НОВІ МЕТОДИ В СИСТЕМНОМУ АНАЛІЗІ, ІНФОРМАТИЦІ ТА ТЕОРІЇ ПРИЙНЯТТЯ РІШЕНЬ

УДК 517.9

 C **T**

GLOBAL ATTRACTOR FOR NON-AUTONOMOUS WAVE EQUATION WITHOUT UNIQUENESS OF SOLUTION

G. IOVANE, O.V. KAPUSTYAN

In the paper the non-autonomous wave equation with non-smooth right-hand side is considered. It is proved that all its weak solutions generate multi-valued non autonomous dynamical system, which has invariant global attractor in the phase space.

Introduction. One of the main directions to investigate the asymptotic behaviour of solutions of non-linear problems is given by the mathematical physics through the theory of minimal attracting sets (global attractors). The topic methods of this theory and a great number of applications are described in [1–3]. This theory presents some generalizations in the cases of non-uniqueness of solutions [4–7] and also non-autonomous problems [8–11].

From this point of view, non-linear wave equation is difficult for studying because under conditions of global resolvebility it does not generate compact semigroup (even with smooth non-linearity). Different variants of additional conditions on non-linear term, which provide the existence of global attractor in spite of non-compactness of semigroup are discussed in [1, 2].

In [7] it is suggested a new idea of verifying Ladyzheuskaya's condition (or asymptotic semi-compactness condition) in order to prove the existence of global attractor for wave equation without the restrictive conditions imposed in the nonlinearity for uniqueness of solution. In this paper we use a similar approach in situations of non-autonomous problem.

Setting of the problem We consider the problem

$$
\begin{cases} u_{tt} + \gamma u_t - \Delta u + f(t, u) = 0, \\ u|_{\partial \Omega} = 0, \end{cases}
$$
 (1)

$$
\|u\|_{t=\tau} = u_{\tau}(x), \quad u_t\|_{t=\tau} = v_{\tau}(x), \tag{2}
$$

where $\gamma > 0$ is constant, $\Omega \subset \mathbb{R}^n$ is bounded domain with smooth boundary, $n \geq 3$, $\tau \in \mathbb{R}$ and non-linear term *f* satisfies the following condition

$$
f, f'_t \in C(\mathbb{R}^2), \liminf_{|u| \to \infty} \inf_{t \in \mathbb{R}} \frac{f(t, u)}{u} > -\lambda_1,
$$

$$
|f(t, u)| \le C \left(1 + |u|^{\frac{n}{n-2}}\right), \quad |f'_t(t, u)| \le \alpha(t) + \beta(t)|u|,
$$
 (3)

© *G. Iovane, O.V. Kapustyan*, 2006

where $C > 0$ is constant, $\lambda_1 > 0$ is the first eigenvalue of $-\Delta$ in $H_0^1(\Omega)$, $\alpha(\cdot) \ge 0$, $\beta(\cdot) \ge 0$ are given continuous functions from $L^1(\mathbb{R})$.

We denote by $\|\cdot\|$, (\cdot,\cdot) and $\|\cdot\|$, $((\cdot,\cdot))$ the norm and scalar product in $L^2(\Omega)$ and $H_0^1(\Omega)$ respectively.

Our aim is to study the asymptotic behaviour of $\varphi(t) = \begin{pmatrix} u(t) \\ u(t) \end{pmatrix}$ ⎠ ⎞ $\overline{}$ ⎝ $\sqrt{}$ $(t) = \begin{cases} u(t) \\ u_t(t) \end{cases}$ *t t* $\varphi(t) = \begin{vmatrix} u(t) \\ v(t) \end{vmatrix}$ in the phase

space $E = H_0^1(\Omega) \times L^2(\Omega)$ on $t \to \infty$ by the methods of the theory of global attractors of multivalued non-autonomous dynamical systems.

Definition 1. Function $\varphi(\cdot) = \begin{pmatrix} \pi(\cdot) \\ \pi(\cdot) \end{pmatrix}$ ⎠ ⎞ \parallel ⎝ $\big($ $\left(\cdot\right) = \left(\frac{u(\cdot)}{u_t(\cdot)}\right)$ *t u u* $\varphi(\cdot) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is called solution of (1) on (τ, T) , if $u(\cdot) \in L^{\infty}(\tau, T; H_0^1(\Omega)),$ $u_t(\cdot) \in L^{\infty}(\tau, T; L^2(\Omega))$ and $\forall \psi \in H_0^1(\Omega)$ $\forall \eta \in$ \in $\mathbb{C}_{0}^{\infty}(\tau,T)$ *T T*

$$
-\int_{\tau}^{T} (u_t, \psi) \eta_t + \int_{\tau}^{T} (\gamma(u_t, \psi) + ((u, \psi)) + (f(t, u), \psi)) \eta = 0,
$$
 (4)

where u_t denotes the distributional derivative with respect to t of u .

Note, that since $H_0^1(\Omega)$ is continuously embedded in $L^{n-2}(\Omega)$ 2 *n*−2 (Ω *n* $L^{n-2}(\Omega)$, by (3) for every $u \in L^{\infty}(\tau, T; H_0^1(\Omega))$ we have $f(t, u) \in L^2(\tau, T; L^2(\Omega))$. Then for each solution $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix}$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ $\left(\cdot\right) = \left(\frac{u\left(\cdot\right)}{u_t\left(\cdot\right)}\right)$ *t u* $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix}$ of (1) from [2] we have $u(\cdot) \in \mathbb{C}([\tau, T]; H_0^1(\Omega))$, $u_t(\cdot) \in$ $\in \mathbb{C}([\tau, T]; L^2(\Omega))$, $\forall \psi \in H_0^1(\Omega)$ $(u_t(\cdot), \psi) \in \mathbb{C}^1(\tau, T)$ and $\forall t \in (\tau, T)$

$$
\frac{d}{dt}(u_t, \psi) + \gamma(u_t, \psi) + ((u, \psi)) + (f(t, u), \psi)) = 0.
$$
\n(5)

Firstly we prove that under conditions (3) the problem (1), (2) $\forall T > \tau$ *E u* $\Big|$ ⎠ ⎞ \parallel ⎝ $\forall \varphi_{\tau} =$ τ τ $\varphi_{\tau} = \begin{bmatrix} x_{\tau} \\ y_{\tau} \end{bmatrix} \in E$ has at least one solution on $[\tau, T]$, and each solution of (1), (2) (independently from the method of finding) satisfies certain energy equality (Lemma 5).

Note that there is no Lipschitz's condition on *f* with respect to variable *u* , so the problem (1), (2) is not necessary uniquely resolved.

Since f depends on t , solutions of (1), (2) do not generate semigroup, but under additional condition on f as a function of t we can construct nonautonomous analogue of semigroup.

For this purpose, following by [9], we consider the space $M = \mathbb{C}(\mathbb{R}; \mathbb{R}^2)$ of continuous vector-functions $p(\cdot) = \begin{pmatrix} P_1(\cdot) \\ P_2(\cdot) \end{pmatrix}$ ⎠ ⎞ \parallel ⎝ $\big($ $\left(\cdot\right) = \left(\begin{matrix} p_1(\cdot) \\ p_2(\cdot) \end{matrix}\right)$ 2 1 *p p* $p(\cdot) = \begin{pmatrix} P_1(\cdot) \\ P_2(\cdot) \end{pmatrix}$ and equip it with a uniform convergence topology on each segment $[v_1, v_2] \subset \mathbb{R}$, that is

$$
p_n \to p \text{ in } \mathbb{M} \Leftrightarrow \forall [\nu_1, \nu_2] \subset \mathbb{R} \sup_{\nu \in [\nu_1, \nu_2]} ||p_n(\nu) - p(\nu)||_{\mathbf{R}^2} \to 0.
$$

It is known that with such topology M is a complete metric space.

Further we consider the space $\mathbb{C}(\mathbb{R};\mathbb{M})$ of continuous functions $g(t), t \in \mathbb{R}$ with values in M. It is also equipped with a uniform convergence topology on each segment $[t_1, t_2] \subset \mathbb{R}$ that is

$$
g_n \to g \text{ in } \mathbb{C}(\mathbb{R}; \mathbb{M}) \Leftrightarrow \forall [t_1, t_2] \subset \mathbb{R} \sup_{t \in [t_1, t_2]} \rho_{\mathbb{M}}(g_n(t), g(t)) \to 0.
$$

It is known that with such topology $\mathbb{C}(\mathbb{R};M)$ is a complete metric space. For every $g \in \mathbb{C}(\mathbb{R}; \mathbb{M})$ we put

$$
H(g) = cl_{\mathbb{C}(\mathbb{R};\mathbb{M})} \left\{ g(t+h) \, | \, h \in \mathbb{R} \right\}.
$$

The function $g \in \mathbb{C}(\mathbb{R}; \mathbb{M})$ is called translation-compact (tr.-c.) in $\mathbb{C}(\mathbb{R}; \mathbb{M})$ if the set $H(g)$ is compact in $\mathbb{C}(\mathbb{R};\mathbb{M})$.

Our additional condition on function f , which we use to construct the nonautonomous dynamical system is the following:

$$
\begin{pmatrix} f \\ f'_t \end{pmatrix} \text{ is } \text{tr.} - \text{c. in } \mathbb{C}(\mathbb{R}; \mathbb{M}). \tag{6}
$$

As an example of the function f which satisfies (3), (6), we can consider $f(t, u) = e^{-t^2}u + h(u)$, where $h \in \mathbb{C}(\mathbb{R})$ (but not smooth),

$$
\liminf_{|u|\to\infty}\frac{h(u)}{u} > -\lambda_1 \text{ and } |h(u)| \leq C\left(1+|u|^{\frac{n}{n-2}}\right).
$$

Then
$$
|f(t, u)| \le \widetilde{C} \left(1 + |u|^{\frac{n}{n-2}} \right) \liminf_{|u| \to \infty} \inf_{t \in \mathbb{R}} \left(e^{-t^2} + \frac{h(u)}{u} \right) = \liminf_{|u| \to \infty} \frac{h(u)}{u} > -\lambda_1
$$
,

$$
f'_t(t, u) = \left| -2te^{-t^2}u \right| \le 2|t|e^{-t^2}|u| \text{ and } \left(\frac{f}{f'_t} \right) \text{ is obviously tr. -c. in } \mathbb{C}(\mathbb{R}; \mathbb{M}).
$$

We note, that in this example f and f' are not almost-periodic in Bohr sense. We denote

$$
\Sigma = H \begin{pmatrix} f \\ f'_t \end{pmatrix} . \tag{7}
$$

From [9] we have that continuous shift group $\{T(h): \Sigma \to \Sigma\}_{h \in \mathbb{R}}$, $T(h)\sigma(t) = \sigma(t+h)$ acts on Σ .

Now we need the following Lemma.

Lemma 1. Each function $\sigma \in \Sigma$ has the form $\sigma = \begin{vmatrix} 8 \\ 2 \end{vmatrix}$ ⎠ ⎞ $\overline{}$ ⎝ $\sqrt{}$ ′ *t g g* $\sigma = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$, and functions g,

 g' satisfy the following conditions:

$$
\liminf_{|u|\to\infty}\inf_{t\in\mathbb{R}}\frac{g(t,u)}{u} > -\lambda_1, \ |g(t,u)| \leq C\left(1+|u|^{\frac{n}{n-2}}\right), \ |g'_t(t,u)| \leq \alpha_{\sigma}(t)+\beta_{\sigma}(t)|u|,
$$

where $\int \alpha_{\sigma}(t) dt \leq \int \alpha(t) dt$ +∞ +∞ −∞ −∞ $\leq \int \alpha(t)dt$, $\int \beta_{\sigma}(t)dt \leq \int \beta(t)dt$ +∞ +∞ −∞ −∞ $\leq \int \beta(t) dt$. **Proof** . For each $\sigma = \begin{pmatrix} 5 \\ 7 \end{pmatrix} \in \Sigma$ ⎠ ⎞ \parallel ⎝ $\sqrt{}$ *l g* $\sigma = \begin{pmatrix} 8 \\ i \end{pmatrix} \in \Sigma$ according to (6) there exists sequence $\{h_n\}$ such that $\forall [t_1, t_2] \subset \mathbb{R} \quad \forall [v_1, v_2] \subset \mathbb{R}$ sup $\sup_{t \in [t_1, t_2]} \sup_{y \in [v_1, v_2]} (|f(t + h_n, v) - g(t, v)| + |f'_t(t + h_n, v) - l(t, v)|) \to 0, \ n \to \infty$. From this we can easy obtain $l(t, v) = g_t'(t, v)$. Since $f(t + h_n, v) \le C \left(1 + |v| \overline{n-2}\right)$ ⎠ ⎞ \parallel ⎝ $(t + h_n, v) \le C \left(1 + |v| \frac{n}{n-2} \right)$ $f(t + h_n, v) \le C |1 + |v| \overline{n-2}$, we have $|g(t, v)| \le C |1 + |v| \overline{n-2}$ ⎠ ⎞ \parallel ⎝ $|g(t, v)| \leq C \left(1 + |v| \frac{n}{n-2}\right)$. Choosing $\varepsilon > 0$ such that $\liminf \inf \frac{f(t, v)}{n} > 0$ *v* $f(t, v)$ *v* →∞ *t*∈R $> -\lambda_1 + \varepsilon$, we have $\exists R > 0 \ \forall |v| \geq R \ \forall t \in \mathbb{R} \ \forall n \geq 1 \ \frac{f(t + h_n, v)}{f(t + h_n, v)} > -\lambda_1 + \varepsilon$ *v* $R > 0 \ \forall |v| \ge R \ \forall t \in \mathbb{R} \ \forall n \ge 1 \ \frac{f(t+h_n,v)}{h} > -\lambda_1 + \varepsilon$. So $\frac{g(t,v)}{g(t,v)} \geq -\lambda_1 + \varepsilon$ $\frac{g(t, v)}{v} \ge -\lambda_1 + \varepsilon$ and we obtain $\liminf_{|v| \to \infty} \inf_{t \in \mathbb{R}} \frac{g(t, v)}{v} \ge -\lambda_1 + \varepsilon > -\lambda_1$. $v \rightarrow \infty$ $t \in \mathbb{R}$ Since $|f_t'(t + h_n, v)| \le \alpha (t + h_n) + \beta (t + h_n)|v|$, we have for $h_n \to \infty$

 $g'_t(t, v) = 0$ and for $h_n \to h_0$ $|g'_t(t, v)| \le \alpha (t + h_0) + \beta (t + h_0) |v|$, where $\int \alpha(t+h_0) dt = \int \alpha(t) dt$ +∞ +∞ −∞ −∞ $+h_0$) $dt = \int \alpha(t) dt$, $\int \beta(t+h_0) dt = \int \beta(t) dt$ +∞ +∞ −∞ −∞ $+h_0$) $dt = \int \beta(t) dt$. Lemma is proved.

Now we dip the problem (1), (2) into the family of similar problems:

$$
\begin{cases}\n u_{tt} + \gamma u_t - \Delta u + g(t, u) = 0, \\
u|_{\partial \Omega} = 0, \\
u|_{t=\tau} = u_{\tau}(x), \quad u_t|_{t=\tau} = v_{\tau}(x),\n\end{cases} (1)_{\sigma}
$$
\n
$$
(2)_{\sigma}
$$

where $\sigma = \begin{vmatrix} 5 \\ 2 \end{vmatrix} \in \Sigma$. ⎠ ⎞ $\overline{}$ ⎝ $\sqrt{}$ ′ *t g g* $\sigma = \begin{vmatrix} 0 \\ 0 \end{vmatrix} \in \Sigma$.

As functions *g*, *g*^{*t*} satisfy the conditions (3), for each $\sigma \in \Sigma$ the problem $(1)_{\sigma}$, $(2)_{\sigma}$ is globally resolved for all $\varphi_{\tau} = \begin{vmatrix} 1 & \tau \\ 0 & \tau \end{vmatrix} \in E$ *u* $\Big|$ ∈ ⎠ ⎞ \parallel ⎝ $\big($ τ τ $\varphi_{\tau} = \begin{pmatrix} u_{\tau} \\ v_{\tau} \end{pmatrix} \in E$. The main object which we consider in this paper is a family of multivalued maps $\left\{ U_{\sigma} : \mathbb{R}_d \times E \to 2^E \right\}_{\sigma \in \Sigma}, \ \mathbb{R}_d = \left\{ (t, \tau) \in \mathbb{R}^2 \mid t \ge \tau \right\}$ $(t, \tau, \varphi_{\tau})$ ⎭ $\left\{ \right.$ $\frac{1}{2}$ \overline{a} ⎨ \int $\sqrt{ }$ ⎠ ⎞ \parallel ⎝ $\big($ $\sigma(t, \tau, \varphi_\tau) = \begin{cases} \varphi(t) | \varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u_\tau(\cdot) \end{pmatrix} \text{ is solution of } (1)_{\sigma}, \varphi(\tau) = \varphi_\tau.$ *t u u* $U_{\sigma}(t, \tau, \varphi_{\tau}) = \{ \varphi(t) | \varphi(\cdot) = \vert \begin{array}{c} 0 \end{array} \vert \text{ is solution of } (1)_{\sigma}, \varphi(\tau) = \varphi_{\tau} \}$. (8)

For the family (8) our goal is to prove the existence in phase space *E* of minimal invariant uniformly attracting set — global attractor.

Elements of abstract theory of global attractors for multivalued nonautonomous dynamical systems. Let (X, ρ) be a complete metric space. We denote by $P(X)(\beta(X))$ the set of all non-empty (non-empty bounded) subsets of *X*, ∀ *A*, *B* ⊂ *X* dist(*A*, *B*)= sup inf ρ (*x*, *y*) $x \in A$ $y \in B$ ρ \in A $y \in$ $O_{\delta}(A) = \{x \in X | \text{dist}(x, A) \leq \delta\},\$ $B_r = \{x \in X \mid \rho(x,0) \le r\}$. Let Σ be some complete metric space, $\{T(h): \Sigma \to$

 $\rightarrow \Sigma$ [}]_{$h \in \mathbb{R}$} be some continuous group acting on Σ .

Definition 2. The family of multivalued maps ${U_{\sigma} : \mathbb{R}_d \times X \rightarrow P(X)}_{\sigma \in \Sigma}$ is called family of multivalued processes (*MP*) or non-autonomous multivalued dynamical system, if $\forall \sigma \in \Sigma$, $\forall x \in X$:

1) $U_{\tau}(\tau,\tau,x)=x \quad \forall \tau \in \mathbb{R}$;

2) $U_{\sigma}(t, \tau, x) \subset U_{\sigma}(t, s, U_{\sigma}(s, \tau, x)) \quad \forall t \geq s \geq \tau$;

∈Σ

3) $U_{\sigma} (t + h, \tau + h, x) \subset U_{T(h)\sigma} (t, \tau, x) \quad \forall t \geq \tau, \quad \forall h \in \mathbb{R}.$

The family of *MP* is called strict, if in conditions 2), 3) equality takes place. We denote $U_{\Sigma}(t, \tau, x) = \int U_{\sigma}(t, \tau, x)$ $\bigcup_{\sigma \in \Sigma}$ $\Sigma(t,\tau,x) = \bigcup U_{\sigma}(t,\tau,x)$.

Definition 3. The set $\Theta_{\Sigma} \subset X$ is called global attractor of the family of $MP(U_{\sigma}\big)_{\sigma\in\Sigma}$, if $\Theta_{\Sigma} \neq X$ and

1) Θ_{Σ} is uniformly attracting set, that is

 $\forall B \in \beta(X)$ $\forall \tau \in \mathbb{R}$ dist $(U_{\Sigma}(t, \tau, B), \Theta_{\Sigma}) \rightarrow 0$, $t \rightarrow \infty$;

2) Θ_{Σ} is minimal uniformly attracting set, that is for arbitrary uniformly attracting set *Y* we have $\Theta_{\Sigma} \subset \text{cl}_{X} Y$.

Global attractor Θ_{Σ} is called semi-invariant (invariant) if $\forall (t, \tau) \in \mathbb{R}_{d}$ $\Theta_{\Sigma} \subset U_{\Sigma}(t, \tau, \Theta_{\Sigma}), (\Theta_{\Sigma} = U_{\Sigma}(t, \tau, \Theta_{\Sigma}))$.

Lemma 2. 1) If the family of $MP\{U_{\sigma}\}_{{\sigma} \in \mathbb{N}}$ satisfies the following conditions:

$$
\forall B \in \beta(X) \exists T = T(B) \bigcup_{t \ge T} U_{\Sigma}(t, 0, B) \in \beta(X), \tag{9}
$$

$$
\forall B \in \beta(X) \ \forall \{t_n \mid t_n \to \infty\} \ \forall \{\xi_n \mid \xi_n \in U_{\Sigma}(t_n, 0, B)\}
$$

the sequence $\{\xi_n\}$ is precompact in X, (10)

then there exists global attractor Θ_{Σ} ,

$$
\Theta_{\Sigma} = \bigcup_{\tau} \Theta_{\Sigma}(\tau) = \Theta_{\Sigma}(0),\tag{11}
$$

where $\Theta_{\Sigma}(\tau)$ (X) (τ, B) $B \in \beta(X)$ $(\tau) =$ | | $\omega_{\Sigma}(\tau)$ β Σ ∈ $\Theta_{\Sigma}(\tau) = \bigcup_{\alpha \in \Sigma} (\tau, B), \ \omega_{\Sigma}(\tau, B) = \bigcap \bigcup U_{\Sigma}(t, \tau, B)$ $s \geq \tau$ $t \geq s$ $\omega_{\Sigma}(\tau, B) = \bigcap \bigcup U_{\Sigma}(t, \tau,$ τ Σ \geq τ t \geq $\Sigma(\tau, B) = \bigcap U_{\Sigma}(t, \tau, B)$ is compact in *X*;

2) if, additionally, $\forall t \ge 0$ the map

$$
X \times \Sigma \ni (x, \sigma) \to U_{\sigma}(t, 0, x) \tag{12}
$$

has closed graph, then Θ_{Σ} is semi-invariant;

3) if, additionally, the family of $MP\{U_{\sigma}\}_{{\sigma}\in{\Sigma}}$ is strict, then Θ_{Σ} is invariant.

Proof. The properties 1), 2) directly derived from the result of [11]. Now we prove 3). From [11] we have the embedding $\omega_{\Sigma}(0, B) \subset$ $\subset U_{\Sigma}(t,0,\omega_{\Sigma}(0,B)) \quad \forall B \in \beta(X) \quad \forall t \geq 0$. So $\forall p \geq 0 \quad U_{\Sigma}(t+p,t,\omega_{\Sigma}(0,B)) \subset$ $\subset U_{\Sigma} (t + p, t, U_{\Sigma} (t, 0, \omega_{\Sigma} (0, B))) = U_{\Sigma} (t + p, 0, \omega_{\Sigma} (0, B))$. Then $U_{\Sigma} (p, 0, \omega_{\Sigma} (0, B)) =$ $= U_{T(t)\Sigma}(p,0,\omega_{\Sigma}(0,B)) = U_{\Sigma}(t+p,t,\omega_{\Sigma}(0,B)) \subset U_{\Sigma}(t+p,0,\omega_{\Sigma}(0,B))$. From this for all $p \ge 0$, for all $\tau \ge p$

$$
U_{\Sigma}(p,0,\omega_{\Sigma}(0,B)) \subset \bigcup_{k \geq \tau} U_{\Sigma}(k,0,\omega_{\Sigma}(0,B)) \subset \overline{\bigcup_{k \geq \tau} U_{\Sigma}(k,0,\omega_{\Sigma}(0,B))}.
$$

So,

$$
U_{\Sigma}(p,0,\omega_{\Sigma}(0,B)) \subset \bigcap_{\tau \geq p} \overline{\bigcup_{k \geq t} U_{\Sigma}(k,0,\omega_{\Sigma}(0,B))} = \omega_{\Sigma}(0,\omega_{\Sigma}(0,B)) \subset \Theta_{\Sigma}.
$$

Therefore, $\forall p \geq 0$ $U_{\Sigma}(p, 0, \Theta_{\Sigma}) \subset \Theta_{\Sigma}$.

Then $\forall \tau \in \mathbb{R}$ $U_{\Sigma} (p + \tau, \tau, \Theta_{\Sigma}) = U_{\tau(\tau)\Sigma} (p, 0, \Theta_{\Sigma}) = U_{\Sigma} (p, 0, \Theta_{\Sigma}) \subset \Theta_{\Sigma}$ and Lemma is proved.

Properties of solutions of the problem (1), (2). We put $F(t, u) =$ $=\int_0^u f(t,s)ds$, $F'_t(t,u) = \int_0^u f'_t(t,s)ds$. Then F , $F'_t \in \mathbb{C}(\mathbb{R}^2)$ and according to (3) there exist constants $\lambda < \lambda_1$, $C_1 > 0$, $C_2 \in \mathbb{R}$ which only depend on $C > 0$, *n* ≥ 3 and λ_1 > 0 such that $\forall (t, u) \in \mathbb{R}^2$

$$
F(t, u) \le C_1 \left(1 + |u|^{\frac{2n-2}{n-2}} \right), \quad F(t, u) \ge -\frac{\lambda}{2} u^2 + C_2,
$$

$$
|F'_t(t, u)| \le \alpha(t) |u| + \frac{\beta(t)}{2} |u|^2.
$$
 (13)

In view of (13) for every function $\varphi(\cdot) = \begin{vmatrix} u(\cdot) \\ v(\cdot) \end{vmatrix} \in \mathbb{C}(\tau, T |; E)$ *u u* $\begin{bmatrix} \cdot \cdot \\ \cdot \\ t \end{bmatrix} \in \mathbb{C}([t, T];$ $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix} \in \mathbb{C}([t_0, t_1])$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ ⋅ $\mathcal{L} = \begin{pmatrix} u(\cdot) \\ v(\tau) \end{pmatrix} \in \mathbb{C}(\tau, T]; E$ we can cor-

rectly define the following functionals:

$$
V(t, \varphi(t)) = \frac{1}{2} |u_t(t)|^2 + \frac{1}{2} ||u(t)||^2 + (F(t, u(t)), 1),
$$

$$
I(t, \varphi(t)) = V(t, \varphi(t)) + \frac{\gamma}{2} (u_t(t), u(t)),
$$

$$
H(t, \varphi(t)) = (F'_t(t, u(t)), 1) + \gamma (F(t, u(t)), 1) - \frac{\gamma}{2} (f(t, u(t)), u(t)).
$$

Lemma 3. The following properties take place:

1) functions $(F(\cdot, u(\cdot)), 1), \quad [F'_t(\cdot, u(\cdot)), 1), (f(\cdot, u(\cdot)), u(\cdot)), \quad (f(\cdot, u(\cdot)), u_t(\cdot)) \in$ $\in \mathbb{C}(\lbrack \tau, T \rbrack)$:

2) if $\{\rho_n(\cdot)\}\subset \mathbb{C}[[\tau,T]; H_0^1(\Omega)]$ and $\forall t \in [\tau,T]$ $\rho_n(t) \to u(t)$ in $H_0^1(\Omega)$, then \forall *t* \in $[\tau, T]$

$$
(F(t, \rho_n(t)), 1) \to (F(t, u(t)), 1), \quad (F'_t(t, \rho_n(t)), 1) \to (F'_t(t, u(t)), 1),
$$

 $(f(t, \rho_n(t)), \rho_n(t)) \rightarrow (f(t, u(t)), u(t)).$

If, additionally, $\{\rho_n(\cdot)\}\subset \mathbb{C}^1([\tau,T];H_0^1(\Omega))$ and $\forall t \in [\tau,T]$ $\rho'_n(t) \to u_t(t)$ in $L^2(\Omega)$, then $(f(t, \rho_n(t)), \rho'_n(t)) \to (f(t, u(t)), u_t(t))$.

Proof. In the proof of this Lemma and in all results, given below, we use the following version of the dominated convergence Lebesgue's Theorem: if for measurable functions $\{\xi_n\}_{n\geq 1}$, ξ we have $\xi_n \to \xi$ a.e., $|\xi_n| < \eta_n$ a.e. and $\eta_n \to \eta$ in L^1 , then $\xi_n \to \xi$ in L^1 .

We consider the function $(f(\cdot, u(\cdot)) | u_t(\cdot))$ (for others one can apply the same arguments). Let $t_n \to t_0$. Then $u(t_n) \to u(t_0)$ in $H_0^1(\Omega)$, $u_t(t_n) \to u_t(t_0)$ in $L^2(\Omega)$, so $u(t_n, x) \to u(t_0, x)$ a.e., $u_t(t_n, x) \to u_t(t_0, x)$ a.e. Since $f \in \mathbb{C}(\mathbb{R}^2)$, we obtain $f(t_n, u(t_n, x))u_t(t_n, x) \to f(t_0, u(t_0, x))u_t(t_0, x)$ a.e. Moreover, in view of $(f(t_n, u(t_n, x))u_t(t_n, x) \leq C|u_t(t_n, x)| + C|u(t_n, x)|\overline{n-2}|u_t(t_n, x)|$ $\{f_n, u(t_n, x) \} u_t(t_n, x) \leq C |u_t(t_n, x)| + C |u(t_n, x)|^{\frac{n}{n-2}} |u_t(t_n, x)|$. As $H_0^1(\Omega) \subset$ $\subset L^{n-2}(\Omega)$ 2 *n n* $L^{n-2}(\Omega)$, we have $u(t_n, x) \to u(t_0, x)$ in L^{n-2} 2 *n*− *n* L^{n-2} . Since $u_t(t_n, x) \to u_t(t_0, x)$ in $L^2(\Omega)$, we easy obtain $|u(t_n, x)|^{n \over n-2} |u_t(t_n, x)| \to |u(t_0, x)|^{n \over n-2} |u_t(t_0, x)|$ *n*-2 $|u_t|$ t_n $|u_n, x| \to |u_t(t_n, x)| \to |u(t_0, x)| \to |u_t(t_0, x)| \to |u_t(t_0, x)|$ in $L^1(\Omega)$.

Applying Lebesgue's theorem, we have $f(t_n, u(t_n, x))u_t(t_n, x) \rightarrow$ $f(t_0, u(t_0, x))u_t(t_0, x)$ in $L^1(\Omega)$ and thus $f(\cdot, u(\cdot))u_t(\cdot) \in \mathbb{C}(\mathbb{Z}, T]$. Statement 2 can be proved in the same way. Lemma is proved.

As a consequence of Lemma 3 we immediately obtain that $\forall \varphi(\cdot) =$ $(|\tau, T |; E)$ *u u* $\begin{aligned} \begin{bmatrix} \n\cdot \cdot \cdot \\ \n\cdot \cdot \cdot \n\end{bmatrix} \in \mathbb{C}([\tau, T]; \end{aligned}$ $\begin{pmatrix} \cdot \\ \cdot \end{pmatrix} \in \mathbb{C}([\tau$ ⎠ ⎞ \parallel ⎝ $\big($ $=\begin{pmatrix} u(\cdot) \\ u_t(\cdot) \end{pmatrix} \in \mathbb{C}([\tau,T],E)$ functions $V(\cdot,\varphi(\cdot)), I(\cdot,\varphi(\cdot)), H(\cdot,\varphi(\cdot))$ belong to $\mathbb{C}([\tau,T]).$

Lemma 4. For every $u(\cdot) \in \mathbb{C}[[\tau, T]; H_0^1(\Omega)]$, $u_t(\cdot) \in \mathbb{C}[[\tau, T]; L^2(\Omega)]$ function $(F(\cdot, u(\cdot)), 1)$ belongs to $\mathbb{C}^1(\tau, T)$ and $\forall t \in (\tau, T)$

$$
\frac{d}{dt}\big(F(t,u(t)),1\big) = \big(F'_t(t,u(t)),1\big) + \big(f(t,u(t)),u_t(t)\big).
$$
\n(14)

Proof. From Lemma 3 it suffices to show that $\forall [t_0, t_1] \subset (\tau, T)$ $\forall \eta \in \mathbb{C}_0^{\infty}(t_0,t_1)$

$$
-\int_{t_0}^{t_1} (F(t, u(t)), 1)\eta_t = \int_{t_0}^{t_1} ((F'_t(t, u(t)), 1) + (f(t, u(t)), u_t(t)))\eta.
$$
 (15)

We can mollify *u* with respect to *t* to obtain a sequence ${\{\rho_n(\cdot)\}}\subset\mathbb{C}^1([t_0,t_1];H_0^1(\Omega))$ with $\rho_n\to u$ in $\mathbb{C}([t_0,t_1];H_0^1(\Omega))$, $\rho'_n\to u_t$ in $\mathbb{C}([t_0,t_1];L^2(\Omega))$. Equality (15) obviously holds for $\rho_n(\cdot)$. Using Lemma 3 and boundness of $\begin{bmatrix} P_n \\ Q' \end{bmatrix}$ ⎠ ⎞ \parallel ⎝ $\big($ ′ *n n* $\begin{pmatrix} \rho_n \\ \rho'_n \end{pmatrix}$ in $\mathbb{C}([t_0, t_1], E)$ we can apply Lebesgue's theorem and obtain (15) by passing to the limit in the same identify for ρ_n . Lemma is proved.

Lemma 5. Under conditions (3) $\forall \tau \in \mathbb{R}$ $\forall T > \tau$ $\forall \varphi_{\tau} = \begin{pmatrix} u_{\tau} \\ u_{\tau} \end{pmatrix} \in E$ $\Big|$ ⎠ ⎞ \parallel ⎝ $\forall \varphi_{\tau} =$ τ τ $\varphi_{\tau} = \begin{pmatrix} u \\ v \end{pmatrix}$ problem (1), (2) has at least one solution on (τ, T) . Moreover, for each solution $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix}$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ $\begin{pmatrix} u & \cdot \\ u & \cdot \end{pmatrix} = \begin{pmatrix} u & \cdot \\ u & \cdot \end{pmatrix}$ *t u* $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix}$ of problem (1) on (τ, T) the functions $(u_t(\cdot), u(\cdot))$, *V*(\cdot , φ (\cdot)), *I*(\cdot , φ (\cdot)) belong to $\mathbb{C}^1(\tau,T)$ and \forall *t* ∈(τ ,*T*) we have

$$
\frac{d}{dt}V(t,\varphi(t)) = -\gamma |u_t(t)|^2 + (F'_t(t,\varphi(t)),1),
$$
\n(16)

$$
\frac{d}{dt}(u_t(t), u(t)) = |u_t(t)|^2 - \gamma (u_t(t), u(t)) - ||u(t)||^2 - (f(t, u(t)), u(t)), \qquad (17)
$$

$$
\frac{d}{dt}I(t,\varphi(t)) = -\gamma I(t,\varphi(t)) + H(t,\varphi(t)).
$$
\n(18)

Proof. We construct solution of (1),(2) using the Faedo-Galerkin method. Let $\{\omega_j\}_{j=1}^{\infty}$ be a complete system of functions in $H_0^1(\Omega)$ and $u_m(t)$ $_{i}^{(m)}(t)_{\omega_{i}}$ $=\sum_{i=1}^{m} g_i^{(m)}(t)\omega_i$ be the Galerkin approximation, satisfying the following ordinary *i* =1

differential system

$$
\frac{d^2}{dt^2}\Big(u_m, \omega_j\Big) + \gamma \frac{d}{dt}\Big(u_m, \omega_j\Big) + \Big(\Big(u_m, \omega_j\Big)\Big) + \Big(f(t, u_m), \omega_j\Big) = 0 \,, \ j = 1, \dots, m \tag{19}
$$

with the initial conditions

$$
u_m(\tau) = u_\tau^m, \quad u'_m(\tau) = v_\tau^m,
$$

where $u_\tau^m \to u_\tau$, $m \to \infty$ in $H_0^1(\Omega)$, $v_\tau^m \to v_\tau$, $m \to \infty$ in $L^2(\Omega)$. Local existence of $u_m()$ is obvious. Existence on $[\tau, T]$ will be guaranteed by following a priori estimates:

$$
(u''_m, u'_m) + \gamma |u'_m|^2 + ((u_m, u'_m)) + (f(t, u_m), u'_m) = 0,
$$

$$
\frac{d}{dt} \{u'_m\}^2 + \|u_m\|^2 + 2(F(t, u_m), 1)\} + 2\gamma |u'_m|^2 - 2(F'_m(t, u_m), 1) = 0.
$$

From this equality and (13) we deduce that $\forall t \geq \tau$

$$
\left|u'_{m}(t)\right|^{2} + \left\|u_{m}(t)\right\|^{2} \leq C_{3} \left(\left|u'_{m}(\tau)\right|^{2} + \left\|u_{m}(\tau)\right\|^{2} + \left\|u_{m}(\tau)\right\|^{2} \right) + \int_{\tau}^{t} (\alpha(s) + \beta(s)) \left|u'_{m}(s)\right|^{2} + \left\|u_{m}(s)\right\|^{2} ds \right), \tag{20}
$$

where constant $C_3 > 0$ depends only on $\lambda_1 > 0$, $C > 0$, $n \ge 3$. Using Gronwall inequality, we obtain:

$$
|u'_m(t)|^2 + ||u_m(t)||^2 \leq C_3 \Big| u'_m(\tau)^2 + ||u_m(\tau)||^2 +
$$

$$
+\|u_m(\tau)\|^{\frac{2n-2}{n-2}}+1\bigg)e^{\int_{\tau}^{t}(\alpha(s)+\beta(s))ds}.
$$
 (21)

From (21) we deduce that $\begin{bmatrix} a_m \\ a'_m \end{bmatrix}$ ⎠ ⎞ \parallel ⎝ $\big($ ′ *m m u* $\begin{bmatrix} u_m \\ v_m \end{bmatrix}$ is bounded in $L^{\infty}(\tau, T; E)$.

So we can extract a subsequence, still denoted *m* , such that

$$
u_m \to u
$$
 in $L^{\infty}(\tau, T; H_0^1(\Omega))$ weak – star,
 $u'_m \to u_t$ in $L^{\infty}(\tau, T; L^2(\Omega))$ weak – star.

Thanks to a classical compactness theorem

$$
u_m \to u
$$
 in $L^2(\tau, T; L^2(\Omega))$ strongly.

Hence on some subsequence $u_m(t, x) \to u(t, x)$ a.e. and so $f(t, u_m(t, x)) \to$ \rightarrow $f(t, u(t, x))$ a.e. From (21) $\{u_m(t)\}\$ is bounded in $L^{\infty}(\tau, T; H_0^1(\Omega))$, so ${f(t, u_m(t))}$ is bounded in $L^2(\tau, T; L^2(\Omega))$. Then in a standard way we obtain $f(t, u_m(t)) \to f(t, u(t))$ in $L^2(\tau, T; L^2(\Omega))$ weakly. It allows us to pass to the limit in (19) and find that $\varphi(\cdot) = \begin{vmatrix} u(\cdot) \\ v(\cdot) \end{vmatrix} \in L^{\infty}(\tau, T; E)$ *u u* $\begin{aligned} \binom{C}{t} \in L^{\infty}(\tau, T; \mathbb{R}) \end{aligned}$ $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix} \in L^{\infty}(\tau)$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ $\mathcal{L}(\cdot) = \begin{pmatrix} u(\cdot) \\ u_t(\cdot) \end{pmatrix} \in L^{\infty}(\tau, T; E)$ and satisfies (4). Thus $\varphi(\cdot)$ is a solution of (1), $\varphi(\cdot) \in \mathbb{C}([\tau,T],E)$. Moreover, as $\{u''_m\}$ is bounded in $L^2(\tau, T; H^{-1}(\Omega))$, from compactness theorem we have

$$
\forall t \in [\tau, T] \ u_m(t) \to u(t) \text{ weakly in } L^2(\Omega),
$$

$$
\forall t \in [\tau, T] \ u'_m(t) \to u_t(t) \text{ weakly in } H^{-1}(\Omega)
$$

and, again applying (21), $\varphi_m(t) = \begin{pmatrix} u_m(t) \\ u'_m(t) \end{pmatrix} \rightarrow \varphi(t)$ $u_m(t)$ *t* $\varphi_m(t) = \begin{pmatrix} u_m(t) \\ u'_m(t) \end{pmatrix} \rightarrow \varphi$ ⎠ ⎞ \parallel ⎝ $=\begin{pmatrix} u_m(t) \\ u'_m(t) \end{pmatrix} \rightarrow \varphi(t)$ weakly in *E*. In particular,

 $\mathcal{L}(\tau) = \begin{vmatrix} u_{\tau} \\ ... \\ u_{\tau} \end{vmatrix} \rightarrow \varphi(\tau) = \begin{vmatrix} u_{\tau} \\ ... \\ u_{\tau} \end{vmatrix}$ ⎠ ⎞ \parallel ⎝ $\left| \rightarrow \varphi(\tau) = \right|$ ⎠ ⎞ \parallel ⎝ $\big($ τ $\tau \rightarrow \tau$ τ $\varphi_m(\tau) = \begin{pmatrix} u_{\tau}^m \\ v_{\tau}^m \end{pmatrix} \rightarrow \varphi(\tau) = \begin{pmatrix} u \\ v \end{pmatrix}$ *m m* $m(\tau) = \begin{vmatrix} u_{\tau} \\ m \end{vmatrix} \rightarrow \varphi(\tau) = \begin{vmatrix} u_{\tau} \\ u \end{vmatrix}$ in E and existence is proved. Now let $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix}$ ⎠ ⎞ \parallel ⎝ $\big($ $\begin{pmatrix} u(\cdot) \\ u_t(\cdot) \end{pmatrix}$ *t u u* $\varphi(\cdot) = |\psi(\cdot)|$ is an arbitrary solution of (1), (2) on (τ, T) .

Since $f(t, u(t)) \in L^2(\tau, T; L^2(\Omega))$, from [2] we deduce that in the sense of scalar distributions on (τ, T)

$$
\frac{1}{2}\frac{d}{dt}\left(u_t\right)^2 + \|u\|^2 = (-\gamma u_t(t) - f(t, u(t)), u_t(t)).
$$
\n(22)

Similarly to the proof of Lemma 4 we can obtain in the sense of distributions

$$
\langle u_{tt}, u \rangle = \frac{d}{dt} (u_t, u) - |u_t|^2, \qquad (23)
$$

where $\langle \cdot, \cdot \rangle$ is the scalar product between $H_0^1(\Omega)$ and $H^{-1}(\Omega)$. From (23) and (1) we have equality (17) in the sense of distributions on (τ, T) .

According to $\varphi(\cdot) = \begin{vmatrix} u(\cdot) \\ v(\cdot) \end{vmatrix} \in \mathbb{C}([\tau, T]; E)$ *u u* $\begin{bmatrix} \cdot & \cdot \\ t & \cdot \end{bmatrix} \in \mathbb{C}([t, T];$ $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix} \in \mathbb{C}(\tau)$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ ⋅ $\mathcal{L} = \begin{pmatrix} u(\cdot) \\ v(\tau, T]; E \end{pmatrix}$ we deduce that functions

 $(u_t(\cdot), u(\cdot))$, $|u_t(\cdot)|^2 + |u(\cdot)|^2$ belong to $\mathbb{C}^1(\tau, T)$ and so identities (17), (22) take place in classical sense $\forall t \in (\tau, T)$. Then using the result of Lemma 4 and (17), (22) we can easily obtain (16)-(18). Lemma is proved.

Remark 1. As $T > \tau$ is arbitrary, we can state a global resolvebility of (1), (2), that is we say that $\varphi(\cdot) = \begin{vmatrix} u(\cdot) \\ v(\cdot) \end{vmatrix} \in \mathbb{C}(\tau, +\infty \mid E)$ *u u* $=\begin{pmatrix} u(\cdot) \\ u_t(\cdot) \end{pmatrix} \in \mathbb{C}([t, +\infty];$ ⎠ ⎞ \vert ⎝ $\big($ ⋅ ⋅ $\varphi(\cdot) = |\psi(\cdot)| \in \mathbb{C}(|\tau,+\infty|,E)$ is a solution of (1), (2), if $\varphi(\tau) = \varphi_{\tau}$ and $\varphi(\cdot)$ satisfies (4) $\forall T > \tau$.

Remark 2. It is easy to see that if (16)-(18) hold, then for each solution $\left(\cdot\right) = \left(\begin{array}{c} u \ \cdots \\ u \end{array}\right)$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ $\begin{pmatrix} u & \cdot \\ u & \cdot \end{pmatrix} = \begin{pmatrix} u & \cdot \\ u & \cdot \end{pmatrix}$ *t u u* $\varphi(\cdot) = |\begin{array}{c} \sim \\ \sim \end{array}|$ of (1) we can repeat arguments, using in proof of Lemma 5 and ob-

tain (21). Hence, for arbitrary solution $\varphi(\cdot) = \begin{pmatrix} u(\cdot) \\ u(\cdot) \end{pmatrix}$ ⎠ ⎞ $\overline{}$ ⎝ $\sqrt{}$ $\begin{pmatrix} u & \cdot \\ u & \cdot \end{pmatrix} = \begin{pmatrix} u & \cdot \\ u & \cdot \end{pmatrix}$ *t u u* $\varphi(\cdot) = \begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{vmatrix}$ of (1), for which $u(\tau)\right\vert^2 + \left| u_t(\tau) \right|^2 \leq R$, we have

$$
\forall t \geq \tau \qquad \left\| u(t) \right\|^2 + \left| u_t(t) \right|^2 \leq K(R), \tag{24}
$$

where constant $K(R) > 0$ depends only on constants $R > 0$, $\lambda_1 > 0$, $C > 0$, $n \ge 3$ and values of $\int \alpha(t) dt$ +∞ $\int_{-\infty}^{\infty} \alpha(t) dt$, $\int_{-\infty}^{\infty} \beta(t) dt$ +∞ −∞ .

Main results. For every $\sigma = \begin{vmatrix} 5 \\ 2 \end{vmatrix} \in \Sigma$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ g_t' *g* $\sigma = \int_{0}^{\infty}$, $\epsilon \Sigma$ we consider the problem $(1)_{\sigma}$, $(2)_{\sigma}$.

In view of Lemmas 1, 5 for every $\tau \in \mathbb{R}$, $\varphi_{\tau} = \begin{pmatrix} u_{\tau} \\ u_{\tau} \end{pmatrix} \in E$ ϵ ⎠ ⎞ $\overline{}$ ⎝ $\sqrt{}$ τ τ $\varphi_{\tau} = \begin{pmatrix} u_{\tau} \\ v_{\tau} \end{pmatrix} \in E$ the problem $(1)_{\sigma}$, $(2)_{\sigma}$ has at least one solution on $(\tau,+\infty)$ and for all solutions of $(1)_{\sigma}$, $(2)_{\sigma}$ the equalities (16)–(18) take place, if we change *V*, *I*, *H* on V_{σ} , I_{σ} , H_{σ} respectively.

Lemma 6. Let $\varphi_n(\cdot)$ be a solution of $(1)_{\sigma_n}$, where $\sigma_n = \begin{bmatrix} s_n \\ s' \end{bmatrix} \rightarrow \sigma = \begin{bmatrix} s \\ s' \end{bmatrix}$ ⎠ ⎞ $\overline{}$ ⎝ $\sqrt{}$ $\left| \rightarrow \sigma = \right|_{g'}^{\delta}$ ⎠ ⎞ $\overline{}$ ⎝ $\big($ $\binom{n}{p}$ $\binom{g}{q}$ *g g g n* $\sigma_n = \begin{array}{c} \mathcal{S}_n \\ \mathcal{S}' \end{array} \rightarrow \sigma =$ in Σ and $\varphi_n(\tau) \to \varphi_\tau$ weakly in *E*.

Then $\forall T > \tau \ \forall t \in [\tau, T] \ \varphi_n(t) \rightarrow \varphi(t)$ weakly in *E*, where $\varphi(\cdot)$ is solution of $(1)_{\sigma}$, $\varphi(\tau) = \varphi_{\tau}$ and $\left(F_{\sigma_n}(t, u_n(t)), 1\right) \to \left(F_{\sigma}(t, u(t)), 1\right)$, $\left(F'_{\sigma_n}(t, u_n(t)), 1\right) \to$ $\rightarrow (F'_{\sigma}(t,u(t)),1)$ $(f_{\sigma_n}(t,u_n(t)),u_n(t)) \rightarrow (f_{\sigma}(t,u(t)),u(t))$ where $f_{\sigma_n} := g_n$; f_{σ} : = *g*.

Proof. Thanks to Lemma 1, (16)-(18) and boundness of $\{\varphi_n(\tau)\}\$ in *E* we can in the same way as in Lemma 5 obtain for $\varphi_n(\cdot) = \begin{bmatrix} a_n & \cdots & \cdots & \cdots \\ a_n & \cdots & \cdots & \cdots \end{bmatrix}$ ⎠ ⎞ \parallel ⎝ $\big($ $\begin{pmatrix} u_n(\cdot) \\ u'_n(\cdot) \end{pmatrix}$ *n n* $n()$ ⁻ u *u* $\varphi_n(\cdot) = \begin{array}{c} \ldots \\ \ldots \\ \ldots \end{array}$:

$$
\forall t \ge \tau \ \|u_n(t)\|^2 + |u'_n(t)|^2 \le C_3 \Big(u'_n(\tau)^2 + \|u_n(\tau)\|^2 + \|u_n(\tau)\|^2 + \|u_n(\tau)\|^2 - 1\Big) e^{\int_{-\infty}^{+\infty} (\alpha(t) + \beta(t)) dt}.
$$
 (25)

So using the compactness theorem we can extract a subsequence such, that

$$
\varphi_n \to \varphi = \begin{pmatrix} u \\ u_t \end{pmatrix} \text{ in } L^{\infty}(\tau, T; E) \text{ weak } - \text{star },
$$

$$
\varphi_n(t) \to \varphi(t) \text{ in } E \text{ weakly } \forall t \in [\tau, T],
$$

$$
u_n \to u \text{ in } L^2(\tau, T; L^2(\Omega)) \text{ strongly}
$$

$$
u_n(t, x) \to u(t, x) \text{ a.e.}
$$
 (26)

From Lemma 1 and (25) $\{g_n(t, u_n)\}\$ is bounded in $L^2(\tau, T; L^2(\Omega))$. According to convergence $\sigma_n \to \sigma$ in Σ we have $\forall R > 0$

$$
\sup_{t\in[\tau,T]}\sup_{|v|\leq R}|g_n(t,v)-g(t,v)|\to 0, \ \ n\to\infty.
$$

Hence $g_n(t, u_n(t, x)) \to g(t, u(t, x))$ a.e. and from Lions Lemma we obtain $g_n(t, u_n) \to g(t, u)$ in $L^2(\tau, T; L^2(\Omega))$ weakly. It allows us to pass to the limit in (4), wrote for ()⋅ ^ϕ *ⁿ* , and we deduce that () ⎟ ⎟ ⎠ ⎞ \parallel ⎝ $\big($ $\begin{pmatrix} u(\cdot) \\ u_t(\cdot) \end{pmatrix}$ *t u u* $\varphi(\cdot) = \begin{vmatrix} u(\cdot) \\ v(\cdot) \end{vmatrix}$ is solution of $(1)_{\sigma}$, $\varphi(\tau) = \varphi_{\tau}$.

Now we prove that $\forall t \in [\tau, T]$ $(F_{\sigma_n}(t, u_n(t)), 1) \rightarrow (F_{\sigma}(t, u(t)), 1)$ (other statements can be proved by similar arguments). Firstly $F_{\sigma_n}(t, u_n(t, x)) \rightarrow$ \rightarrow *F*_{σ} $(t, u(t, x))$ for a.a. $x \in \Omega$ and from Lemma 1 and (13) $\left|F_{\sigma_n}(t, u_n(t, x))\right| \leq$ $(t,x)\overline{n-2}$ ⎠ ⎞ \parallel ⎝ $\big($ $\leq C_1 | 1 + |u_n(t, x)|^{-n-1}$ − 2 $2n - 2$ $u_1 | 1 + | u_n(t, x) |^n$ *n* C_1 | 1+ $|u_n(t, x)|$ $\overline{n-2}$ | As $\forall t \in [\tau, T]$ $(t, x) - u(t, x)$ $\overline{u-2} dx = ||u_n(t, x) - u(t, x)|| \cdot |u_n(t, x) - u(t, x)| \overline{u-2} dx \le$ Ω − − $\int_{\Omega} |u_n(t,x)-u(t,x)| \overline{n-2} dx = \int_{\Omega} |u_n(t,x)-u(t,x)| \cdot |u_n(t,x)-u(t,x)| \overline{n-2} dx$ *n* $n-2$ $dx = ||u_n(t, x) - u(t, x)|| \cdot |u_n|$ *n* $\|u_n(t,x)-u(t,x)\|_{n-2} dx = \|u_n(t,x)-u(t,x)| \cdot |u_n(t,x)-u(t,x)|_{n-2}$ $2n - 2$ $(x, x)-u(t, x)\sqrt{u-2} dx = ||u_n(t, x)-u(t, x)|| \cdot ||u_n(t, x)-u(t, x)||_{n-2} dx \leq$ $\leq |u_n(t) - u(t)| \cdot ||u_n(t) - u(t)||_{n-2}$ *n* $u_n(t) - u(t) \cdot ||u_n(t) - u(t)||_{n-2}$, − $2n - 2$ *n*

and $u_n(t) \to u(t)$ in $L_2(\Omega)$ strongly, from (25) we deduce that $|u_n(t,x)|^{\overline{n-2}} \to$ 2 (x) ⁿ $u_n(t, x)$ (t, x) $\overline{n-2}$ $2n - 2$ (x) $\overline{n-}$ − \rightarrow $|u(t,x)|^{\overline{n}}$ $u(t, x) = \frac{2n-2}{n-2}$ in $L^1(\Omega)$. So we can apply Lebesgue theorem and obtain that $\forall t \in [\tau, T]$ $F_{\sigma_n}(t, u_n(t, x)) \to F_{\sigma}(t, u(t, x))$ in $L^1(\Omega)$. Lemma is proved.

Remark 3. From Lemma 6 we have that $\forall t \in [\tau, T]$ $H_{\sigma_n}(t, \varphi_n(t)) \rightarrow$ \rightarrow *H*_{σ} $(t, \varphi(t))$ and the following estimate holds:

$$
\sup_{t \in [t,T]} \left| H_{\sigma_n}(t, \varphi_n(t)) \right| \le C_5, \tag{27}
$$

where constant $C_5 > 0$ dependes only on C_4 from $\|\varphi_n(\tau)\| \leq C_4$.

Theorem. Under conditions (3), (6) the family of maps, constructed in (8), is a strict family of $MP\{U_{\sigma} : \mathbb{R}_d \times E \to P(E)\}_{\sigma \in \mathbb{R}}$, for which there exists an invariant global attractor in the phase space *E* .

Proof. Let us prove that the family (8) satisfies Definition 2 with equalities in 2), 3). Condition 1) is obvious. Let $\xi \in U_{\sigma}(t, \tau, \varphi_{\tau})$. Then $\xi = \varphi(t), \varphi(\cdot)$ is solution of $(1)_{\sigma}$ on $(\tau,+\infty)$, $\varphi(\tau) = \varphi_{\tau}$. Then $\forall s \in [\tau,T]$ $\varphi(s) \in U_{\sigma}(s,\tau,\varphi_{\tau})$. We put $\psi(p) = \varphi(p)$, $p \geq s$. Then $\psi(\cdot)$ is solution of $(1)_{\sigma}$ on $(s,+\infty)$, $\psi(s) = \varphi(s)$. So $\xi = \psi(t) \in U_{\sigma}(t, s, \varphi(s)) \subset U_{\sigma}(t, s, U_{\sigma}(s, \tau, \varphi_{\tau}))$.

Let $\xi \in U_{\sigma}(t, s, U_{\sigma}(s, \tau, \varphi_{\tau}))$. Then $\xi \in U_{\sigma}(t, s, \eta)$, $\eta \in U_{\sigma}(s, \tau, \varphi_{\tau})$. Hence $\xi = \varphi(t)$, $\varphi(\cdot)$ is solution of $(1)_{\sigma}$ on $(s, +\infty)$, $\varphi(s) = \eta$, $\eta = \psi(s)$, $\psi(\cdot)$ is solution of $(1)_{\sigma}$ on $(\tau, +\infty)$, $\psi(\tau) = \varphi_{\tau}$. We put $\theta(p) = \begin{cases} \psi(p), & p \in [\tau, s] \\ (1, & \tau \end{cases}$ $=\begin{cases} \psi(p), p \in [\tau, s] \\ \varphi(p), p > s \end{cases}$ p) = $\begin{cases} p & p \neq p \\ \varphi(p) & p \neq p \end{cases}$ $(p) = \begin{cases} \psi(p), p \in [r], \\ 0, \end{cases}$ ϕ $\theta(p) = \begin{cases} \psi(p), p \in [\tau, s] \\ 0, \end{cases}$. Then $\xi = \varphi(t) = \theta(t)$, $\theta(\cdot)$ is solution of $(1)_{\sigma}$ on $(\tau, +\infty)$, $\theta(\tau) = \psi(\tau) = \varphi_{\tau}$. Thus $\xi \in U_{\sigma}(t, \tau, \varphi_{\tau})$

Let $\xi \in U_{\tau}$ $(t + h, \tau + h, \varphi_{\tau})$. Then $\xi = \varphi(t + h), \varphi(\cdot)$ is solution of $(1)_{\sigma}$ on $(\tau + h, +\infty)$, $\varphi(\tau + h) = \varphi_{\tau}$. We put $v(p) = \varphi(p + h)$, $p \ge \tau$. Then $v(\cdot)$ is solution of $(1)_{T(h)\sigma}$ on $(\tau,+\infty)$, $v(\tau) = \varphi_{\tau}$, so $\xi = v(t) \in U_{T(h)\sigma}(t,\tau,\varphi_{\tau})$

Let $\xi \in U_{T(h)\sigma}(t, \tau, \varphi_{\tau})$. Then $\xi = \varphi(t)$, $\varphi(\cdot)$ is solution of $(1)_{T(h)\sigma}$ on $(\tau,+\infty)$, $\varphi(\tau) = \varphi_{\tau}$. We put $v(p) = \varphi(p-h)$, $p \ge \tau + h$. Then $v(\tau + h) = \varphi_{\tau}$, $v(\cdot)$ is solution of $(1)_{\sigma}$ on $(\tau + h; +\infty)$, that is $\xi = v(t + h) \in U_{\sigma}(t + h, \tau + h, \varphi_{\tau})$. So, ${U_{\sigma}}_{\sigma\in\Sigma}$ is a strict family of MP.

Now we verify conditions 1)–3) of Lemma 2. From estimate (24) with $\tau = 0$ we immediately obtain property (9).

Let $\xi_n \in U_{\sigma_n}(t,0,\eta_n)$, $\xi_n \to \xi$, $\eta_n \to \eta$ in *E*. Since Σ is compact, we can claim $\sigma_n \to \sigma$ in Σ . Then $\xi_n = \varphi_n(t)$, $\varphi_n(\cdot)$ is solution of $(1)_{\sigma_n}$, $\varphi_n(0) =$ $=\eta_n \to \eta$. From Lemma 6 we deduce that $\forall s \ge 0$ $\varphi_n(s) \to \varphi(s)$ weakly in *E*, where $\varphi(s) \in U_{\sigma}(s,0,\eta)$. Thus $\xi_n = \varphi_n(t) \to \varphi(t) = \xi \in U_{\sigma}(t,0,\eta)$ and property 2) is proved.

To finish the proof we should check the property (10). Let $\xi_n \in$ $\in U_{\sigma_n}(t_n,0,\eta_n), \quad \eta_n \in B \in \beta(E), \quad t_n \to \infty, \quad \sigma_n \to \sigma.$ Then $\xi_n = \varphi_n(t_n), \quad \varphi_n(\cdot)$ is solution of $(1)_{\sigma_n}$, $\varphi_n(0) = \eta_n$. Using (24) we have that $\{\varphi_n(t_n)\}\$ is bounded in *E*. Hence there exists $\theta \in E$ such that on some subsequence $\xi_n = \varphi_n(t_n) \rightarrow \theta$ weakly in *E*. In the same way $\forall M \ge 0$ $\varphi_n(t_n - M) \to \theta_M$ weakly in *E*.

Moreover \forall *t* ≥ 0 $\varphi_n(t_n - M + t) \in U_{\sigma_n}(t_n - M + t, t_n - M, \varphi_n(t_n - M)) =$ $=U_{T(t_n-M)\sigma_n}(t,0,\varphi_n(t_n-M))$. It follows that $\varphi_n(t_n-M+t)=v_n(t), v_n(\cdot)$ is a solution of $(1)_{T(t_n-M)\sigma_n}$, $v_n(0) = \varphi_n(t_n-M)$. Since $\tilde{\sigma}_n := T(t_n-M)\sigma_n \to$ $\rightarrow \tilde{\sigma}$ in Σ , from Lemma 6 we obtain that $\forall t \ge 0$ $v_n(t) \rightarrow v(t)$ weakly in *E*, where $v(t) \in U_{\tilde{\sigma}}(t,0,\theta_M)$. In particular, $v_n(M) = \xi_n \to v(M) = \theta \in U_{\tilde{\sigma}}(M,0,\theta_M)$ weakly in *E* .

From equality (18) writed for $v_n(\cdot)$ we have $\forall t \ge 0$

$$
I_{\widetilde{\sigma}_n}(t,\nu_n(t)) = I_{\widetilde{\sigma}_n}(0,\nu_n(0))e^{-\gamma t} + \int_0^t e^{\gamma(p-t)}H_{\widetilde{\sigma}_n}(p,\nu_n(p))dp
$$

and with $t = M$

$$
I_{\widetilde{\sigma}_n}(M,\xi_n)=I_{\widetilde{\sigma}_n}(0,\nu_n(0))e^{-\gamma M}+\int\limits_0^M e^{\gamma(p-M)}H_{\widetilde{\sigma}_n}(p,\nu_n(p))dp.
$$

Hence

$$
\liminf_{n\to\infty} I_{\widetilde{\sigma}_n}(M,\xi_n) \le \limsup_{n\to\infty} I_{\widetilde{\sigma}_n}(0,\nu_n(0))e^{-\gamma M} +
$$

$$
+\limsup_{n\to\infty}\int_{0}^{M}e^{\gamma(p-M)}H_{\widetilde{\sigma}_{n}}(p,\nu_{n}(p))dp\,.
$$
 (28)

Thanks to (24) $\limsup_{n \to \infty} I_{\widetilde{\sigma}_n}(0, v_n(0)) \leq C_6$ $\lim_{n \to \infty} I_{\tilde{\sigma}_n}(0, v_n(0)) \leq C_6$, where constant $C_6 > 0$ does not

depend on *n* and *M* . Moreover, from Remark 3 we conclude that

$$
\limsup_{n \to \infty} \int_{0}^{M} e^{\gamma(p-M)} H_{\widetilde{\sigma}_n}(p, v_n(p)) dp = \int_{0}^{M} e^{\gamma(p-M)} H_{\widetilde{\sigma}}(p, v(p)) dp. \tag{29}
$$

If we write equality (18) for function $v(\cdot)$ and for $t = M$, then

$$
I_{\widetilde{\sigma}}(M,\nu(M)) = I_{\widetilde{\sigma}}(0,\nu(0))e^{-\gamma M} + \int_{0}^{M} e^{\gamma(p-M)}H_{\widetilde{\sigma}}(p,\nu(p))dp.
$$
 (30)

Moreover, if we denote $v(\cdot) = \begin{pmatrix} \omega(\cdot) \\ \omega(\cdot) \end{pmatrix}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ⎠ ⎞ \vert ⎝ $\big($ ⋅ $\mathcal{L} = \begin{pmatrix} \omega (t) \\ 0 \end{pmatrix}$ ω_{t} $v(\cdot) = \begin{pmatrix} \omega(\cdot) \\ \omega(\cdot) \end{pmatrix}$, then $\liminf_{n\to\infty} I_{\widetilde{\sigma}_n}(M,\xi_n) \geq$ →∞ $\liminf_{n\to\infty} \left\| \xi_n \right\|_E^2 + \frac{1}{2} (\omega_t(M), \omega(M)) + (F_{\widetilde{\sigma}}(M, \omega(M))), 1)$ 2 $\frac{1}{2}$ $\liminf_{n\to\infty} \left\| \xi_n \right\|_E^2 + \frac{\gamma}{2} (\omega_t(M), \omega(M)) + (F_{\widetilde{\sigma}}(M, \omega(M)))$ $\left\|\xi_{n}\right\|_{E}^{2}+\frac{\gamma}{2}(\omega_{t}(M),\omega(M))+\left(F_{\widetilde{\sigma}}(M,\omega)\right)$ →∞ $\geq \frac{1}{2}$ liminf $\|\xi_n\|_{\mathbb{R}}^2 + \frac{1}{2}(\omega_t(M), \omega(M)) + (F_{\widetilde{\sigma}}(M, \omega(M)) 1).$ (31)

From (28) – (31) we obtain

$$
\frac{1}{2}\liminf_{n\to\infty} \left\|\xi_n\right\|_E^2 + \frac{\gamma}{2}(\omega_t(M), \omega(M)) + \left(F_{\widetilde{\sigma}}(M, \omega(M))\right)\right\| \leq
$$

$$
\leq C_6 e^{-\gamma M} - I_{\widetilde{\sigma}_n}(M, \nu(M)) - I_{\widetilde{\sigma}_n}(0, \nu(0))e^{-\gamma M} =
$$

$$
=C_6e^{-\gamma M}-I_{\widetilde{\sigma}}(0,\nu(0))e^{-\gamma M}+\frac{1}{2}||\theta||_E^2+\frac{\gamma}{2}(\omega_t(M),\omega(M))+(F_{\widetilde{\sigma}}(M,\omega(M)),1).
$$

So

$$
\frac{1}{2} \liminf_{n \to \infty} \left\| \xi_n \right\|_E^2 \leq C_6 e^{-\gamma M} - I_{\widetilde{\sigma}}(0, \nu(0)) e^{-\gamma M} + \frac{1}{2} \left\| \theta \right\|_E^2.
$$
 (32)

From (24) $\left\|\varphi_n(t_n - M)\right\|_E^2 \le K(B)$, where constant $K(B) > 0$ does not depend on *n*, *M* . As $\varphi_n(t_n - M) \to \theta_M$ weakly in *E*, we have $\|\theta_M\|_{F}^2 \leq$ $\theta_M \big\|_E^2$ $\min_{n\to\infty} \left\| \varphi_n(t_n-M) \right\|_E^2 \leq K(B)$ \leqslant liminf $\left\Vert \varphi_{n}(t_{n}-M)\right\Vert _{F}^{2}\leqslant$ $\min_{\theta} \|\varphi_n(t_n - M)\|_E^2 \le K(B)$. Since $\theta_M = \nu(0)$, then we can pass to limit in (32) for $M \rightarrow \infty$ and obtain

$$
\frac{1}{2}\liminf_{n\to\infty}\left\|\xi_n\right\|_E^2\leq\frac{1}{2}\left\|\theta\right\|_E^2.
$$

In view of weak convergence ξ_n to θ in *E* we have inverse inequality, so $\xi_n \to \theta$ strongly in *E*. Theorem is proved.

REFERENCES

- 1. *Babin A.V., Vishik M.I.* Attractors of evolution equations. Moscow: Nauka, 1989. -284 p.
- 2. *Temam R.* Infinite-dimensional dynamical systems in mechanics and physics. New York: Springer, 1997. — 615 p.
- 3. *Chueshov I.D.* Introduction to the theory of infinite-dimensional dissipative systems. — Harkiv: ACTA, 1999. — 415 p.
- 4. *Kapustyan O.V., Melnik V.S.* Attractors of multivalued semidynamical systems and their approximations // Report of NAS Ukraine. — 1998. — \mathcal{N} 1. — P. 21–25.
- 5. *Kapustyan O.V., Valero J.* Attractors of multivalued semiflows generated by differential inclusions and their approximations // Abstract and Applied Analysis. — 2000. — **5**, № 1. — P. 33–45.
- 6. *Ball J.M.* Continuity properties and attractors of generalized semiflows and the Navier-Stokes equations // Nonlinear Science. — 1997. — \mathcal{N}_2 7. — P. 475–500.
- 7. *Ball J.M.* Global attractors for damped semilinear wave equations // Discrete and Continuous Dynamical Systems. — 2004. — **10**. — P. 31–52.
- 8. *Viskik M.I., Chepyzhov V.V.* Attractors of non-autonomous dynamical systems and their dimension // J.Math. Pures Appl. — 1994. — **73**, № 3. — P. 279–333.
- 9. *Viskik M.I., Chepyzhov V.V.* Evolution equations and their trajectory attractors // J. Math. Pures Appl. — 1997. — **76**, № 10. — P. 913–964.
- 10. *Kapustyan O.V.* Global attractors of non autonomous reaction-diffusion equation // Differential Equations. — 2002. — **38**, № 10. — P. 1378–1382.
- 11. *Kapustyan O.V., Melnik V.S., Valero J.* Attractors of multivalued dynamical processes generated by phase-field equations // Int. J. Biff. and Chaos. — 2003. — **13**, № 7. — P. 1969–1983.

Received 05.10.2005

From the Editorial Board: The article corresponds completely to submitted manuscript.