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TO THE QUESTION OF MIXED TYPE SYSTEM SIMULATION IN
THE TASKS OF ANALYSIS AND CONTROL

G. IOVANE, V.M. MIZERNYY

The paper presents the research of the mathematical models of mixed systems and
considers the principal tasks of analysis, controlling and evaluation of objects’ states
parameters, described by nonlinear integral and differential equations with partial
derivatives.

INTRODUCTION

In the context of making tasks on simulation and controlling for complex systems,
which arise in different branches of physics, chemistry, economics and so on, dif-
ferent approaches were developed based upon the conception of mixed systems
[1-4]. The number of control processes in mathematical models, which contain
systems of equations of different types, as for instance differential and integral
equations, contain blocks with distributed and concentrated parameters, multi-
variable and discrete-continued systems [5—6], etc. The progress of research of
mathematical modelling for objects with distributed parameters is due to link to
the great development of nonlinear analysis method, which is applicable in differ-
ent spheres of mathematics [7-9]. Thus, it is quite natural to reduce the study of
these models to nonlinear operator, differential-operator equations, variable ine-
qualities and systems, which contain the above objects. With this approach, the
results for specific objects will be the consequence of operator methods.

TASK SETTING

For the description of some nonstationary processes, which take place in the di-
mensional sphere Qc RY during the time S, we operate with functions of time

and coordinates, that is, with the function z, which brings the actual number of
vector z(t,w) to conformity with each pair (¢,w)cSxQ . The variables ¢ and @
are independent.

Another convenient approach to the mathematical description of non-
stationary processes allows to work with functions, which bring the coordinate
function z(¢,-) determined on S to conformity with each moment of time ¢,

with the determination in some space Z, thatis ze(S—>Z2).
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Let us consider some nonstationary tasks, whose description is made with
the help of nonlinear functional equations system.

Task 1. Let © be the restricted sphere of RY with regular bound 0Q and
the S time interval S=[0,7], T > 0; we consider

x(t,w)+ IK(a), w)h(w, (z(t, w),x(t, w)))dw = g(t,w), (D
Q

Jw

i,j=19%i

E - Y- ay Lo |+ Qo) 200 = f0) @)
o i o0, @R ’

V(t,0)eSxQ, z(0,0)=y(m), z(t,x)|y =0 V€S, (3)

where 2=0Qx S, the factors a; are constant values.

Through z(¢,-), t € S we label a function, designated on S xﬁ, which has
the fixed variable ¢.
The classical solution for the system (1)—(3) is function of x(¢,w), z(t,w) ,

designated on S x Q; and the function z(t,w) has to be continuously differenti-

able with respect to ¢ and double differentiable with respect to @, and should
fulfil the conditions (3). The function z (¢,®) is differentiable with respect to @ .

Typically, proving the theorems of existence for classical solution of tasks
(2)—(3) requires the application of complicated mathematic technique. That is
why the proceeding from the classical task (1)—(3) to the corresponding task in
functional and analytical setting is quite logical. Consequently, let us introduce
some functional spaces with (S — Z) [5] and the following symbols:

YO =x(t); D=2,
By(t) = (DY)(t,"); (Dy)(t,) = [ K (e, w) x(t, w)dw,
Q

Fly (), y(t)=h(,z(t,),x(t,)); b(t)=g(),
G(y(t)’l)”(t)) = Q(',X(l,'),Z(Z‘,')) 5

i,j:laa)i

Noo oz
Ly/(t)ZEZ(t,), (EZ)(t,a))Z— Z_[alj w(taa))Ja (4)
J
, Oz
l//(t)=5(t,-); v(0)=y(); e)=1(").

Considering the above relations, the system (1)—(3) with the initial and
boundary conditions can be represented in the terms of operator equations:

y(O+FB(y(1),y(0)=b(1), )
v' (O +Ly)+Gy@).v0))=9@), (6)
y(0)=7(). (7
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Let us assume, that the abstract functions belong to classes

Y(0)e(S - L, (@),

v @y poe s @l ).
and the operators, which belong to (5)—(6), act according to the rules:
FW (Q)xL,(Q)— L, (Q),
B:L,(Q)— L, (),
L@ ©),
G:L,(Q)xW,(Q)— [Wp”’ (Q)],
where G and F are nonlinear reflections, L, B are linear, L ,(€2) is the space of

p-integrable functions, W;” (Q) is Sobolev space [5], [W[;" (Q)]* is the integrated
space.

We note that the operators F, B, L, G do not depend explicitly on vari-
able ¢.

Task 2. Instead of the system (1)—(3), we consider the following system:

x(t, @) + [ K (@, w)h(w, (2 (t, ), x(t, w)))dw = g (t,w), (8)
Q

0z & 0 0z
E(t’a))_ z%[alj a_a)j(taa))J—FQ(a)ax(t’w)az(t’w))_f(taa)) (9)

i,j=1Y%i
Y (t,@)eSxQ; 2(0,0) = y(@); z(t,x)y =0 VieS, (10)

where the factors a;; are constant values.

We introduce the following functions and expressions:

YO=X(0% =200 ¥ =),
B@)y(t)=D(t,)Y(t,); D, o)Y(t,w)= IK(w,-, w)x(t,w)dw
Q
F(t)(l//(t),y(t))Zh(t,',Z(f,'),X(l,')); b(t):g(t")a

G(t)(y(t)’l//(t)) = Q(t,',X(t,‘),Z(l,')),

ow

i,j=1Y%i

Yoo oz
L(//(t) = (EZ)(t"),(EZ)(ta a)) =- z_(azj a(t’ CO)J 5
J

w(0)=7() o0)=/(")
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and from (8)—(10) we proceed to the system of operator equations:

y(@)+ B F@)(w (1), y()=b(t), (11)
w'O)+ Ly )+ GO)(y@),w (@) =), (12)
v(0) =y, (13)

where the operators, which act on abstract functions, depend on variable ¢ explic-
itly. In detail, B(t), F'(¢), G (¢) act in the spaces, determined by the task (5)—(7).

In the given example Z'e(S— Z *) shall be understood as follows: the de-
rivative from Z with the respect to ¢ in the sense of space devision D*(S,Z *) can

be represented with the help of the function (S —» Z *) [5].

Task (1)—(3) or (8)—(10) with the initial and boundary conditions and the
corresponding tasks (5)—(7) and (11)—(13) are equivalent in some sense.

This can be proved with the application of such lemma:

Lemma 1 [5]. The following relation

w(t)=z(@,) VteS (14)

determines the mutual correspondence in a unique fashion Z — iy between
the function ze C(Sxﬁ) and the function we C(S; C(a)). The function

ze C(Sx 5) has partial derivative %e C(Sx 5) and %(t,-) =y'(t) for each a

tes.

Let us consider the conditions for a possible realization of the models of
mixed objects, which are described by system of nonlinear integer equations and
evolution equations with integro-differential operators.

Let Q be a restricted sphere in Euclidean space R" and X, Z be Banach

spaces of functions on Q with the norm ||||X, ||||Z and S = [0, T], T>0.
Let us consider the equation system
x(t, @) + [ K (e, W) h(t, w, 2(t, W), x(t, W))dw = g (1, @), (15)
Q
2 2
ECO) [ 10,0t (1), 2t ), s - T2 O Ny
ot o aW] aWN awl 6‘w,2\,

= p(t,0) (16)
V(t,w)eSxQ, 2(0,)=Zy € Z, z(t,0), =0, £=(0,T)xoQ, (17)

which we will write [5] in the kind of operator
y(&) + BE (1) (w (1),y(2)) = o(1) , (18)

'O+ GO w@)=f@1) ViesS 19)
with the initial condition y(0)=y.
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We stress that in the first equation the variable 7 acts as a parameter.

Here F = {F (t)}, G= {G(t)}, t €S are in the families of nonlinear opera-
tors, acting in spaces F(t):ZxX—)X*, G(t): XxZ—>Z VteS, and the op-
erator B: X —> X is a linear one. The functions ¢ — y(t) and t > w(t) are de-
termined for ¢ € S and belong to spaces C(S;X) and C(S;Z) accordingly.

Let us assume that the family of operators F = {F ( t)}, G= {G( t)} satisfies

the following conditions:
a) foreacha ye X and w €C(S;Z), the function S>>t F(¢t)(yw(t),y) e

e X" is of class C(S;X*);
b) for each a ze Z and he C(S;X), the function S >t G(¢)(h(1),z) e
eZ isofclass C(S;7);

¢) the operators F(¢)(y,)e(X > X *) and G(t)(y,)e(Z > Z) are equally
continuous, that is, there are the constants 7; and r,, which are independent
from ¢, and follow the condition

[F@O@,3) - F@O) W, 2,)

CSnvi-a| YweZ Vyy,ex
X
and

GO -GG <nlyi-wa| YyeX.Yyip,eZ.

Let us assume that G(y,1) = {G())(y(1),y (1))}

Lemma 2. Let the family of operators G ={G(¢)} satisfy the conditions b),
c) VyeC(S;X) and w € C(S;2).

Then G(y,w)eC(S;Z).

Proof. Let {tn }c S be any sequence, with ¢, -, when n— c . By virtue
of execution of condition c)

||G(tn )(y(tn )’ V/(tn )) - G(t() )(y(tO )a l//(t() )) -

- G(tn )(y(tn )5W(t0 )) + G(tn )(y(tn )al//(tO ))" 7 S

< (1)~ wity )||Z +HG @)@ (@), w (10)) = Glte X (t0) v (2 ))||Z :

When ¢, — ¢, the augend in the right summand tends to zero due to the con-

tinuous function y, and the addend tend to zero according to the condition b).
This proves for lemma.

The analogical lemma can be formed as for the family of operators
F={F(t)}.
Lemma 3 [5]. The norm

W lc.r) =sop {e‘k’lll/f(f)IIZ . k20, (20)

is equivalent to the norm
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"'//”c(S;Z) = 5121; ”'//(Z)”Z :

Theorem 1. Let the conditions a)+c), related to the family of the operators
F, G, come true and the operator B be linear and continuous, whose norm satis-

fies the inequality

||B|| < E , where r; =const is constant.
n

Then the task
y(@) + BE(1)(w (1), y(1)) = (1) ,
v'(O+ GO @0w @)= f()
with the initial condition w(0)=y has solution for any ¢ € C(S;Z), f€(S;2)
and yeZ .

Proof. We obtain the previous result by using the principle of fixed point.
Integrating the second system equation on the interval [0;¢], we obtain

l//(t)=7—j[G(S)(y(S),'//(S))—f(S)]ds- #2))

The integral here is consideored in the sense of Bohner. We designate
(Ut//)(t)=y—i[G(s)((s),l//(s))—f(S)]ds, (22)
Uy (01(6) = p(6) = BF 1)y (1), (1)) (23)

By virtue of lemma 2 and differentiality of an indeterminate integral of
Bohner [5], the operator U acts from C(S; X)x C(S;Z) into CI(S;Z).

We show that with each y e C(S;X) the reflection of U with some k>0
is compressed into (C;k) — to the norm of the space C(S;Z%).

According to c), from (22) it follows that for any v ,y, € C(S;Z)

|y )@~ Uy , S j||G(S)(y(S),¢//1 (s) -
0

t
—GEOWE )] e e ds<n [y -y, eeFds<
0

Ky
<ny _%”(C’k)[e i j

Then
G A G e S (R R L

ch

2=y v, -
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Taking in the left part the upper bound on the 7 € S, we obtain

"Ul//l —U‘//2||Z S%(1—@_1“)”‘//1 —‘//2"(”)-

If we choose k=r,, the reflection of U will be compressed. So for each
y € C(S;X) there is the element y, € C(S;Z), which is fixed point of reflection
U,thatis wy=Uy,.

By the virtue of (22) we have

vo ) =7~ [[GEEY () - f(©)lds Vies. (24)
0

Considering that the right part of this expression has the continuous deriva-
tive on ¢, then vy, c! (S;Z) and
v+ GO,y @)=f(1) VieS,

and v/ (0) = 7().
Then we consider the operator U, with the fixed y . According to c¢) from
(23) it follows that for V y;,y, € C(S; X)

[U6@31 @0 =Ug 0y, )] | =[BF @) ©).31(1) = BE@W 0.2 ()] =
=[BIF 0w . (@) = FOw @.2D]  <[[B]-[F @@ 0,10 -
—F@)(w (), y,(1)

<[l =220
X
If
18- <1, (25)
then the operator U, will be compressed in space C(S;X) with each
welC(S;2).
In the system of equations,

y(t) = (t) - BF (t)(w (1), »(1)), (26)

w()=7 - [[GEE.w(s) - ()]s, 27)

which is received from task (18)—(19) with the initial condition ¥ (0) =y , assum-
ing that y =y, v =w,, where (y;;;) — is any pair from C(S;X)xC(S;Z2),
we have

V2 () = @(1) = BF () (y, (1), y1 (1)) -

Then we substitute the pair (y,;¥,) into the equation (13). Consequently,
we get

v () =7 =[G (w1 ()~ £ (9)]ds.
0

Cucmemni docnioxcenna ma ingpopmayitini mexuonoeii, 2006, Ne 3 69



G. lovane, V.M. Mizernyy

We substitute the pair (y,;¥,) into (26). Having determined y;, we substi-
tute the pair (y5;¥,) into (27). Then we determine w5 By repeating the previous
procedure, we get an iteration process

Yur1 () = (1) = BE@)(y, (1), y,, (1)) (28)
and

Vi 0= 7 = [[GE)@, )y () - £(5))ds (29)
0

We prove that the succession {yn }{ n} converge to the fixed point
(¥03w¢) , which is the solution of the system (26)—(27) and, as a consequence, of
the system (18)—(19).

With any n we have

[un @ =2, 0] =lUo®y, () -Us@)y,1 0]

= ||BF(t)(Wn (t)’ Yn (t) - BF(t)(l//n—l (t)9 Yn-1 (t)))” X

IA

=[BlF @O, 0. y,@) = FOW, 1 0.7,40)]

< "B" : ”F(t)(l//n (t)a yn (t)) - F(t)(l//n—l (t)a yn—l (t))” N <

<|Bl A |y, =y @] =aly,@-y,00] .
where o = ||B||r1 <I.
Generally, the following chain of inequalities holds:
[y @ =@ aly,©-y,0 0] <.<a™r0-n0)] -

We show that the sequence { n} is fundamental for C(S;.X). Using the ine-
quality of triangle and previous inequalities with m>n, we have

i = valcisiy =Im = Yot + Vi = Yz + Yz =t Vi = Vall sy S
<[ym =V "C(S;X) yma =y ”C(S;X) ot |yaa = ”C(S;X) <

< “m_2||y2 - yl”C(S;X) + am_3”y2 N "C(S;X) tota ||y2 B yl”C(S;X) -

:(am—2 + ™3 +...+a”_1)||J’2 _y1||C(S;X)'

We designate the expression between brackets through
Si=a" " o +a" T a™

Analogically through
3 m=2 m

S,=a" ta"++a" P ra" va™

we designate the infinite sum.
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Then
3 <, = +a" a4+ ...,
where >, is the sum of members of infinite decreasing geometric progression,

whose first member is "~ with the denomination a <1.

As well known,
n—1

then
[ =2 "C(S;X) <% [v2 - ||C(S;X) <Zofy2 - n "C(S;X )<

<

an—l
T ”3’2 - y1"C(S;X)'

Considering that with n — oo the value in the right part of inequality tends

to zero with any m > n, then || Y =V — 0 thus, the consequence { n} is

"C(S;X)
fundamental. In Banach space C(S;X) the fundamental consequence { n} has
the limit y,. In analogical way, we obtain the sequence { n}, fundamental in
C(S;X) with the limit v, .

Proceeding to the limit # — o in the equations (28)—(29) and considering
the condition a) (it needs in the condition of the given theorem), and using the fact

that the operator B in the first equation and integral operator in the second equa-
tion are linear and continuous, we obtain:

Yo =@(t) = BFE(1)(yo (1), o (1)),

t
vo =7 [[GE 00w () - £(5)ds.
0

Thus, the theorem is proved.
Let us consider the system of integro-differential equations of the following
type
x(t, @)+ [ K(t,0,w)h(t, w,2(6, w), x(t, w))dw = g (1, ), (30)
Q

1574
t,w,x(t,w),z(t,w),—,...
(7, w),z( )aw

% (o) [ L@, w0 dw=p(t,0)  (31)
ot o

oz 0’z 0%z
...,aWN ’8w12 ’6‘w]2\,

V(t,w)eSxQ, z2(0,)=yeZ, z(tw), =0, (32)

or in the operator form
y(O)+BO)F()(yw (), (1)) = 0(1), (33)
y'(O) + GOO@O.w@)=f(1) VieS (34)
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with the initial condition y(0) =y .
We stress that in the first equation the variable ¢ acts as a parameter.
The family of nonlinear operators

F={F®)}, G={G(n)}, teS
are the same as in (4)—(5).
B(): X T X explicitly dependon t € §.
Let F and G satisfy the conditions a)+c), and the family of operators B(r)

. 1 ..
is such that ||B(t)|| <— Vte§, where the constant 7; comes from condition c).
n

For the system (33)—(34) with the initial condition ¥ (0) =y such statement
comes true.

Theorem 2. Let us assume that the conditions a)+c) come true as for the
family of operators F(¢), G(¢) and the norm of the family of linear operators

. . . 1 .
B(t) satisfy the inequality ||B( t)” <— VteS, where r; =const from the condi-
i

tion ¢). Then the differential-operator system
y(@) + BO) F(0)(w (1), y(1) = (1),

w'(O+GO@).w @)= f()
with initial condition ¥ (0)=py has a solution in C(S;X)xC(S;Z) for any
peC(S;X), feC(S;Z) and yeZ.
The proof of theorem 2 is obtained by the analogy with theorem 1.

Let us consider the conditions of possible realization of mixed objects mod-
els, which contains evolution equations of the second order.

In the restricted domainQc R” with the bound O0Q on the interval
S =(0,T), the system of equations is searched

x(t,0) + [ K (@) h(t w,2(6,w), x(t, W) dw = g(t,0), (35)
Q
2
TEGD) [ o, w)Q[z, 0,3, W), 21, W)y~
ot o ow,
(36)
oz 0’z 0’z
e , N dw = p(t, w),
where (¢,®) € S xQ), with initial and boundary conditions
0z
z(0,®) =y (@), E(O’ ) =70, (37
z(t,®)|y =0, T=5x0Q. (38)
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In the first equation the variable ¢ acts as a parameter. Through X, Z we
designate the true functional spaces and consider the families F = {F (t),te S}

G= {G(z), te S} of nonlinear operators, which act in spaces F(¢):Zx X —> X 5
G(t): X xZ — Z . As in the previous cases we rewrite the task (35)—(38) in op-
erator form

y(®) + BOFOp (@), y(6)=0(1), (39)

v"'(0)+ GO0, w(®)=f) VieS (40)
with the initial conditions

yO) =7, v'(0)=r, (41)

where B(¢): X " X isthe family of linear reflections.

Task (39)—(40) with initial conditions (41) can be brought to the task, which
was considered in the theorem 2, by introducing designationy'(¢) =¢q(¢). Here

instead of the families of the operators F(¢), G(¢), B(t), which act as
F@): X > X", B(1): X 5x, G(t):Z —> Z , we consider the following opera-
tors G:(S —>2Z) > (S —>2) 3 (L,(5:2) > L,(5;2)), p>q, %Jr%:l.

Thus, we get more common task setting, considering that each family {G(t)}
of operators with (Z — Z) can be given the correspondent one trajectory operator
Ge ((S >Z2)>S > Z)) according to rule (Gz)(t)=G(t)z(t) VteS.

Not each operator G:(S > Z) — (S — Z) are interesting for our purpose.

An example is given by the operators, which contain the so-called Volterra’s op-
erators a G e((S —>7Z)>(S —>Z)) (which play an important role in different
practical appendixes). They are characterized by the fact that the value (Gz)(¥)
can depend upon the values of function z in the interval [0;7], that is on “previous
history”.

Considering the above question, let us give more modified task setting. Let

Z be a reflective Banach space, continually and snugly put into the Hilbert space
H and the operator of Volterra G works as

G:L,(S:2)>L,($;Z7), p>1, 1/ p+ljqg=1, feL(S;Z").
Then the following task setting will be right: w'+Gy = f, w(0)=ye H .
Indeed, considering that Z c H A (see [5], paragraph 6, ch. 1), from
wel,(S;Z) it follows that y eD*(S;Z*). That is why the equation
w'+Gw = f can be understood as the equation in D*(S;Z*). If yeL,(S;2)
satisfies the given equation, then y'e L, (S;z*) (see [5], theorem 1.17, ch. 4)

w e C(S;H), that is the initial condition y(0) =y € H makes sense. The results
of theorems 1, 2 can be generalized for the specific case, when instead of opera-
tors from family {G(t)}, te S there are the operators of Volterra’s type. The
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meaning of this operator can be specified more wider than in the previous consid-
erations.

Denotation 1 [5]. Let Z,, Z, be linear spaces and S =[0;7] 7 >0. The re-
flection G € (D(G) > -7, )), D(G)c (S = Z)) is called operator of Volter-
rif from the equation y(s)=¢@(s) almost for all se [O;t], te s, it follows that
(Gy)(5) =(G)(s).

Firstly, we consider operators of Volterra, which reflect the space
C(S;Z) into themselves. For this case in denotation 1 it needs to put

Z,=2,=Z7 and D(G)=C(S;Z), and the expression “almost for all” change for
“for all”.

In this case the condition of Lipshitz for the operator of Volterra G looks
like:
Yy, w,eC(S;2)

|Gwi - GWZ”C(S;Z) <ry _‘/’2”c(s;z)’ 7, =const. (42)

As for the system of operator equations, which are under consideration, the
generalization of the conditions (a) and (b) shall be:

(aa) for each yeC(S;X) and weC(S;X) the functions ¢— F(¢)x
x()(w (1), y(t)) and 1 — G(t)(y(2),w(t)) are determined Vze S and belong to
C(S;X"), C(S;Z) accordingly.

(bb) for yeC(S;X), we(C(S;Z) the operators G(y,)e (C(S; Z)—>
- C(S;Z)), F,)e (C(S;X) - C(S; X*)) and equally of Lipshitz, that is there
are the constant #; and r, , that the conditions come true:

||F(W,yl) _F(l//ay2)||c(5;X*) < rl”.yl - y2||C(S;X)
Vi eC(S;2), Vy,y,€C(S;2),
||G(y7 l//l) - G(y: "4 )”C(S;Z) < ) "l//l ) ||C(S;Z)

VyeC(S;X), YVy,,w, €C(S;2).

We give for example the known statement, which is used with the applica-
tion of principle of fixed point to the tasks under consideration.

Lemma 4 [5]. If the operators G satisfy the conditions (42), then for any
vi,W, €C(S;Z) and Ve S

|G, _GWZHC([O;t];Z) <n|w _W2||C([O;t];2) , 1, =const .

Let us give the example for Volterra’s operators, which satisfy (42).

1. Let heC(S), 0<h(t)<t for Ve S and {Q(t), t €S} be the family of
operators from X — X , which satisfies the conditions:

e for each xe X the function ¢t > Q(¢)x is determined for t €S and be-
longs to C(S;X);

74 ISSN 1681-6048 System Research & Information Technologies, 2006, Ne 3



To the question of mixed type system simulation in the tasks of analysis and control

e the operators {Q(t)}e (X > X) (equally-relatively ¢#€S) is Lipshitz’s
continuous, i.e. there is such a constant » (independent on ), so for any x,y € X
Lipshitz condition comes true.

[o@x =0y <=2, - (43)
If we put
(Qu)(1) = Q(ul(h(0)), ueC(S:X),
then O will be Lipshitz’s-continuous operator of Volterra from (C(S;X )—>
- C(S;X)).

2. Let the operator of Volterra V satisfy the conditions (42). Then for
ueC(S;X) we have

(Ou)(t) = j k(t,s)Vu)(s)ds, keC (SxS), teS;
0

the operator Q will also be an operator of Volterra, which satisfies (8).
3. Let O, V' be operators of Volterra, which satisfy (8). Then their linear
combinations and composition Q o} have the same properties.

The following theorem is true.
Theorem 3. Let F, G be operators of Volterra, which satisfy the conditions

(aa), (bb), and the family of linear operators B(¢) satisfy the inequality ||B(t)|| <

< 1 VteS, n — Lipshitz’s constant from (bb).

n
Then the task
y(O)+B@)(Fw,»)t)=9(t) VteS, (44)
v (6)+(Grw))(0) = £(0), (45)
w(0)=y, yeC'(S;2) (46)

has the solution (y,l//)eC(S;X)xCl(S;Z) forany @ e(S;X), feC(S;Z) and
yveZ.

Proof. Due to the fact that in this case the principle of fixed point is used
(but in other Banach spaces), the proof of the theorem is conducted analogically
to the proof of the theorem 1. Integrating equations (45) in [0;¢] and considering

the initial conditions we obtain:
v (0)=y(@) - [[(Gu.p)Xs) - 1(5)lds,
0

teS, yeC(S;X), we(C(S;2).

Here the integral is considered in the sense of Bohner.
We introduce the operator U , which follows the rule
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Uty =7 =[G - £(9)ds, (47)
0

where the function f € C(S;Z) and the operator Ge(C(S;Z) - C(S;Z)). Pro-
ceeding from theorem on differentiality of nondesignated integral of Bohner (see
[5], theorem 1.9, ch. 4), we obtain U e (C(S;Z) - CI(S;Z)).

We mark in equation (44)

Uo»)(0)=p(t) - BO(F(w, »)Xt), tes. (48)

We show that U, as the reflection of space C(S;Z) in itself, with some
k>0, is compressed in (C,k) -norm, which is determined in lemma 2.

By the virtue of condition (bb) from (47), it follows that for any
1,2 €C(S;2)

t
[0 0wl 5.0 < JIGG10) = GO 5.0 =
0

t
=1 [ sup {1 ()~ (0)] e Jeboas <
0 0<r<s

t

< r2j sup {|'/’1 V2 "c([o;s];Z)eiks }eksds -

0 0<r<s
0 1
_ _ ks _ Skt
=y '//2”(0,1{),([6 ds <r,|w, l//2||(c,k)k(€ 1.
Having multiplied both parts of this inequality by ¢ we obtain
P —k " —kT
|vw, -Uy, "C(S;Z)e = ?(l —e v - WZ”(C,k) 37(1 —e " Dw - WZ”C,k :
Considering in the left part the upper margine as for # € .S, we obtain
) —kT
[Uws = Uy oy < 5 d-e W =vall ey -
If we choose k =r,, then the reflection U in (C,k)-norm will be com-

pressed, i.e. there is an element y, € C(S;Z), which is a fixed point for this re-
flection:

Yo =Uyy.

Considering (47), we obtain

vo) =7 - [(GrwoXs) - f()]ds Vies. (49)
0

76 ISSN 1681-6048 System Research & Information Technologies, 2006, Ne 3



To the question of mixed type system simulation in the tasks of analysis and control

Due to the fact that the right part of this equation has the continuous deriva-
tive as for ¢, then y, eCl(S;Z) and 1//0'(Z)+(G(y,l//0))(t)=f(t) Vte S,
yo(0)=7.

We consider the conditions under which the operator U, will be com-

pressed.
According to (bb) from (48), it follows that V y,,y, € C(S;X)

Uy () =Uoy, @) =|BOF W, y)X0) - BOF W, y))D)|, =

=[BOFw.y)0) = Fy.y)O]|  <[BO|(F . y0)®) - (Fr.y))0)

X* S
<[B@ln v =yaloesn, VeES.

. .. 1 .
Following the condition of the theorem ||B(t)|| <—, the operator U, is com-
7,
1

pressed.
In the system of the equation
y=0(t) = BO(F(w.»)0). (50)
v =7 - [[(Gu.p)s) - F()]ds, (s1)
0

giving in the right part of (50) the values y=y,, w =y, where (y,,¥;) is
some pair, we get y,(1)=@(t) - BO)(F(y;,y))) , from which y, () =7 -

- (62 w))) - £ (9)]ds
0

Analogically, substituting the obtained pair (y,,y,), we find y;. Then,
substituting the pair (y3,y,) in (51), we find ;. Repeating such procedure, we
find

Vit =0() = BOF W, y,)NE) (52)
and

V=7 =[G v))s) — £(5)lds. (53)
0

Then, like in theorem 1, we have proved that the sequences {y, }, {w,} are
fundamental and, as a result, proceed to the fixed point {yo,l//o}, which is the
solution for the system of equation under consideration.

CONCLUSIONS

In this paper we have shown some results in the context of the mathematical
models of mixed systems. They are the necessary base when setting and solving
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tasks for the optima control and the evaluation of parameters of objects states,
which are described trough nonlinear initial-boundary tasks for integral and dif-
ferential equations and their systems with partial derivatives, developing methods
and algorithms of regularization of optimization tasks, composing termi-
nal-measurable approximations and averaging-out schemes, synthesis of applied
control systems for different processes etc.
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