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ON GARCH(p,q) CONVERGENCE 

J. CARKOVS, N. GUTMANIS 

The paper deals with symmetric GARCH(p,q) model. Assuming that there exists 
defined by this model stationary time series, we have proposed the necessary and 
sufficient condition for exponential mean square convergence of any stochastic 
recurrent procedure satisfying this model to the above stationary time series. 
A mathematical background of the proposal approach is based on the derived co-
variance method for mean square exponential stability analysis of linear stochastic 
difference equations, which permits one to state a mean square convergence crite-
rion for GARCH(p,q) models with any integer positive p  and q  in the convenient 
for application form of an integral inequality involving the model parameters. 

1. INTRODUCTION: STATIONARY GARCH(p,q) MODELS 

Over the last decade, there has been a tendency to employ to analysis the financial 
time-series data model the regression equation for exogenous variables )(s

tX , 
Nk ,...,,= 21  endogenous variables tY , and residuals tU  defined by formulae  
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where }{ Ztt ∈,ε  is white-noise type time series (that is, i.i.d. random variables 
with mean zero and variance one), 1−Φ t  is sigma-algebra of information up to 
time 1−t , defined by random variables }1{ −≤, tssε , and },{ Ztt ∈ξ is time se-
ries of errors (shocks) with variance, that is given as GARCH ),( qp  process 
(Generalized Auto Regressive Conditional Heteroskedasticity), that takes the fol-
lowing form [4]:  
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The above processes are defined for time moments Zt∈  by 1+q  coeffi-
cients }10,0{ 0 qkk ,...,=,≥> θθ , p  coefficients }210{ pkk ,...,,=,≥ϕ , mean 0b , 

1+nN  linear regression coefficients, conditional variance 2
tσ  and distribution of 
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random variable 0ε . As it has been shown by [1], under assumption 
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and expectation of deviations σσ ˆ 22
tttu −=:  of any other satisfying (2) time series 

}{ 2 Ztt ∈,σ  converge to zero in the mean with ∞→t , that is 

0ˆlim 22 |=−|
∞→

σσ ttt
E . This paper supposes the above inequality +∑

=
k

p

k
ϕ

1
 

1
1

<+∑
=

k

q

k
θ  to be fulfilled. It should be mentioned that parameters of regression 

model (2) are mainly defined by the least square method and therefore it is prefer-
able [5] to analyze a behavior of the second moments of iterations (2) with 

∞→t . We will say that the stationary GARCH model (2) is exponential mean 
square stable if the above second moments exponentially tend to zero as ∞→t , 
that is, there exist such positive numbers λ,M  that  
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for any Zsst ∈,≥ . The problem arises: to determine a largest set of parameters 
of model (2), which guarantees the stability property (3). For GARCH(p,1) mod-
els this problem has been discussed in the paper [2]. Applying some of well 
known mathematical results for positive defined matrices, the mentioned paper 
derives the necessary and sufficient condition for exponential mean square stabil-
ity in a form of inequality involving forth moment of tε  and parameters 

11 θϕϕ ,,..., p . In spite of the convenience for application of the proposal there 
approach for 1=q , that has been written as an inequality for two specially con-
structed determinants, it becomes very complicated for GARCH ),( qp -models 
with 2≥q . To eliminate this lack we will apply another method, developed in 
paper [3] for asymptotical stability analysis of linear stochastic difference equa-
tions. It permits us to derive necessary and sufficient exponential mean square 
stability condition for any p and q in convenient for application form.  

2. INTEGRAL CRITERIA FOR GARCH(p,q) EXPONENTIAL MEAN SQUARE 
STABILITY 

It is easy to write for the deviations 22ˆ tttu σσ −=:  the homogeneous difference 
equation  
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where ,≤<,≤<,≤,+= qkppkqqpka kkkkk   if andif},{min if ϕθθϕ  

},{max qpm =  and 12 −= tty ε . The latter random variables }{ Ztyt ∈,  are i.i.d. 
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with mean zero and variance 224 1 |−|=: tEs ε  defined by distribution of tε . 
Formula (4) defines a linear difference equation with random coefficients and the 
problem is: to find necessary and sufficient conditions for exponential mean 
square decreasing of its solutions. Let sequence }{ Ztut ∈,  be a solution of (4). 
According to proposal in [3] method first of all we have to define two se-
quences: }{ Ztht ∈, , satisfying for 0>t  homogeneous difference equation 

)(2211 hha…hahah mtmttt ,+++= −−−  under conditions 010 =,= thh  for 1−≤t , 
and }0~{ >,tx t  satisfying the same homogeneous difference equation 

,+++= −−− xa…xaxax mtmttt
~~~~

2211  but for 0≤t  is the same as tu , that is, 
0~ ≤,= tux tt . Now we should rewrite equation (4) in a following form 
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ted random sequence for any 0≥t . Squaring the both parts of the above equity 
and taking a conditional expectation under condition 0Φ  we can reach for condi-

tional second moment }{ 0
2 Φ/||=: tt uEm  an equation += 2
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tg  and 2
tb  are exponentially 

decreasing to zero nonnegative sequences, any satisfying (4) positive sequence 
}0{ ≥, tmt  may be majorized by sequence }0{ ≥, tct  for sufficiently large c . 

Therefore to analyze an asymptotic of this sequence we may apply discrete 
Laplace transformation multiplying the both parts of equation for tm  by tz  with 
some constant )0( 1−,∈ cz  and summarizing by t  from 0  to ∞ . This approach 

permits to find function ∑∞
=

:= 0)( t t
t mzzM  in a form of fraction =)(zM  
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converges. Therefore one can make sure of equivalence the latter assertion to ine-
quality 122 ))1((}1{E −<|−|| Btε  involving fourth moment of white noise and 
parameters of GARCH ),( qp . Let )(1 zB  be a discrete Laplace transformation of 

sequence }{ tb , that is, t
t

t
zbzB ∑

∞

=
=:

0
1 )( . Applying the well known Cauchy theo-

rem one can find 
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The function )(1 zB  is a Z -transformation of series jjt

q

j
t hb θ−

=
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1
. There-

fore applying Z -transformation one can find expression )1(B  in an integral form  
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where }max{ qpm ,=  and ka  defined above in formula )( ka . Therefore the nec-
essary and sufficient condition for stationary GARCH ),( qp  mean square stability 

has a form an inequality 4
4 1E St +<ε . The integral in (5) can be calculated apply-

ing residual theory. For example necessary and sufficient exponential mean 
square stability condition of GARCH )2,2(  has following complete form:  
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