set S can be presented as no more than numerable join of
convex sets in R there exists = c ® (card= <)) such that

s=J1,.
el
Thus, as well as in lemma 3, we can prove that the no more than numerable
system of seminorms {p, (-)},=z divides points on W' Thus, the families of

seminorms {p, ()}, =z and {p,()},ce are equivalent and the locally convex
linear topological space (W o Py O} ez ) is metrizable.

Now let us prove that the metrizable space W is complete. Let us consider
a Cauchy sequence {y,},s; C w'°° ; without loss of generality we can assume
that for every o, € E: a # [ it follows that /, N5 = . We also consider

E={a <a,<.<a, <a, <..}.
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iy) Because of {y,},» < W'* is a Cauchy sequence also {yn 1, } isa
1) p>1

Cauchy sequence in W ([ o ). Thus in virtue of [7] (theorem 8) there is a subse-

quence {v;,},> of {y,},s thatconvergesin W(Ial) to some x; € W(IO[1 )

i,) analogously to 7;), due to {vj ,},» < W' is a Cauchy sequence the
same follows for {vl’n | Io, }n>1 in W o ). Thus there is a subsequence
Wontust Of {vy,},5 that converges in W(]az) to some x, € W(Iaz) ;

i) due to {v, ,},s; W' is a Cauchy sequence the same follows for
{vm,n | o, }n>1 in W(Iam). Thus there is a subsequence {v, .}, of (v, }.s

that converges in W(Iam) to some X, € W(Iam) .

Thanks to i),7,),..., using the diagonal Cantor method, we can choose a
subsequence { Y, Yest = Wt from {y } . that converges in W(Iam) to
X, eW(Iam) for every m>1.

By setting y(¢)=x,,(t), tel s M >1 we obtain that for every o €E

Pa(Vy, —¥) >0 as k> .

To conclude the proof we remark that y € W'°° in virtue of the definition
W°® and the condition: Ve, f€E: a # f3 it follows that 1, N l5=0.

The theorem is proved.
Analogously with the proof of theorem 4 we can obtain the next:

Theorem 5. The set lec (respectively W,-TOC , 1=10,2) with the natural op-

erations, which topology is compatible with the set of seminorms {||- HW* (I )} 2e®
o

(respectively {||-|| = 0_,2) is a Frechet space.

5 (L) <o !
Theorem 6. Under conditions (10)—(11), we have W' < C'°°(S;B,) with
the continuous embedding.
Proof. At first let us prove the embedding W' = C'°°(S;B,) in the sense

of the set theory. Let y e W1°° be fixed. Then for every ¢t € S, since the set S can

be presented as no more than numerable join of convex compact sets in R, dis-
tinct from a point, there is / € BCC(S) such that ¢ € / . Moreover, we can con-

sider that ¢ is an interior point of / in the space (S,|-|) . Hence, due to the defini-

tion of W'°° and [7, theorem 5] it follows that y|,e W (/)< C(I;B,). Thus the

function y : S — B, is continuous in the point 7.
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Now let us prove the continuous embedding W'°° = C'°°(S; B, ) . Since the
set S can be presented as no more than numerable join of convex compact sets in
R, distinct from a point, there exists & c A (card Z <) such that Ul =9

aQex

So, it is enough to show that for every @ € E there is a continuous seminorm

U, :C°°(8;B,) >R and a constant C, >0 such that

* < loc

In fact for every a € 2 1, € BCC(S). Thus the above inequality is true in virtue
of [7, theorem 9].

The theorem is proved.

The next result represents a generalization of the classical compactness
lemma [11] (theorem 1.5.1, p.70) into the case p, p; €[1;+©).

Theorem 7. [7, theorem 10] Under conditions (10)-(11), for every
Po>P1 €[1;+0) the Banach space W' is compactly embedded in L, 0 (S;B)).

The proof follows from the next lemmas:
Lemma 4. [7, lemma 3] For every yeW and heR it results in

y(t+h), ifi+hes,

- < ! =J7
b thLl(S;Bz) <hly HLl(S;Bz)’ where (1) {0, otherwice.

Lemma 5. [7, theorem 7] Let conditions (10)—(11) for B,,B,, B, are valid,
Po, Py €[1;+0), S a finite time interval and K Lp1 (S;By) such that

a)K is bounded in Lm (S;By);
b) for all £ > 0 there exists 6 > 0 such that from 0 </ < ¢ it results in
J.||u(f) —u(r+ h)||§20 dr<e VYuek.
N
Then K is precompact in Lmin{po;pl}(S; B)).
Furthermore, if for some ¢ >1 K is bounded in L, (S;B,), then K is pre-
compactin L, (S;B,) forevery p e[l,q).

Lemma 6. [7, corollary 2] Let assumptions (10)—(11) for the Banach spaces
By, B, and B, are valid, p, €[1;+o], §=[0,7] and the set K Lp1 S )

such that
a) K is precompact set in L Pl (S;B5);

b) K is bounded set in Lp1 (S:By) .

Then K is precompact setin L Pl (S;By).
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The next result is a generalization of the compactness lemma [8] (theorem 2)
into the case py, p; €[1;+x).

Theorem 8. Under above assumptions, the embedding W'°° in Ll;:g (S;B))
is compact, that is, an arbitrary bounded in W '°° set is precompact in Lll‘;; (S;B)).

Proof. Arguing by contradiction, let {y,},; W' be bounded in W'
sequence that has no any accumulation point in LI;’(‘;’ (S;B,) . From [12, theorem
1.37] it follows, that for every convex bounded set S, S

: , : <+00. 12
S}gl’ (HynHLpO(Sa7BO) +”y"HLpl (Sa’BZ)j +00 (12)

As on real line the arbitrary convex set can be presented as join no more,
than numerable number of bounded convex sets. Without loss of generality we

suppose S = USa, where §, is bounded convex set in R VaeZ and

Qaes

card 2 <X, . Further we consider only those & € E for which A(S,) > 0.
Letitbe =={a,}, , then:
i;) from (12) and theorem 7 about compactness we obtain there is a subse-

quence {v, ,} ., of {y,},.,, that is fundamental in the space L no S 3B
i,) analogously to 7,), from (12) and theorem 7 about compactness it fol-
lows, there exists {v, ,},.; ©{V,},» thatis fundamental in L, (Sa2 ;B));

i,,) from (12) and theorem 7 about compactness it follows, there exists

Vb uzt © Vet n bz > that is fundamental in LPO (Sam ;B

Thanks to i), i5),..., using the diagonal Cantor method, we can choose a

subsequence { Yy Yist = Wantns from {y,},., that is fundamental in
Li;’; (S;By) . This is a contradiction.

The theorem is proved.

By the analogy with the last theorem, due to the lemma 6, we can obtain the
next:

Theorem 9. Let assumptions (10)—(11) for the Banach spaces B,, B, and
B, are valid, p; €[1;+®), S =[0,7] and the set K — Ll;’IC (S;V) such that

a) K is precompact set in Lll(;lc (S;B,);

b) K is bounded set in Llslc (S;By) .
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Then K is precompact set in Ll;)’lc (S;By).

Now we combine all results to obtain the necessary a priori estimates.
Theorem 10. Let all conditions of theorem 3 are satisfied and V' < H with
compact embedding. Then estimate (9) is true and the set

UDn is bounded in C'"(S;H) and precompact in Lll,‘;C (S;H)
n=l1
forevery p>1.
Proof. Estimation (9) follows from theorem 3. Now we apply the com-

pactness theorem 8 with B, =V, Bj=H, B, = Ve, po =1, p; =1. Notice that

Xpe ©L°(S;V) and X'°° < L, (S;7") with continuous embedding. Hence, the
set

UDn is precompact in LI°°(S;H).

n=1

In virtue of (9) and of theorem 2 on continuous embedding lec in

C'°°(S; H) it follows that the set

UDn is bounded in C°(S;H).

n>1

Further, we complete the proof by using standard conclusions, Lebesgue
theorem and the diagonal Cantor method.

Partially Supported by State Fund of Fundamental Investigations Grant
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