МАТЕМАТИЧНІ МЕТОДИ, МОДЕЛІ, ПРОБЛЕМИ І ТЕХНОЛОГІЇ ДОСЛІДЖЕННЯ СКЛАДНИХ СИСТЕМ

УДК 519.8, 629.7 DOI: 10.20535/SRIT.2308-8893.2018.4.08

СВЯЗЬ ПАРАМЕТРОВ МНОЖЕСТВА ВОЗМОЖНЫХ СОСТОЯНИЙ НАБЛЮДАЕМОЙ СИСТЕМЫ С ПАРАМЕТРАМИ УРАВНЕНИЯ ИЗМЕРЕНИЙ И РАЗМЕРНОСТЬЮ ПРОСТРАНСТВА СОСТОЯНИЙ СИСТЕМЫ

Н.Д. ПАНКРАТОВА, А.В. ШОЛОХОВ

Аннотация. Рассмотрено гарантированное эллипсоидальное оценивание множества возможных состояний линейной системы, при котором минимизируется многомерный объём эллипсоида, аппроксимирующего пересечение априорного эллипсоида, ограничивающего множество возможных состояний системы, и множества измерений, представляющего «гиперслой» в том же пространстве состояний. Сформулирована и доказана теорема о соотношении параметров априорного эллипсоида, параметров уравнения измерений и размерности пространства состояний, улучшающем оценки состояния системы по критерию минимума многомерного объёма апостериорного эллипсоида. На основании теоремы предложено упрощение алгоритма оценивания, которое исключает особый случай, — деление на ноль и принятие дополнительных мер для этого случая. Предложенное упрощение приводит к некоторому ухудшению эллипсоидальной оценки согласно принятого критерия минимизации в общем случае, а в предельном случае сходится к оптимальной оценке. Результаты проиллюстрированы примером оценивания статического состояния системы. Сравнены методы: оптимальный, упрощённый, предложенный в этой работе, и метод наименьших квадратов. Приведены полученные значения: точечная оценка и множественная эллипсоидальная оценка — величины полуосей апостериорных эллипсоидов.

Ключевые слова: алгоритм гарантированного эллипсоидального оценивания, множество достижимости, «гиперслой», уравнение измерений состояния системы, фазовое пространство состояний системы, верхняя граница оценки состояния системы, метод наименьших квадратов.

введение

96

В данной работе продолжены исследования алгоритма гарантированного эллипсоидального оценивания состояния линейной управляемой системы в фазовом пространстве состояний [1, 2], в которой измеряется только одна проекция вектора её состояния. Измерение содержит погрешность. Множество возможных состояний системы минимизируется по объёму. Геометрически результат работы алгоритма — эллипсоидальная аппроксимация пе-

© Н.Д. Панкратова, А.В. Шолохов, 2018

ISSN 1681–6048 System Research & Information Technologies, 2018, № 4

Связь параметров множества возможных состояний наблюдаемой системы ...

ресечения априорного эллипсоида, которым аппроксимировано множество достижимости линейной управляемой системы [3], и «гиперслоя», представляющего согласно данным измерения множество возможных состояний управляемой системы, ограниченное двумя параллельными гиперплоскостями. Рассматриваются и исследуются соотношения между размерностью пространства состояний системы, параметрами измерительного устройствауравнения измерений, включая погрешность измерения, и параметрами эллипсоидального множества возможных состояний системы. В результате можно получить верхнюю границу оценки состояния системы при выборе конкретного измерительного устройства, максимальной его погрешности в известных границах возмущающего воздействия на систему. Необходимость в этом часто возникает в практических случаях, когда статистические характеристики возмущения и погрешности измерения определить невозможно, невыгодно из экономических соображений или нет времени на их определение, однако граничные их значения известны из физических или конструктивных особенностей управляемого объекта и измерителя.

Параметры эллипсоида минимального объема, описанного вокруг сферического слоя или сегмента, были найдены для полусферы [4] и для «гиперслоя» [5]. В работе [6] предложен алгоритм эллипсоидальной аппроксимации по критерию минимума объёма для общего случая пересечения эллипсоида и «гиперслоя», а в [1] получено условие использования измерения, согласно которому априорный эллипсоид и «гиперслой» лишь касаются друг друга. Дальнейшие исследования проведём для случая, когда «гиперслой» пересекает априорный эллипсоид.

МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ

Пусть исходный эллипсоид задан в виде

$$x_{j} \in E_{j} = \{x_{j} : (x_{j} - \widetilde{x}_{j})^{\mathrm{T}} H_{j}^{-1} (x_{j} - \widetilde{x}_{j}) \le 1\}, \qquad (1)$$

 $j \in T_0$, j = 1,...,k $(k < \infty)$ — дискретное время; $E_j \subset X_j = R^n$ — компактное множество возможных значений исходного состояния; \tilde{x}_j и $H_j^{\rm T} = H_j > 0$ — заданные *n*-мерный вектор и $(n \times n)$ -матрица соответственно. Уравнение измерения

$$y_j = h^{\mathrm{T}} x_j + \xi_j, \ |\xi_j| \le c, \ j = 1, 2, ...,$$
 (2)

где $y_j \in R^1$; $h \in R^n$, ||h|| = 1 — параметр измерительного устройства; $\xi_j \in R^1$ — ограниченная помеха измерений; $c \ge 0$ — заданная константа в R^n определяет «гиперслой»

$$S(y_j, x_j) = S_j = \{x_j : (y_j - h^{\mathrm{T}} x_j)^2 \le c^2\}.$$
 (3)

На основе выражений (1) и (3) строится гарантированная эллипсоидальная оценка

$$E_{j+1} \supset E_j \cap S_j, \ E_{j+1} = \{x_{j+1} : (x_{j+1} - \widetilde{x}_{j+1})^{\mathrm{T}} H_{j+1}^{-1} (x_{j+1} - \widetilde{x}_{j+1}) \le 1\}, \quad (4)$$

Системні дослідження та інформаційні технології, 2018, № 4

меньшая или равная по объему предыдущей (1). Иначе оставляем исходный эллипсоид.

Согласно работе [1] получим аппроксимирующий эллипсоид (4), параметры которого зависят от степени пересечения априорного эллипсоида и «гиперслоя»:

$$\widetilde{x}_{j+1} = \widetilde{x}_j + \tau_j e_j^{-1} H_j h_j \sigma_j;$$
(5)

$$H_{j+1} = (H_j - \tau_j e_j^{-2} H_j h h^{\mathrm{T}} H_j) \gamma_j^2;$$
 (6)

$$\gamma_j^2 = 1 + \tau_j (\chi_j^2 (1 - \tau_j)^{-1} - \sigma_j^2);$$
(7)

$$\tau_j = (q_j^{-1} + e_j^2)^{-1} e_j^2, \ 0 \le \tau_j < 1.$$
(8)

Здесь: \tilde{x}_j — центр априорного эллипсоида; \tilde{x}_{j+1} — центр аппроксимирующего эллипсоида; $e_j = \sqrt{h_j^{\mathrm{T}} H_j h_j}$ — «энергетическая норма» [7] матрицы H_j эллипсоида E_j ; $\Delta_j = y_j - h_j^{\mathrm{T}} \tilde{x}_j$ — расстояние от центра априорного эллипсоида E_j до середины «гиперслоя» S_j вдоль направления h_j ; $\sigma_j = \Delta_j e_j^{-1}$; τ_j — шаг алгоритма; $q_j^{-1} \ge c e_j$ — подстроечный параметр, полученный из условия использования измерения (2) в случае, когда «гиперслой» лишь касается исходного эллипсоида; $\chi_j = c e_j^{-1}$ — нормированная полуширина «гиперслоя».

Условие информативности измерения у ј записывается в виде [1]

$$(1 - \tau_j)(1 + \tau_j(\chi_j^2(1 - \tau_j)^{-1} - \sigma_j^2))^n \le 1.$$
(9)

Чем меньше левая часть при принятом выражении для τ_j , тем информативнее y_j . Требуется найти такие соотношения между параметрами χ_j , σ_j и размерностью пространства состояний *n* в алгоритме, чтобы при имеющемся y_j левая часть неравенства (9) была бы минимальной, Будем искать также значения χ_j , σ_j , при которых (9) превращается в равенство.

РЕШЕНИЕ ЗАДАЧИ

Продифференцируем левую часть неравенства (9), приравняем полученный результат к нулю и проведём возможные упрощения:

$$(n+1)\sigma_j^2\tau_j^2 + (\chi_j^2 - (1-2n)\sigma_j^2 - 1)\tau_j + 1 + n(\sigma_j^2 - \chi_j^2) = 0.$$
(10)

Решив уравнение (10) и взяв положительный корень, получим оптимальное соотношение для τ_i .

Подобным образом решение получено для q_j [10]. Подставив его в выражение (8), получим такое же решение (10). Однако это решение имеет знаменатель $(n+1)\sigma_j^2$. Тогда при $\sigma_j = 0$ возникает особенность — деление на ноль. Во избежание этого вводится ограничение $\sigma_j > \delta$, где δ — некоторая малая константа. В случае $\sigma_j \le \delta$ необходимо перейти к другому выражению для τ_j — решению линейного уравнения, полученного из уравнения (10), если положить в нём $\sigma_j^2 = 0$. Чтобы избежать этого предлагается выбор выражения для τ_j другим путём. Сначала исследуем предельный случай равенство в выражении (9), которое справедливо при $\tau_j = 0$. Подставив в уравнение (10) $\tau_j = 0$, получим значения χ_j , σ_j , при которых (9) превращается в равенство:

$$\chi_j^2 - \sigma_j^2 = n^{-1}$$
 или $\sigma_j = \sqrt{\chi_j^2 - n^{-1}}$, либо $\chi_j = \sqrt{n^{-1} + \sigma_j^2}$. (11)

Таким образом, сформулируем теорему:

Пусть $E_j \cap S_j \neq \emptyset$. Тогда, для того чтобы измерение y_j было информативным, т.е. выполнялось условие (9), необходимо и достаточно, чтобы выполнялось $\sigma_j \leq \sqrt{\chi_j^2 - n^{-1}}$.

Следствие. Если $\sigma_j = 0$, т.е. середина «гиперслоя» S_j с полушириной χ_j проходит через центр априорного эллипсоида E_j , выражающего неопределённость состояния, с матрицей H_j , то зависимость между H_j , размерностью пространства состояний n, полушириной χ_j (максимальной величиной погрешности измерения c) и параметрами измерительного устройства приобретает вид: $c \leq \sqrt{n^{-1}h^{T}H_{j}h}$.

Далее сформулируем лемму о выборе шага τ_j . Пусть $E_j \cap S_j \neq \emptyset$. Прологарифмируем выражение (9): $\ln(1-\tau_j) + n\ln(1+\tau_j(\chi_j^2(1-\tau_j)^{-1} - \sigma_j^2)) \le 0$. Отсюда $n\ln(1+\tau_j(\chi_j^2(1-\tau_j)^{-1} - \sigma_j^2)) \le -\ln(1-\tau_j)$. При $0 \le \tau_j < 1$ на основании известного неравенства [8] имеем $\ln(1+\tau_j) \le \tau_j$, $\forall \tau_j > -1$, откуда $\tau \le \ln \frac{1}{1-\tau}$. Переходим вначале к неравенству $n\ln(1+\tau_j(\chi_j^2(1-\tau_j)^{-1} - \sigma_j^2)) \le n\tau_j(\chi_j^2(1-\tau_j)^{-1} - \sigma_j^2)$, а затем к $n\tau_j(\chi_j^2(1-\tau_j)^{-1} - \sigma_j^2) \le \tau_j$, которое стремиться к равенству быстрее, чем (9). Тогда

$$\tau_j = 1 - \chi_j^2 (1 + n\sigma^2)^{-1}.$$
 (12)

Приравняв неравенство (12) к нулю, получим выражения (11).

В работе [6] переопределяются параметры «гиперслоя» — полуширина χ_j и расстояние σ_j — до его середины в случае пересечения эллипсоида «гиперслоем» только одной своей границей: $|\sigma_j| - \chi_j < 1 < |\sigma_j| + \chi_j$. То есть

выполняется переопределение: $|\sigma_{j,corr}| + \chi_{j,corr} = 1$. Здесь: $\sigma_{j,corr} = (1 + |\sigma_j| - \chi_j)/2$; $\chi_{j,corr} = (1 - |\sigma_j| + \chi_j)/2$ — переопределённые параметры. Подставив $\chi_j = \sqrt{n^{-1} + \sigma_j^2}$ из равенства (11) в $|\sigma_{j,corr}| + \chi_{j,corr} = 1$, получим $|\sigma_{j,*}| = (n-1)/(2n)$, откуда $\chi_{j,lim} = (n+1)/(2n)$. При $\sigma_j = 0$ и $|\sigma_{j,*}| = (n-1)/(2n)$ покажем на графиках (рис. 1) значения левой части выражения (9) — критерия информативности изменении χ_j от малого значения до $\chi_j = 1/\sqrt{n}$ и $\chi_{j,lim} = (n+1)/(2n)$, n = 2.

По оси ординат отсчитываем значение критерия информативности, по оси абсцисс – полуширину «гиперслоя». Сплошной линией показан субоптимальный график (Suboptimal), пунктирной — оптимальный график (Optimal). На рис. 1, *а* показаны графики при прохождении середины «гиперслоя» через центр априорного эллипсоида: $\sigma = 0$, а на рис. 1, δ — когда середина «гиперслоя» на расстоянии $|\sigma_{j,*}| = (n-1)/(2n)$ от центра априорного эллипсоида.

ОЦЕНКА ПОЛОЖЕНИЯ НЕПОДВИЖНОГО ОБЪЕКТА ПО ТРЁМ ЕГО ПЕЛЕНГАМ, ВЗЯТЫМ ИЗ РАЗНЫХ ТОЧЕК

Для иллюстрации работы алгоритма возьмём пример из работы [9] (рис. 2).

ISSN 1681–6048 System Research & Information Technologies, 2018, № 4

Требуется оценить положение (x, y) точки A, лежащей на плоскости, по измерениям углов z_i , производимым из нескольких точек B_i (i = 1, 2, ..., k), которые расположены на линии отсчёта 0x на расстоянии l_i от начала координат. С положением точек A и B_i угловые измерения z_i связаны нелинейными уравнениями:

$$z_i = \operatorname{arctg} \frac{y}{x - l_i} + v_i , \qquad (13)$$

где v_i — случайная ошибка, допущенная при измерении угла z_i .

Puc. 2

Предположим, что $|z_i| \le c$, где c — известная константа. Линеаризуем выражение (13) в окрестности априорной оценки положения (x, y), которую обозначим как $(\bar{x}, \bar{y}) : dz = h_i [x_i - \bar{x}, y_i - \bar{y}]^T + v_i$, $dz = z_i - \bar{z}_i$, $h_i = [h_{1,i}, h_{2,i}]$, $\bar{z}_i = \arctan \frac{\bar{y}}{\bar{x} - l_i}$, $h_{1,i} = \left(\frac{\partial z_i}{\partial x}\right)_{\substack{x=\bar{x}, \\ y=\bar{y}}}$, $h_{2,i} = \left(\frac{\partial z_i}{\partial y}\right)_{\substack{x=\bar{x}, \\ y=\bar{y}}}$. Пусть k = 3 и заданы данные: $l_1 = 0$, $l_2 = 152,5$ м, $l_3 = 305$ м; $z_1 = 30,1^\circ$, $z_2 = 45,0^\circ$, $z_3 = 73,6^\circ$; $R = E[v_i v_j] = \operatorname{diag}(r_{ii})$: $r_{11} = 0,01$, $r_{22} = 0,01$, $r_{33} = 0,04$, где размерность r_{ii} — *градус*²; начальная точечная оценка $\bar{x}_0 = 369$ м, $\bar{y}_0 = 213,5$ м; матрица гарантированного эллипса начального состояния $H_0 = 9 \begin{bmatrix} 1,045 & 0,967\\ 0,967 & 1,183 \end{bmatrix}$ и максимальное значение погрешности измерения $v_i^2 = r_{33} = 0,04$. Получим оценку методом наименьших квадратов (МНК) по трём измерениям, как в работе [9], и методом гарантированного оценивания. Используем выражение для шага τ_j (12) и выражение для подстроечного параметра q_j из работы [6], подставив его в выражение (8) и получив τ_j либо, что то же самое, решив уравнение (10) и взяв его положительный корень. Процесс получения оценки (4) по формулам (5)–(8) изображен на рис. 3.

Puc. 3

Результаты оценивания приведены в табл. 1.

Tr.	. 6	_			~	- 1
12	4 U	Л	И	Ц	a	_ 1

	Параметры			
Метод	$\hat{x}_{3},$ м	ŷ ₃ ,м	Корни из собственных чисел матрицы (полуоси эллипса) H_3 , м	
МНК [9]	370,5	214,1	$1\sigma = 39\%$: 1,451; 0,392	
Г.О. (12)	368,7	213,2	3,999 ; 0,744	
Г.О. [6]	368,8	214,0	2,236 ; 0,726	

Повернув исходный эллипсоид на 90° против часовой стрелки (на рис. 3 не показано), снова выполним вычисления, результаты которых приведены в табл. 2.

Т	a	б	Л	И	Ц	a	2
---	---	---	---	---	---	---	---

	Параметры				
Метод	$\hat{x}_{3},$ м	ŷ ₃ ,м	Корни из собственных чисел матрицы (полуоси эллипса) H_3		
МНК [9]	354	227,44	$1\sigma = 39\%$: 0,38; 1,443		
Г.О. (12)	368,7	213,66	0,777; 2,559		
Г.О. [6]	368,34	214,0	1,007; 1,545		

выводы

Несмотря на меньшие значения суммы квадратов полуосей эллипсоидов, полученных с помощью МНК по сравнению с эллипсоидами, полученными с помощью метода гарантированного оценивания согласно формуле (12) и работе [6], оценка МНК существенно зависит от исходного предположения о начальной точечной оценке. Гарантированное оценивание такой зависимости оценки от исходных предположений не показало, что свидетельствует о большей надёжности метода. Применение предложенного в работе выражения для субоптимального шага в алгоритме эллипсоидального оценивания не влечёт заметного ухудшения качества оценивания, но оказывается более простым, чем выражение для оптимального шага.

ЛИТЕРАТУРА

- Бакан Г.М. К построению робастного алгоритма гарантированного оценивания состояния линейной управляемой системы / Г.М. Бакан, А.В. Шолохов // Проблемы управления и информатики. — 2007. — № 1. — С. 16–25.
- 2. Шолохов А.В. К эллипсоидальному оцениванию состояния линейной динамической системы по скалярному наблюдателю / А.В. Шолохов // Системні дослідження та інформаційні технології. 2008. № 3. С. 78–87.
- Черноусько Ф.Л. Оценивание фазового состояния динамических систем / Ф.Л. Черноусько. — М.: Наука, 1988. — 320 с.
- Юдин Д.Б. Информационная сложность и эффективные методы решения выпуклых экстремальных задач / Д.Б. Юдин, А.С.Немировский // Экономика и математические методы. — 1976. — Т. 12. — Вып. 2. —С. 357–369.
- Шор Н.3. Об одном семействе алгоритмов для решения задач выпуклого программирования / Н.3. Шор, В.И. Гершович // Кибернетика. — 1979. — №4. — С. 62–67.
- 6. Волосов В.В. Об одном способе построения эллипсоидальных оценок в задачах нестохастической фильтрации и идентификации параметров управляемых систем / В.В. Волосов // Автоматика. 1991. № 3. С. 24–32.
- 7. Воеводин В.В. Матрицы и вычисления / В.В. Воеводин, Ю.А. Кузнецов. М.: Наука, 1984. 320 с.
- Абрамович М. Справочник по специальным функциям с формулами, графиками и таблицами / М. Абрамович, И. Стиган. — М.: Наука, 1979. — 832 с.
- 9. Брайсон А. Прикладная теория оптимального управления / А. Брайсон, Х. Ю-ши. — М.: Мир, 1972. — 544 с.

Поступила 16.11.2018