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SIMPLE MODEL FOR SEQUENCE PREDICTION BASED  

ON DENDRITIC SPATIOTEMPORAL INTEGRATION 

V.M. OSAULENKO 

Abstract. Recent experiments on dendritic spatiotemporal integration reveal the 
much bigger computational potential of a single neuron. An individual dendritic 
branch can work as a coincidence detector due to a dendritic spike initiated with lo-
cally spatially and temporally activated synapses. Here, we investigate a proposed 
idea that dendrites can perform temporal integration on behavior timescale ~1s, thus 
weakening simultaneous activation constraint. We construct the model of the recur-
rent neural network where each neuron activates not as a weighted summation of in-
puts, but due to their coincident activation both in space and time. We show that 
with using sparse distributed representation and tracking activity of the network in a 
certain time window it is possible to achieve a high capacity prediction system. We 
perform the theoretical analysis and estimate the capacity for the different parame-
ters of the model where even the network with 100 neurons can store millions of se-
quences. Such a capacity results in a biologically unrealistic high number of syn-
apses, much more than 100×100. However, this mechanism of tracking space-time 
coincidences in sparse activation can be realized in a limited biological neural net-
work but still with a good sequence transition memory. 
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INTRODUCTION 

Observing sequential activation of neurons in response to temporally structured 
input lead to a recognition that temporal sequence learning is a fundamental com-
putation performed by a brain [1]. There were a lot of models that tried to imple-
ment this computation, however, there is still no single working system that could 
do it as efficiently as the brain [2]. The main problem is that we do not fully un-
derstand all computational and biological details and how information should be 
represented and linked together. On high-level reasoning, it is clear that neural 
tissue somehow creates associations between events that are spread in time by 
connecting neural populations. Later, if initial events reappear the network can 
predict the next outcome and initiate suitable decisions. But, on the low detailed 
level, many unresolved questions arise, like how the events are encoded or how 
exactly associations in time are formed.  

Here we investigate sequence prediction problem as one of the problems of 
sequence learning [3]. We take inspiration from the recent findings on a dendritic 
computation that each individual branch can work as a coincidence detector 
[4–7]. This is a form of spatial integration where the correct combination of si-
multaneously active neurons can activate other neurons. Also, temporal integra-
tion by dendrites was shown in [8], and later it was hypothesized that the time of 
integration can reach to behavioral time scale ~1s [9]. Thus, we weaken constrain 
of simultaneous activation and construct the model of the recurrent neural net-
work where each neuron works like a multiple coincidences detector that learns 
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both spatial and temporal activation patterns. Events of the sequence represented 
as sparse binary vectors in discrete time steps. Each neuron learns a fingerprint of 
a sequence on last T time steps by storing labels of a small number of active neu-
rons at different times into a dedicated dendritic branch or a cluster [10, 11]. If the 
incoming pattern has all active neurons that are stored in any of the clusters the 
neuron becomes active. From a single fingerprint, it is hard to deduce the whole 
sequence but is very easy with distributed representation where multiple finger-
prints are stored across the population. This approach is similar to time delay neu-
ral networks, where the context for prediction is set by a recent sequence history 
[26], with the distinction of a neural model in the core. 

We perform a theoretical analysis of the proposed model and show that it has 
a big capacity of sequence transitions thus it can reliably predict the next element. 
By feeding prediction as an input it is possible to predict the whole sequence or to 
generate the best guess. To make the model more biological plausible in sense of 
a number of synapses per neuron we reduced the possible number of connections 
for each cluster that serves as a fingerprint. For the network with size 1000 and 
for 3 synapses per cluster, the total capacity is 105 transitions with 4000 synapses 
per neuron. Notable, that the number of synapses is larger than the number of 
neurons since two neurons can connect with multiple synapses that belong to 
different clusters. Also, we discuss the future extension of the model to 
incorporate probabilities of events and the capability of generalization that comes 
from sparse distributed representation. 

MODEL DESCRIPTION  

Biological motivation 

Beautiful experiment [8] showed that ordered input is spreading from the tip of a 
dendrite toward the soma elicit more activation than in the opposite direction. The 
authors showed that direction selectivity presents in the real neuron due to the 
nonlinear activation of NMDA receptors and higher impedance with higher dis-
tance from the soma. Therefore, the sequential activation of dendrite that starts 
further from the center depolarize the neuron larger. This experiment suggests 
that neuron can perform more complicated computations than it was though be-
fore, namely encode spatiotemporal sequences. Furthermore, according to theo-
retical calculations [9], dendrites can detect and differentiate sequences on a be-
havioral time-scale  1 second. This is in a good agreement with recent 
discoveries of long eligibility traces found in a cortex [12]. Activation of a den-
dritic branch span prolonged time and serves as the basis for further temporal in-
tegration. 

Further evidence toward extending the time of temporal integration by a 
single neuron comes from recent experiment measured the receptive field of 
neurons in auditory cortex of ferrets [13]. On Fig. 1, a presented an example of 
one of the fields. Red dots represent excitatory and blue inhibitory weights. The 
most important information from the picture is that receptive field is spread in 
time, it is very localized to specific frequencies and it is sparse, that means that 
only small portion of frequencies determines neuron output. The authors showed 
that the similar receptive fields are formed in an artificial neural network 
optimized to predict the next elements. We take these results into account 
especially the sparseness of receptive field that spread in time. 
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Formulation of the task 

The task for sequence prediction can be formulated as follows [3]:  
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Where Tjtxx jj :0),(    is a state of the network at the time jt  that encodes 

the input, and w  are parameters of the model. We need to find the activation 
function )(f  and the learning rule )(g . In general, the next element can depend 
on all previous elements. This is analogous to sequence completion task. 

The model 

To solve this task, we constructed a recurrent neural network with lateral and 
feedforward connections. Feedforward determine the state of the network and en-
code at every discrete time step incoming input jj ItI )(  into jj xtx )(  that has 

a  active neurons. So, the state of the network is described as the binary vector of 
size N, )( jj IEx   where )(E  is an encoding function. We use as encoding a 

random projection )()( 
j

jj zwkWTAzE  where }{ jw  — random binary 

weights and the function )(kWTA  returns Na   the most active cells. 
The resulting encoding is a sparse binary vector, for example, 
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x  Recently, it 

was shown that such encoding function is used in fruit fly and allows to preserve 
similarity like in local sensitive hashing [14]. 

Lateral connections are modulatory and in the absence of an input determine 
a prediction of the next input. To model lateral activation and learning we used 
ideas of dendritic spatiotemporal integration, so it is important how and where 
neurons are connected to a dendritic tree. Lateral activation is defined as follows: 
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Where )(  is a step function and j
mG  m-th cluster of j  neuron stores pairs of 

indices ),( ki  — #neuron, time of activation. 

In this model, clusters are parameters instead of usual weights. For a specific 
neuron to be active, it is necessary that all input neurons, that are stored in one of 
the clusters are active. Thus, the neuron learns features in the input stream and 
their sequential order. If a feature reappears, the neuron becomes active and pre-
dict the next state of the network. On Fig. 1, b presented a cartoon for a learning 
lateral connections. Filled circles represent active neurons at a specific time, emp-
ty circles show the prediction. Note that connections can be made to the same 
neurons, but track activation at a distinct time. For clarity, connections to only 
two neurons are presented. It depicts the case with 2k  and 3T , that means 
that history spans to three time steps and at each time step connection to two neu-
rons are created. 
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The presented model differs from the traditional that compute activation 
based on a previous state of the network since we track activation from more dis-
tant moments of time explicitly. As well, it is different from the standard recurrent 
neural network, since it uses binary neurons, non-differentiable activation func-
tion and unsupervised learning procedure of creating clusters. Furthermore, it is 
more biologically plausible since uses local learning rule. Similar ideas were pre-
sented earlier in [15]; however, we use different activation function and learning 
rule, that allowed us to gain much higher memory capacity. 

RESULTS 

Derivation of transition memory capacity 

Here we present the theoretical calculation of a maximum number of predictions 
the network can reliably make. The size of the network is N , the number of ac-

tive neurons that encode an event is a , sparsity 1
N

a
s , the number of syn-

apses each neuron form for each event is k , and the number of previous time 
steps that influence activation of a neuron is T . This task is equivalent to forming 

an association with network size Tk
NCN )(  and activation Tk

aCa )( , where 
k
aC  is a binomial coefficient. To define capacity we create virtual weights w  with 

size ],[ NN   with learning as   xfxw ii 
  where  xf
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 returns one randomly se-
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Fig. 1. Spatiotemporal receptive fields of ferrets A1, where individual neuron is very
picky for specific frequencies and time (a); illustration of an idea of connection through
time (b) 
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The probability of false prediction is given by: 

 )1()1(1)0|1~( sspxxp a
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i
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where i
mx~  prediction for neuron i for time m. We can set the fidelity parameter 

01,0  that determines how many mistakes can be tolerated so that less than 1% 
of cells could be falsely active. From this fidelity constraint, we can calculate 

maxR . Taking the limit case 00 s   we can derive 
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' . From this theoretical analysis, we have important conclusion that 

for the sparsely active network, detection of coincidence through time enlarges 
the neural dimension where it is easier to separate patterns. The maximum num-
ber of sequence transitions depend inversely to the sparsity of a network activa-
tion. Increasing dimension leads to increasing sparsity thus to increasing maxR . 
The limit case of one active cell has the highest sparsity, but it uses the local code 
so that the network can have only N possible states. Lower bound on sparsity set 

the combinatorial term maxRC a
N  . 

Investigating the capacity for different parameters 

We investigated how the capacity of the model depends on parameters. On Fig 2 
it is shown that the longer the history time T the neuron can access, the higher the 
capacity. Also, the more neurons from one moment of time connected into a clus-
ter, the larger the capacity. This can be intuitively explained because the 
coincidence of even two neurons is much rarer than activation of a single one. 
Therefore, the coincident activation of several neurons serves as a fingerprint of 
an activity pattern. Interestingly, for some combination of parameters, the neural 

network can recognize and predict 1010  transitions. Such huge number requires 
a huge number of synapses and is practically and biologically unrealistic.  

Fig. 2. The capacity of sequence transition memory for different parameters. Capacity 
with 1k , so that one synapse is created per event; сapacity for larger networks reaches 
millions of transitions (a); capacity with 2k . In this case, neuron much better recog-
nizes events, thus it can remember the much larger number of transitions (b) 
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Model modifications 

Proposed model presents a basic and straightforward way to track activation in 
time. To make it more biologically realistic we propose two modifications.  

The first one treats the problem of sequences confusion. The model assumes 
that if two sequences are the same on interval T  and differ at a current time step, 
then the model cannot correctly predict the next element. For example ABCD and 
ABCR with 3T , the system will confuse D  and R . This can be fixed by 
adding auto-associative connections to populations that encode D  or R , that will 
track the strength of frequency of an event. Thus, the strength of interconnections 
of population encodes its probability )( ixp . In this case, the task will be for-
mulated in terms of probabilities of predicting the correct event 

))...,|(( 21 Tiiii xxxxp  . The correct prediction is selected as follows: 

))...,|((maxarg 21 Tijjj
jx

j xxxxpx  . There is no complete understanding how 

the probabilities are represented in the biological neural network and experimen-
tation with different algorithms is a good direction for the future. 

The second modification proposes to remove a large portion of connections. 
It decreases the capacity of transitions, but because the connections are still 
dispersed in space and time the system still has a good capacity. On Fig 3, b 
presented the depiction of the idea, where each cell has a fixed number of 
connections with other neurons. By linking events at different times, predictive 
cells can represent different conditional probabilities, like )|( 7,910 xxxp   or 

)|( 5,910 xxxp . This allows reusing subpopulations to represent other sequences. 

In case of limited connections, the enlarged dimension is the following 
m

TN
k
NCCN )1('    with activation m

Ta
k
a CCa )1('   where k is the number of 

connections to previous time step activation and m  is the number of connections 
to other 2T  steps of activation.  

On the Fig. 3, a presented results for transition capacity for different network 
sizes for different time windows with 1k , 2m , and 20a  — mean number 

Fig. 3. A maximum number of sequence transitions for different network sizes and time
windows, shown as an upper line (a); an illustration of an idea of fixed sparse number of 
connections into past activity and resulted in different joint distributions for subpopula-
tions (b) 
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of active cells. On the right axis and with dotted curves presents the number of 
synapses per neuron. The capacity almost does not depend on time window and 
increases with network size. For 100N  there are 4000 synapses per neuron 
which is biologically plausible, and the number of transitions is 100000. If to take 
sequences as words with an average number of symbols 7, there are near 14000 
possible words encoded into the network. 

Still, these modifications are in the early stage of investigations. Results, on 
real datasets and common benchmarks like TIMIT or Penn tree bank (PNB), 
should be obtained in the further research. However, it is not expected that these 
model will be able to compete with the state-of-the-art supervised systems since 
the main purpose of the model to propose the possible way how sequence 
prediction can be achieved in the brain and use unsupervised learning procedure. 

DISCUSSION AND CONCLUSIONS 

The importance of sparse distributed representation 

Benefits of presented model rely on the sparse distributed representation of inputs 
[16, 17]. The sparsity of neural activation gives a high capacity of memory, pos-
sibility to express probabilities and generalization. Theoretical formula (1) on a 
maximum number of stored transition contains sparsity in the denominator, so the 
high sparsity results in higher memory capacity.  

As it was noted by Barlow, the brain should somehow encode the probabili-
ties of events [18], so that to be able to apply similar processing as a Bayesian 
inference [19, 20]. With this, it is possible to make many predictions and to select 
the most probable one to update current beliefs. Sparsity is crucial for represent-
ing probabilities since the dense representation has many active neurons and acti-
vation patterns have high overlap that blurs feature probabilities.  

Another important topic is a generalization, that means an ability to make 
predictions not only for previously experienced sequences but for the new ones as 
well. With sparse activity, similar inputs are encoded with similar representation 
and their intersection encodes shared features. These common neurons at the in-
tersection are activated more often and have higher chance to make connections 
and participate in prediction. For example, if the words are elements of a se-
quence, then sentences with similar worlds will be encoded with similar represen-
tations. The new sentence will be encoded with a similar pattern to similar sen-
tences, and the network will try to make the correct prediction based on the 
previously learned sentence, in the context of the new one. Generalization comes 
from limited resources, otherwise, synapses could be connected not just to inter-
secting neurons, but to every pattern and population that encodes general features 
would be less significant. This idea is promising on a high-level consideration but 
needs to be implemented carefully with all the details elsewhere. 

It worth to note that by assigning active neurons into clusters was made for 
simplicity and theoretical investigation. The real biological process should in-
clude structural plasticity of placing the synapses at specific dendritic locations. 
With this placement neuron stores, additional information and is able to recognize 
just the right combination of incoming inputs. 

Previous experiments showed that spiking neural network with Hebbian 
plasticity rules, like STDP, is able to perform sequence prediction [21–23]. 
However, the achieved capacity relative to computational resources is too low for 
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practical implementation. Also, a similar model was proposed by Numenta team 
[24, 25]. They also use the neuron with many dendrites that act as a coincident 
detector and rely on sparse distributed representation. The main distinction is that 
presented model does not need the special columnar structure of the network and 
prediction depends not only on the current state of the network but on many pre-
vious. Most importantly, in our model similar sequences are encoded similarly 
that potentially enables to make basic unsupervised learning like clustering. 

Overall conclusion  

In this work, we presented a model of a recurrent neural network that makes se-
quence prediction. At learning phase neuron stores references to a small subset of 
active neurons at previous times into a dendritic cluster, that server as a finger-
print of a sequence. Activation occurs in case of matching the learned fingerprint 
with the incoming input. Importantly, a single cell does not store the full se-
quence, just some elements of it. This and sparse distributed representation of a 
sequence across the whole population enables to achieve the high capacity of se-
quence transition memory. Relatively small neural network with 1000 neurons 
can store millions of sequences and make a reliable prediction.  

We captured only minimal biological details, namely multiple coincidence 
detections through time, but other significant elements are missing, for example, 
auto-associative connections that are thought to represent probabilities or realistic 
structural plasticity rules. The next natural extension of the model should be an 
adjusting for limited resources and encoding of probability distributions in the 
inner connectivity.  

The idea that the single neuron can learn multiple spatiotemporal sequences 
on a behavioral time scale still needs more experimental verification. From our 
theoretical analysis, we can see that this yet hypothetical idea leads to a much 
greater computational power of a biological neuron and the network in general.  

Overall, we showed that the model, inspired by recent experimental findings 
from dendritic computation, provides a high capacity of sequence memory and 
gives high accuracy for a sequence prediction. 
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