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ON EXISTENCE AND STABILIZATION OF THE STRONG
SOLUTION OF THE AUTONOMOUS STOCHASTIC PARTIAL
DIFFERENTIAL ITO-SKOROKHOD EQUATION
WITH RANDOM PARAMETERS

V.K. YASYNSKYY, I.V. YURCHENKO

Abstract. This paper considers the asymptotic behavior of the strong solution of the
linear partial stochastic differential Ito—Skorokhod equation in the corresponding
space with random parameters. An existence of the strong solution is proved and
sufficient conditions for the asymptotic stability and the mean square instability of a
strong solution of a similar equation are obtained. The stochastic model of complex
systems, which is proposed in this paper, is an attempt to take into consideration the
full extent of randomness in the studying of real processes, which are described by
differential equations in partial derivatives, on the right side of which a diffuse per-
turbations of the Brownian process type and random perturbations of other types are
taken into consideration.

Keywords: stochastic partial differential equation, mean square stability, asymp-
totic stability.

INTRODUCTION

Deterministic partial differential equations were considered by many authors,
see, for example [1-3] and bibliography therein.

Since the concepts of stochastic differential and integral and change of
variables for a stochastic differential have been introduced and a strong solu-
tion to a stochastic differential equation (SDE) has been defined in the well-
known monographs [4-6] and then propagated to classes of stochastic func-
tional differential equations [7-9] (see the extensive bibliography in these
studies), it became possible to investigate an asymptotically strong solution
for SPDE (see, for example [5, 10-12]).

The further analysis of SPDE involves the construction of mathematical models
of complicated real systems, which need random parameters to be considered
in these equations [6, 7, 12, 13].

In the paper, we will analyze the asymptotic behavior of strong solution

of LSPDISE taking into account random parameters in the right-hand side [10, 12].

PROBLEM STATEMENT

Consider a stochastic experiment with the basic probability space [1, 4, 5, 7]
Q, A/ FP), F={/A,t>20} is filtration, where function u(t,x,co)eR1 is
given, which is measurable with probability one in ¢ and x with respect to the
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minimum o -algebra Z’([O,T],Rl) of Borel sets on the plane [13, 15] and for
which

T Eu(z,x,0)| tdx < o0 (1)

for all ¢€[0,T], Ele} is expectation [14], and T < [0,). Denote by .%/; the
space of function {u(z,x,®)}, which possesses the integrability property (1).

Introduce the norms [6, 15]:

||u(t,x,co)||iZR1 = j|u(t,x,co)|2dx; 2)
2 £ 2
Jutt.x o), = [lut.x o) d 3)
0
E. ()= E{"u(r,x, ol } @

where Lle and L,; are spaces of functions {u(¢,x,®)}, which have the cor-

responding norms (2)—(4).
In space 2%/ , it is necessary to introduce the norm

T T [ o 2
Jute,x,0)" = [ E,(0)dr =[ }E{ [Jut,x, (n)|2dx} dt . 5)
0 0 —0
Denote
O(A(E®) 4, p)= 3 3 ay (&) p7 | (©)
k=1j=1

where 4 ={a;;} is a real nxm matrix composed of elements a;; eR!.

In space .%; with (5), consider a subspace ./, < ./, for whose ele-
ments the inclusion

0 0 :
A,—,— [u(t,x,m) e Y5 7
Q[ Py ax) (t,x,0) € Wy (7
takes place.
On (Q,_#, F,P) consider the Cauchy problem for the linear stochastic par-

tial differential equation (LSPDISE)
0

o 0 o 0
E[Q(A(al(m)),a,aju(r,x,m)}+Q(B(a2<m)),5,aju<t,x,m>=

aw(t, ) N

=Q(C(§3(®)),%,%ju(1,x,m) .

o 0 -
+ \j/ Q(D(§4(m)),5,§,v)u(t,x, ©)V(dt,dv), (8)
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=[Quly, €)

t=0

Q( Ei@) ija(txco)

where O is defined by (6), (7) matrices B = {b; (&2(03))}, et b; (& () € R!;
C={cy &N}y, c;E(@)eR!, D=1{d;(E (@)L, djEs(w),v)e

eR!'xV, where §i(w),i=12,3,4, are random value specified by the density
Pe, (x),i=12,3,4, (or by the distribution function Fe, () =Plo:§;(w)<x

vxeR!'}, i=1,2,3,4 [14]), w(t,®) is a one-dimensional Wiener process [11],
and §;(0), i=1,2,3,4, does not depend on w(t,w). V(dtA)=
=v(dt,A)—T1(A)dt is the centered Poisson measure.

By a strong solution of the Cauchy problem (8), (9) we will understand
function u(¢,x,) continuous in ¢e[0,7] with probability one, consistent

with filtration{ #,,¢€[0,7]}, and such that with probability one for each
pair (z,x) it satisfies the integral stochastic equation [1, 4, 11]:

Q(A(Q(w)), Pl ju(t x,0) =[Qu], +IQ( (&, (o)), ju(s x, w)ds +
j ( (& (‘D) a )M(S x, @)dw(s, w)ds +
0 ox

j | Q( g4(co) a vju(s x, ®)V(ds, dv) (10)

with the nonrandom initial conditions (9).

EXISTENCE OF THE SOLUTION OF THE CAUCHY PROBLEM FOR LSPDISE
(8), 9) IN SPACE .7/,
To establish the existence of a strong solution (10) of the Cauchy problem for

(8), (9), we will first prove an auxiliary result.
Lemma 1. The Fourier transform inx [1] for function u(¢,x,®):

1 ~+00 )

v(t,0,0)=— |e " u(t,x,m)dx (11
V21 7{0

does not bring it out of the space %/ for any finite 7 <R

Proof. The existence of the Fourier transform follows from the fact that
u(t,x,m) lies in L2R1 with probability one for an arbitrary ¢€[0,7] and

+00
{ j |u(t X, 0))| dx>N } E]\;t) — 0 as N — 4. According to the Plancherel
o 16, Fhoofarm o Thesofe, s
9 t, 5 - [, N N .C. =
eorem [16] v(t,0,0) do \/E,w u(t,x, o) dx 1.e v L

—00
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; therefore }Ev(t)zLJEu (1). Then according to (11) and the

1
_E”u”LZRI o

definition of a norm in space %/, we get ||v||M which proves
T

1
= \/ﬁ"u"MT ’
Lemma 1.

Theorem 1. Let the following conditions be satisfied for the Cauchy
problem (8), (9):
(9) the roots of polynomial P(A(x),ic)=A0(A(x),\,ic)+ Q(B(x),A,ic) for

an arbitrary xe€ R! and %0 satisfy the inequality ReA(x)<wy(o)<0,
y(0)=0;
(i) Vte€[0,T] and C(x) =04, , D(x)=0;,, the deterministic equation

0 0 0\~ 0 0\~
E{Q[A(x),a,aju (t,x)} + Q(B(x),a,a}t t,x)=0 (12)

has the solution #(¢,x) of the Cauchy problem in LZPJ with the initial con-

Q(‘q('()’ > jﬁ(l"‘) [QIN‘] > (1:‘:)

(iif) random variable §;(w), i=1,2,3,4, does not depend on w(f,®) and
v(dt, A).

Then the stochastic Cauchy problem (8), (9) for C(x)# 0,,, has a solution
in space .M/ .

Proof. Since the Fourier transform [1] preserves the norm in .#,; by

Lemma 1, it will suffice to prove the existence of a strong solution of the
Cauchy problem of LSDISE for v(¢,0,0), given by formula (11), namely,

d d . d . B
E{Q(A(al (CO))’E ’ ZGJV(Z‘, G, ('0)} + Q(B(éz (('0)):5 5 lGjV(f, G, 0‘)) -
_ Q(C(g3 (m)),%,icjv(t,(s, ®) dwgt’ ),
+| Q(D(g(m))),%,ic, vjv(t,(j, @)V (ds, dv). (14)

Note that for an arbitrary real matrix D(x)={d, (x)}f.i’jf’zl and for an arbi-
trary x e R! we get the inclusion Q[D(x),%,icjv(t,c, ®) € #/,r and solution

v(t,6,m) of the LSDE (14) for each o0 exists and is unique up to stochastic

equivalence [3, 5, 8]. LSDE (14) should be understood as an integral stochas-
tic equation:
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Q(A(il (60)),%, iGjV(f ,0,0) =[Qv], + IQ(B (&, (®)),ds,ic)v(s,0,0) =

= [ 0(C(&,(w)). ds,ic (s, 5, 0)dw(s, o) +

o-_.N

+”Q( (&4(w)) = a—ax vjv(s G, 0)v(ds,dv),

for which the conditions are satisfied that guarantee the existence and
uniqueness of a strong solution up to stochastic equivalence [7, Theorem 4.1].

Let H(t,c) be a fundamental solution of the deterministic homogeneous
unperturbed Cauchy problem (12), (13) for the LSPDISE (8), (9) for C(x) #
#0
equation [9, 19]

v(t,0,m) =vy(t,0) + f H (t - S)Q(C (?;3 (0))), ds, ics)v(t, G, ®)dwW(s,®) +

0

+ [ [yt = 9)0(D(E4(w),ic)fi(ds,dv), (15)
ov

then the strong solution of LSDE (14) can be written as the integral

kxn >

where v, (t,0) is the solution of the homogeneous unperturbed Cauchy problem

d
d{Q[ (& (@) zc}(mm)w[ (Ea(@)— zc)v(row)}
According to [1], the fundamental solution H(¢,0) has the form
ktd?\,
H —
(t,0) = \/—ﬁp(“x) st (16)

where I' is the contour enveloping all the zeroes of the polynomial
P(A(x),ic).

Applying random operator Q(C(&;(w)),dt,ic) to both sides of (15)
yields

O(C(&3(w)). dt,ic)v(t,0,0) = O(C(E3(w)), dt, i)V, (t,0) +
+ jQ(C(a3 (w)),dt,ic)H (f - s,cs)Q(C(g3 (m)),g,iojv(s,c, ®)dw(s, ) +
0 A

+| Q(D(§4 (co)),%,is,vjv(s,c, )V(ds,dv) . (17)
0

Considering the squared absolute value of the left- and right-hand sides of
(17) and using the inequality |a +b+ c|2 < 3(|cz|2 + |b|2 + |c|2) yield

0(C(E&5 (@), dr,io)v(t,0,0) <3|O(C(Es(w),dt,io)vy(t,0 ) +
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2

+3 +

jQ(C(Q (w)),dt,ic)H (t—s, G)Q(C(§3 (co)),%, ics}v(s, G, 0)dw(s,®)
0

+3

.(18)

j IQ(D(§4 (w)),dt,ic,v)H (t—s, G)Q[D(Fﬂ (m)),@i, ic, v}v(s, c,®)V(ds,dv)
oV s

Let
2(1,0) = EO(C(E3 (@) dr.io)v(t, 0,0)[ };

2(t,06,0) = E|O(D(E4(0)), dt,ic,v)v(t,0,0) },

where E{e} denotes expectation [14]. Applying the operation E{e} to the left-
and right-hand sides of inequality (18), considering the property of the Ito
integral on the evaluation of E{e} of the squared Ito integral [7, p. 245-249]
and taking into account condition (iii) of Theorem 1, we get the following ine-
quality:

z(t,0) < 3EQ(C(E;3(w)), dt,ic)v, (t,0)|2 +

2

t
+3[E 2 (s,0)ds +
0

Q(C(&s(w)xai,icjﬂ(z—s,c)
A)

2

Q(D(@; (m),ag,io, vDH(t ~5,6)| tz,(s,0,V)ds . 19)
A)

+3.t”E
3y,

Condition (i) of Theorem 1 makes it possible to obtain the inequality [1]
E|Q(C(§3(m)),dt,iG)H(t—s,cr)|2SL, and condition (/i) defines the uniform
boundedness

EQ(C(Es (@), dr.iovy(t.0) < §

EJO(D(&4 (@), dt,io,v)vy(1,0)[ < g .

The inequalities obtained above and (19) yield the estimate
T

z;(t,0) SE-FLJ‘Zi(S,G)dS , 1=1,2, whence according to the Gronwall inequal-
0
ity [1] we get the exponential estimate

z(t,6)< Ke" Vi1e[0,T1c[0,0),i=1,2. (20)
Thus, the inclusion

O(C(£5(w)), dt,ic)W(t,0,0) € W7,
O(D(&, (w)),dt,ic,v)v(t,0,0) € /7 Q1)
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is guaranteed. Applying random operator Q(D(&(w)),dt,ic) to (16), similarly to
the above reasoning, we can write the corresponding inequality for any real
matrix D(x)= {dlj(x)}fi’;':l. Therefore, considering estimate (20) and condition
(i), we obtain the statement of Theorem 1.

ASYMPTOTIC MEAN SQUARE BEHAVIOR OF THE STRONG SOLUTION OF
THE LSPDISE

First, let us prove an auxiliary statement.
Lemma 2. Let conditions of Theorem 1 be satisfied for the LSPDISE (8),
(9). Then:

(7) for an arbitrary matrix C(x) # 0, the inclusion holds

HO(C(Es (), dtio)| H(t,0) € Ly (g 1) (22)

(if) for the corresponding norm of this space, the equality is true

+00 E , .7\’, . 2
Elo; (@), dnio)H (o)} =i [ |Q(|if((i))_ ’)|2’“)|
e i\, ic

dh=S(c); (23)
(7ii) for an arbitrary matrix D(x) # 0,,,, the inclusion holds

[HO(DE, (@)).dtiov)| H(t,0)1(do) € Ly (5 1y (24)
\Y

(iv) for the corresponding norm of this space, the equality is true

j E{O(D(E,(0)),dt,ic,v)H (t,6)T1(dv) =

1 ('t HODE, (@), ikic,v) _
= i A I1(dv)= S, (o). (25)

,w |P(ik, i)
Proof. Using condition (i) of Theorem 1 and formula (16), we can calculate

2n P(i\,ic) '

%I[Q(C(és (w)),dt,ic)H (¢, G)efﬁ"] _
L

i[ [ro(D & (@), drio v H (t,0)e ™ M(dv)=

- L [QDE @)
2 P(i\,ioc)
and multiplying the left- and right-hand sides of abovementioned equalities by
E{|0|2} we obtain statements (22), (24).
To prove (23) and (25), let us apply the Plancherel theorem [1]:

1 I O(CE @).ikio)
2nY, |P(ihio)| ’

loccE@).diioyH o), =
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j O(D(&,(®)), dt,ic,v)H (t,6)[1(dv) =

oy I|Q(D(&4<co)) oio .
Ty

|P(z7», lG)|

Multiplying the left- and right-hand sides of the resultant equality by E{|0|2} ,
we get (o), S,(o) in formula (23), (25).
Theorem 2. Let the conditions of Theorem 1 be satisfied. Then:
(i) if supS(c)<1, then lim Ey,(¢)=0, where
c t—0

U(t,x,0)=0 [(&(m)) iju(tm)

for an arbitrary real matrix R;
(@) if S(o)>1 on the set A of the positive Lebesgue measure, then

lim E, (f) =+ .

Proof. Since the positive kernel tends to zero as ¢ — +oo, from inequality
(18) it follows that z(¢,o) tends to zero for S(c) <1, 6 #0.

If the inequality S(G)< 1, in (24) holds, then it can be easily seen that as
t = 40, the absolute value of the Fourier transform U(¢,x,®) tends to zero for

an arbitrary real matrix R(x) VxeR' [19], uniformly with respect to o if
sup S(o) <1. It remains to pass to the limit under the sign of the Lebesgue inte-

c

gral to prove the first part of Theorem 2.
To prove the second part of Theorem 2, it will suffice to prove that

+00

lim | z(¢,0)dc = oo, since (24) holds.
t—©

Indeed, let S(c)>1 on the set A of the positive Lebesgue measure, then
lim z(¢,0) =+, since z(¢,0) > 0. Theorem 2 is proved.

t—+0

PROBLEM OF THE LOSS OF STABILITY OF A ROD

n [12], the behavior of a rod subject to “white noise” is analyzed. Let the
mathematical model of this process be the following stochastic partial differen-
tial equation with the derivative of the Wiener process that does not exist with
probability one and in the generalized sense the one is a normal "white noise"
(see [20]), namely:

4 2
‘24 a(al(m» +b(~iz<m)>—— (25 ))%!;C—Z%, (26)
with the initial COIldlthIlS
u(0.3) = (). a”(O")—fz() @7)
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and boundary conditions

u(t,0) = u(t,l) =

ammn:amnh_ﬁ%OﬁX:yMLhzo (28)
Oox |

o o’

Here a(&;(®))>0, b(&,(m)) >0, c(§3(w)) >0 with probability 1. Function
u(t,x,m) is random function, which has no gaps of the second type, i.e., is inte-
grable in the sense of paragraph 1. Similarly to the discrete case [12], the statis-
tical stability margin S(f with respect to the parameter a(x) Vxe R!, is deter-

mined as the most admissible intensity of processes with mutually
independent values for which the system is stable in l.i.m., i.e., the solution is
stabilized to zero.

As aresult, we can calculate the statistical stability margin [17] Sy ;, of sys-
tem (26)—(28)
o*u(t,x)

o (29)

Skiky = Zaklkz (&) ——F

with respect to parameters a;, (E;l(co)), k=k +k,.

If we denote P(A,0,0)= Zaklkz (é’;l(co))kk‘ (ic)k2 , then the statistical sta-
k=0

bility margin Sy ;, (x) of the system can be calculated by the formula

s 2 W 1 30
ey (¥) = sup 5 j|PMx)| : (30)

Using the above statements (29), (30), the statistical stability margin
S(x) with respect to the parameters a(x), b(x), c(x) of system (26)—(28) is
found:

-1
+00 2
S(x)= supL I o’ dh
o 21, (c“ +a(x)o? - b(x)xz)z +o(x)? A
Thus, system (26)—(28) is stable in 1.i.m., for which S(x) > ¢?, VxeR!.

Let the right-hand side of Eq. (26) in system (26)—(28) be subject to ex-
ternal random disturbances &(w). This becomes possible if we place the system

=2a(x)e(x),VxeR!.

on a platform whose inching movement can be described by ¢, (Z;(oo)), i=12.
Then (26) becomes

o*u ’u *u  ou o*u dw(t,o
Fa b T g ) Sy P,
Ox Ox ot ot dt
Using the definition of the statistical stability margin for system (31), (27),
(28), we get

€1y

-1

= Eljo; (é]z Pac.

o2d\
E{|(pl &] }Sup_'[ (G +ac —b?»z)z 2
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Applying the sufficient conditions of stability in Li.m. from Theorem 2,
we conclude that system (27), (28) is stable in l.i.m. if

E{¢7 (&(0)}2ac <1, (32)

and is unstable in Lim. otherwise.
Let ¢,(&(®)=0, ¢(&(w)=0pE(w); &(w) have the distribution law

Plo:E=1}=P{w:E=-1} =% and @) =&(w). Then E{E}=0,

D1E} =1 and condition coincides with (32).
Let ¢,(&(0))=0, ¢;(E(®)) =o(&(w)). If for the distribution law of &(w)

k
we take the Poisson law Plo: &=k} = %e‘k and @(&)=¢&, Tomi EE=DE=)\.

Therefore, the condition of stability in Li.m. of system (31), (27), (28) be-
comes 2ach <1, and that of instability, respectively, 2ack >1.

CONCLUSIONS

The stochastic model of complicated systems proposed in the paper is apparently
the first attempt to take randomness into account to the fullest extent in the analy-
sis of real processes described by partial differential equations whose right-hand
sides consider not only diffusion disturbances such as Brownian process [5, 10,
18, 19] but random disturbances of other types as well.
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