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GLOBAL ATTRACTOR FOR NON-AUTONOMOUS WAVE 
EQUATION WITHOUT UNIQUENESS OF SOLUTION 
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In the paper the non-autonomous wave equation with non-smooth right-hand side is 
considered. It is proved that all its weak solutions generate multi-valued non 
autonomous dynamical system, which has invariant global attractor in the phase 
space. 

Introduction. One of the main directions to investigate the asymptotic behaviour 
of solutions of non-linear problems is given by the mathematical physics through 
the theory of minimal attracting sets (global attractors). The topic methods of this 
theory and a great number of applications are described in [1–3]. This theory pre-
sents some generalizations in the cases of non-uniqueness of solutions [4–7] and 
also non-autonomous problems [8–11].  

From this point of view, non-linear wave equation is difficult for studying 
because under conditions of global resolvebility it does not generate compact 
semigroup ( even with smooth non-linearity). Different variants of additional 
conditions on non-linear term, which provide the existence of global attractor in 
spite of non-compactness of semigroup are discussed in [1, 2]. 

In [7] it is suggested a new idea of verifying Ladyzheuskaya’s condition ( or 
asymptotic semi-compactness condition ) in order to prove the existence of global 
attractor for wave equation without the restrictive conditions imposed in the non-
linearity for uniqueness of solution. In this paper we use a similar approach in 
situations of non-autonomous problem. 

Setting of the problem We consider the problem  
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where 0>γ  is constant, nR⊂Ω  is bounded domain with smooth boundary, 
3≥n , R∈τ  and non-linear term f  satisfies the following condition 
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where 0>C  is constant, 0>1λ  is the first eigenvalue of ∆−  in ),(1
0 ΩH  

0)( ≥⋅α , 0)( ≥⋅β  are given continuous functions from ).(1 RL   

We denote by ⋅ , ),( ⋅⋅  and ( )( )⋅⋅⋅ ,,  the norm and scalar product in )(2 ΩL  and 

)(1
0 ΩH  respectively. 
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space )()(= 21
0 Ω×Ω LHE  on ∞→t  by the methods of the theory of global at-

tractors of multivalued non-autonomous dynamical systems. 
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where tu  denotes the distributional derivative with respect to t  of .u  
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Firstly we prove that under conditions (3) the problem (1), (2) τ>T∀  
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(independently from the method of finding) satisfies certain energy equality 
(Lemma 5). 

Note that there is no Lipschitz's condition on f  with respect to variable u  , 
so the problem (1), (2) is not necessary uniquely resolved. 

Since f  depends on t , solutions of (1), (2) do not generate semigroup, but 
under additional condition on f  as a function of t  we can construct non-
autonomous analogue of semigroup. 
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It is known that with such topology M  is a complete metric space.  
Further we consider the space );( MRC  of continuous functions ),(tg  R∈t  

with values in M . It is also equipped with a uniform convergence topology on 
each segment [ ] R⊂21,tt  that is 
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It is known that with such topology );( MRC  is a complete metric space. 
For every );( MRC∈g  we put  
 { }RMRC ∈+ hhtggH |)(cl=)( );( . 

The function );( MRC∈g  is called translation-compact (tr.-c.) in );( MRC  
if the set )(gH  is compact in );( MRC . 

Our additional condition on function f  , which we use to construct the non-
autonomous dynamical system is the following: 
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We note, that in this example f  and tf ′  are not almost-periodic in Bohr 
sense. We denote  
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From [9] we have that continuous shift group { } R∈Σ→Σ hhT :)( , 
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Now we dip the problem (1), (2) into the family of similar problems: 
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For the family (8) our goal is to prove the existence in phase space E  of 
minimal invariant uniformly attracting set — global attractor. 
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Elements of abstract theory of global attractors for multivalued non-
autonomous dynamical systems. Let ( )ρ,X  be a complete metric space. We 
denote by ))()(( XXP β  the set of all non-empty (non-empty bounded) subsets of 
X , XBA ⊂∀ ,  ( ) ),(infsup=,dist yxBA

ByAx
ρ

∈∈
, { }δδ <),(dist|=)( AxXxAO ∈ , 

{ }rxXxBr ≤∈ )0,(|= ρ . Let Σ  be some complete metric space, →Σ:)({ hT  

R∈Σ→ h}  be some continuous group acting on Σ . 
Definition 2. The family of multivalued maps { } Σ∈→× σσ )(: XPXU dR  is 

called family of multivalued processes )(MP  or non-autonomous multivalued 
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3) ( ) ( ) ( ) R∈∀≥∀⊂++ htxtUxhhtU hT ,,,,, τττ σσ . 

The family of MP  is called strict, if in conditions 2), 3) equality takes place.  
We denote ( ) ( )xtUxtU ,,=,, ττ σ

σ
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Definition 3. The set X⊂ΘΣ  is called global attractor of the family of 
{ } Σ∈σσUMP , if X≠ΘΣ  and  
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tracting set Y  we have YXcl⊂ΘΣ . 
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has closed graph, then ΣΘ  is semi-invariant; 
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3) if, additionally, the family of { } Σ∈σσUMP is strict, then ΣΘ  is invariant. 

Proof. The properties 1), 2) directly derived from the result of [11]. 
Now we prove 3). From [11] we have the embedding ( )⊂Σ B0,ω  
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Lemma 3. The following properties take place:  
1) functions ( )( )( ),1,, ⋅⋅ uF  ( )( )( ) ( )( ) ( )( ),,,,1,, ⋅⋅⋅⋅⋅ uufuF'
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  ( )( ) ( )( ) ( )( ) ( )( )tututftttf nn ,,,, →ρρ . 
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Lemma 5. Under conditions (3) R∈∀τ  τ>T∀  E
u

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∀

τ

τ
τ ν

ϕ =  

problem (1), (2) has at least one solution on ( )T,τ . Moreover, for each 

solution ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅
)(
)(

=
tu

u
ϕ  of problem (1) on ( )T,τ  the functions ( ))(),( ⋅⋅ uut , 

( )( )⋅⋅ ϕ,V , ( )( )⋅⋅ ϕ,I  belong to ( )T,1 τC  and ( )Tt ,τ∈∀  we have  

 ( )( ) ( ) ( )( )( ),1,=, 2 ttFtuttV
dt
d '

tt ϕγϕ +− , (16) 

 ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )( )tututftutututututu
dt
d

ttt ,,,=, 22 −−− γ , (17) 

 ( )( ) ( )( ) ( )( )ttHttIttI
dt
d ϕϕγϕ ,,=, +− . (18) 

Proof. We construct solution of (1),(2) using the Faedo-Galerkin method. 
Let { }∞

1=jjω  be a complete system of functions in ( )Ω1
0H  and ( )=tum  

( )( ) i
m

i

m

i
tg ω∑=

1=
 be the Galerkin approximation, satisfying the following ordinary 

differential system  

 ( ) ( ) ( )( ) ( )( ) mjutfuu
dt
du

dt
d

jmjmjmjm ,...,1=,0=,,,,,2

2
ωωωγω +++ (19) 

with the initial conditions 
 ( ) ( ) ,=,= m'

m
m

m uuu ττ νττ  

where ∞→→ muu m ,ττ  in ( ) ∞→→Ω mH m ,,1
0 ττ νν  in ( )Ω2L . Local exis-

tence of ( )⋅mu  is obvious. Existence on [ ]T,τ  will be guaranteed by following a 
priori estimates: 

 ( ) ( )( ) ( )( ) 0=,,,, 2
mmmmmmm uutfuuuuu ′+′+′+′′′ γ , 

 ( )( ){ } ( )( ) 0=,1,22,1,2 222
mmmmmm utFuutFuu

dt
d ′−′+++′ γ . 

From this equality and (13) we deduce that τ≥∀t   

 ( ) ( ) ( ) ( ) ( )⎜⎜
⎝

⎛
++++′≤+′ −

−
12

2222
3

22
n
n

mmmmm uuuCtutu τττ  

 ( ) ( )( ) ( ) ( )( )
⎟
⎟

⎠

⎞
+′++ ∫ dssususs mm

t
22βα

τ

,  (20) 

where constant 0>3C  depends only on 30,>0,>1 ≥nCλ . Using Gronwall 
inequality, we obtain:  

 ( ) ( ) ( ) ( )( ++′≤+′ 22
3

22 ττ mmmm uuCtutu   
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 ( ) ( ) ( )( )∫ +
⎟⎟
⎠

⎞
++ −

− t dssseu n
n

m
τ βα

τ 12
22

.  (21) 

From (21) we deduce that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′m
m

u
u

 is bounded in ( )ETL ;,τ∞ . 

So we can extract a subsequence, still denoted m , such that 

 ( )( ) starweak;,in 1
0 −Ω→ ∞ HTLuum τ , 

 ( )( ) starweak;,in 2 −Ω→′ ∞ LTLuu tm τ . 

Thanks to a classical compactness theorem 

 ( )( ) strongly;,in 22 Ω→ LTLuum τ . 

Hence on some subsequence ( ) ( )xtuxtum ,, →  a.e. and so ( )( )→xtutf m ,,  

( )( )xtutf ,,→  a.e. From (21) ( ){ }tum  is bounded in ( )( )Ω∞ 1
0;, HTL τ , so 

( )( ){ }tutf m,  is bounded in ( )( )Ω22 ;, LTL τ  . Then in a standard way we obtain 

( )( ) ( )( )tutftutf m ,, →  in ( )( )Ω22 ;, LTL τ  weakly. It allows us to pass to the limit 

in (19) and find that ( ) ( )ETL
u
u

t
;,

)(
)(

= τϕ ∞∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅  and satisfies (4). Thus ( )⋅ϕ  is 

a solution of (1), ( ) [ ]( )ET ;,τϕ C∈⋅ . Moreover, as { }mu ′′  is bounded in 

( )( )Ω−12 ;, HTL τ , from compactness theorem we have 

 [ ] ( ) ( ) ( ) ,inweakly, 2 Ω→∈∀ LtutuTt mτ  

 [ ] ( ) ( ) ( )Ω→∈∀ −1inweakly, HtutuTt t
'
mτ  

and, again applying (21), ( ) ( )
( ) ( )t
tu
tu

t
m

m
m ϕϕ →⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
′

=  weakly in E . In particular, 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ

τ

τ

τ
υ

τϕ
υ

τϕ
uu

m

m

m ==  in E  and existence is proved. 

Now let ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅
)(
)(

=
tu

u
ϕ  is an arbitrary solution of (1), (2) on ( )T,τ .  

Since ( )( ) ( )( )Ω∈ 22 ;,, LTLtutf τ , from [2] we deduce that in the sense of 
scalar distributions on ( )T,τ  

 ( ) ( ) ( )( ) ( )( )tututftuuu
dt
d

ttt ,,=
2
1 22 −−+ γ . (22) 

Similarly to the proof of Lemma 4 we can obtain in the sense of distributions  

 ( ) 2,=, tttt uuu
dt
duu − , (23) 
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where ⋅⋅,  is the scalar product between ( )Ω1
0H  and ( )Ω−1H . From (23) and (1) 

we have equality (17) in the sense of distributions on ( )T,τ . 

According to ( ) [ ]( )ET
u
u

t
;,

)(
)(

= τϕ C∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅  we deduce that functions 

( ))(),( ⋅⋅ uut , ( ) ( ) 22 ⋅+⋅ uut  belong to ( )T,1 τC  and so identities (17), (22) take 
place in classical sense ( )Tt ,τ∈∀ . Then using the result of Lemma 4 and (17), 
(22) we can easily obtain (16)-(18). Lemma is proved. 

Remark 1. As τ>T  is arbitrary, we can state a global resolvebility of (1), 

(2), that is we say that ( ) [ ]( )E
u
u

t
;,

)(
)(

= +∞∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅ τϕ C  is a solution of (1), (2), if 

( ) τϕτϕ =  and ( )⋅ϕ  satisfies (4) τ>T∀ . 
Remark 2. It is easy to see that if (16)-(18) hold, then for each solution 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅
)(
)(

=
tu

u
ϕ  of (1) we can repeat arguments, using in proof of Lemma 5 and ob-

tain (21). Hence, for arbitrary solution ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅
)(
)(

=
tu

u
ϕ  of (1), for which 

( ) ( ) Ruu t ≤+ 22 ττ , we have  

 ( ) ( ) ( )RKtutut t ≤+≥∀ 22τ , (24) 

where constant ( ) 0>RK  depends only on constants 30,>0,>0,> 1 ≥nCR λ  

and values of ( )dttα∫
+∞

∞−

, ( )dttβ∫
+∞

∞−

. 

Main results. For every Σ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′tg

g
=σ  we consider the problem σ(1) , σ(2) . 

In view of Lemmas 1, 5 for every R∈τ , E
u

∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

τ

τ
τ υ

ϕ =  the problem σ(1) , σ(2)  

has at least one solution on ),( +∞τ  and for all solutions of σ(1) , σ(2)  the equali-
ties (16)–(18) take place, if we change HIV ,,  on σσσ HIV ,,  respectively. 

Lemma 6. Let ( )⋅nϕ  be a solution of 
nσ

(1)  , where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′ g

g
g
g

n

n
n == σσ  

in Σ  and ( ) τϕτϕ →n  weakly in E . 
Then τ>T∀  [ ]Tt ,τ∈∀  ( ) ( )ttn ϕϕ →  weakly in E  , where ( )⋅ϕ  is solution 

of σ(1) , ( ) τϕτϕ =  and ( )( )( ) ( )( )( ),1,,1,, tutFtutF nn σσ →  ( )( )( )→′ 1,, tutF nnσ  

( )( )( ),1, tutFσ′→  ( )( ) ( )( )tututf nnn
,,σ ( )( ) ( )( )tututf ,,σ→  where nn

gf =:σ ; 

gf =:σ . 
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Proof. Thanks to Lemma 1, (16)-(18) and boundness of ( ){ }τϕn  in E  we 

can in the same way as in Lemma 5 obtain for ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅′
⋅

⋅
)(
)(

=
n

n
n u

u
ϕ : 

 ( ) ( ) ( ) ( )( ++′≤′+≥∀ 22
3

22 τττ nnnn uuCtutut  

 ( ) ( ) ( )( )∫
+∞
∞− +

⎟⎟
⎠

⎞
++ −

− dttteu n
n

n
βατ 12

22
. (25) 

So using the compactness theorem we can extract a subsequence such, that  

 starweak);,(in −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=→ ∞ ETL

u
u

t
n τϕϕ , 

 ( ) ( ) [ ]TtEttn ,weaklyin τϕϕ ∈∀→ ,  (26) 

 ( ) strongly);,(in 22 Ω→ LTLuun τ  

 ( ) ( ) a.e.,, xtuxtun →  

From Lemma 1 and (25) ( ){ }nn utg ,  is bounded in ))(;,( 22 ΩLTL τ . Accord-
ing to convergence σσ →n  in Σ  we have 0>R∀  

 
[ ]

( ) ( ) ∞→→−
≤∈

nvtgvtgn
RvTt

0,,,supsup
,τ

. 

Hence ( )( ) ( )( )xtutgxtutg nn ,,,, →  a.e. and from Lions Lemma we obtain 

( ) ( )utgutg nn ,, →  in )(;,( 22 ΩLTL τ  weakly. It allows us to pass to the limit in 

(4), wrote for ( )⋅nϕ , and we deduce that ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

⋅
)(
)(

=
tu

u
ϕ  is solution of σ(1) , 

( ) τϕτϕ = . 
Now we prove that [ ]Tt ,τ∈∀  ( )( )( ) ( )( )( ),1,,1, tutFtutF nn σσ →  (other 

statements can be proved by similar arguments). Firstly ( )( )→xtutF nn
,,σ  

( )( )xtutF ,,σ→  for a.a. Ω∈x  and from Lemma 1 and (13) ( )( ) ≤xtutF nn
,,σ  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤ −

−
2
22

1 ,1 n
n

n xtuC . As [ ]Tt ,τ∈∀   

 ( ) ( ) ( ) ( ) ( ) ( ) ≤−⋅−− −

Ω

−
−

Ω
∫∫ dxxtuxtuxtuxtudxxtuxtu n

n

nnn
n

n 22
22

,,,,=,,  

 ( ) ( ) ( ) ( ) 2−−⋅−≤ n
n

nn tutututu , 

and ( ) ( )tutun →  in ( )Ω2L  strongly, from (25) we deduce that ( ) →−
−
2
22

, n
n

n xtu  

( ) 2
22

, −
−

→ n
n

xtu  in ( )Ω1L . So we can apply Lebesgue theorem and obtain that 

[ ]Tt ,τ∈∀   ( )( ) ( )( )xtutFxtutF nn
,,,, σσ →  in ( )Ω1L . Lemma is proved. 
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Remark 3. From Lemma 6 we have that [ ]Tt ,τ∈∀  ( )( )→ttH nn
ϕσ ,  

( )( )ttH ϕσ ,→  and the following estimate holds: 

 
[ ]

( )( ) 5
,

,sup CttH nnTtt
≤

∈
ϕσ , (27) 

where constant 0>5C  dependes only on 4C  from ( ) .|| 4Cn ≤τϕ  
Theorem. Under conditions (3), (6) the family of maps, constructed in (8), is 

a strict family of { } Σ∈→× σσ )(: EPEUMP dR , for which there exists an invari-
ant global attractor in the phase space E . 

Proof. Let us prove that the family (8) satisfies Definition 2 with equalities 
in 2), 3). Condition 1) is obvious. Let ).,,( τσ ϕτξ tU∈  Then ( ) ( )⋅ϕϕξ ,= t  is solu-
tion of σ(1)  on ),( +∞τ , ( ) τϕτϕ = . Then [ ]Ts ,τ∈∀  ( ) ),,( τσ ϕτϕ sUs ∈ . We put 

( )pp ϕψ =)( , sp ≥ . Then ( )⋅ψ  is solution of σ(1)  on ( )+∞,s , ( )ss ϕψ =)( . So 
( )∈tψξ = )),,(,,())(,,( τσσσ ϕτϕ sUstUsstU ⊂ . 

Let )),,(,,( τσσ ϕτξ sUstU∈ . Then ),,( ηξ σ stU∈ , ),,( τσ ϕτη sU∈ . 
Hence ( )tϕξ = , ( )⋅ϕ  is solution of σ(1)  on ( )∞+,s , ( ) ηϕ =s , )(= sψη , ( )⋅ψ  is 

solution of σ(1)  on ( )∞+,τ , τϕτψ =)( . We put 
[ ]

( )⎩
⎨
⎧ ∈

=
spp
spp

p
>,

,),(
)(

ϕ
τψ

θ . Then 

( ) ),(== tt θϕξ  )(⋅θ  is solution of σ(1)  on ( )∞+,τ , τϕτψτθ =)(=)( . Thus 
),,( τσ ϕτξ tU∈  

Let ),,( τσ ϕτξ hhtU ++∈ . Then ( )ht +ϕξ = , ( )⋅ϕ  is solution of σ(1)  on 
( )+∞+ ,hτ , ( ) τϕτϕ =h+ . We put ( )hppv +ϕ=)( , τ≥p . Then )(⋅v  is solution 
of σ)((1) hT  on ),( +∞τ , τϕτ =)(v , so ),,()(= )( τσ ϕτξ tUtv hT∈  

Let ).,,()( τσ ϕτξ tU hT∈  Then ( )tϕξ = , ( )⋅ϕ  is solution of σ)((1) hT  on 
( )+∞,τ , ( ) τϕτϕ = . We put ( )hppv −ϕ=)( , hp +≥τ . Then τϕτ =)( hv + , )(⋅v  
is solution of σ(1)  on ( )∞++ ;hτ , that is ),,()(= τσ ϕτξ hhtUhtv ++∈+ . So, 
{ } Σ∈σσU  is a strict family of MP . 

Now we verify conditions 1)–3) of Lemma 2. From estimate (24) with 
0=τ  we immediately obtain property (9). 
Let ( )nnn tU ηξ σ ,0,∈ , ξξ →n , ηη →n  in E . Since Σ  is compact, we can 

claim σσ →n  in Σ . Then ( )tnn ϕξ = , ( )⋅nϕ  is solution of 
nσ

(1) , ( )=0nϕ  

ηη →= n . From Lemma 6 we deduce that 0≥∀ s  ( ) ( )ssn ϕϕ →  weakly in E , 
where ( ) ( )ηϕ σ ,0,sUs ∈ . Thus ( ) ( ) ( )ηξϕϕξ σ ,0,== tUttnn ∈→  and property 2) 
is proved. 

To finish the proof we should check the property (10). Let ∈nξ  
( )nnn
tU ησ ,0,∈ , ( ),EBn βη ∈∈  ,∞→nt  σσ →n . Then ( )nnn tϕξ = , ( )⋅nϕ  is 

solution of 
nσ

(1) , ( ) nn ηϕ =0 . Using (24) we have that ( ){ }nn tϕ  is bounded in 

E . Hence there exists E∈θ  such that on some subsequence ( ) θϕξ →nnn t=  
weakly in E . In the same way 0≥∀M  ( ) Mnn Mt θϕ →−  weakly in E . 
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Moreover 0≥∀ t  ( ) ( ) =−−+−∈+− )(,, MtMttMtUtMt nnnnnnn ϕϕ σ  

( ) ( )( )MttMU nnnntT −− ϕσ ,0,= . It follows that ( ) ( )ttMt nnn νϕ =+− , ( )⋅nν  is 

a solution of ( ) ( ) nntT M σ−1 , ( ) ( )Mtnnn −ϕν =0 . Since ( ) →−= nnn MtT σσ :~  

σ~→  in Σ , from Lemma 6 we obtain that 0≥∀ t  ( ) ( )ttn νν →  weakly in E , 
where ( ) ( )MtUt θν σ ,0,~∈ . In particular, ( ) ( ) ( )Mnn MUMM θθνξν σ ,0,= ~∈=→  
weakly in E . 

From equality (18) writed for ( )⋅nν  we have 0≥∀ t  

 ( )( ) ( )( ) ( ) ( )( )dpppHeeIttI nn
tp

t
t

nnnn
ννν σ

γγ
σσ ,00,=, ~

0

~~ −− ∫+   

and with Mt =  

 ( ) ( )( ) ( ) ( )( )dpppHeeIMI nn
Mp

M
M

nnnn
ννξ σ

γγ
σσ ,00,=, ~

0

~~ −− ∫+ . 

Hence  
 ( ) ( )( ) +≤ −

∞→∞→

M
nn

n
nn

n
eIMI γ

σσ νξ 00,suplim,inflim ~~  

 ( ) ( )( )dpppHe nn
Mp

M

n
νσ

γ ,suplim ~

0

−

∞→
∫+ . (28) 

Thanks to (24) ( )( ) 6~ 00,suplim CI nn
n

≤
∞→

νσ  ,where constant 0>6C  does not 

depend on n  and M . Moreover, from Remark 3 we conclude that  

 ( ) ( )( ) ( ) ( )( )dpppHedpppHe Mp
M

nn
Mp

M

n
νν σ

γ
σ

γ ,=,suplim ~

0

~

0

−−

∞→
∫∫ . (29) 

If we write equality (18) for function ( )⋅ν  and for Mt = , then  

 ( )( ) ( )( ) ( ) ( )( )dpppHeeIMMI Mp
M

M ννν σ
γγ

σσ ,00,=, ~

0

~~ −− ∫+ . (30) 

Moreover, if we denote ( ) ( )
( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
⋅
⋅

⋅
tω
ω

ν = , then 

 ( )nn
n

MI ξσ ,inflim ~
∞→

 

 ( ) ( )( ) ( )( )( ),1,,
2

inflim
2
1

~
2

MMFMMtEn
n

ωωωγξ σ++
∞→

.  (31) 

From (28)–(31) we obtain 

 ( ) ( )( ) ( )( )( ),1,,
2

inflim
2
1

~
2

MMFMMtEn
n

ωωωγξ σ++
∞→

 

 ( )( ) ( )( ) =00,, ~~6
M

nn
M eIMMIeC γ

σσ
γ νν −− −−  
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 ( )( ) ( ) ( )( ) ( )( )( ),1,,
22

100,= ~
2

~6 MMFMMeIeC tE
MM ωωωγθν σ
γ

σ
γ +++− −− . 

So 

 ( )( ) 2
~6

2

2
100,inflim

2
1

E
MM

En
n

eIeC θνξ γ
σ

γ +− −−

∞→
. (32) 

From (24) ( ) ( )BKMt
Enn
2

−ϕ , where constant ( ) 0>BK  does not de-

pend on n , M . As ( ) Mnn Mt θϕ →−  weakly in E , we have 
2

EMθ  

( ) ( )BKMt
Enn

n

2
inflim −
∞→

ϕ . Since ( )0=νθM , then we can pass to limit in (32) 

for ∞→M  and obtain 

 
22

2
1inflim

2
1

EEn
n

θξ
∞→

. 

In view of weak convergence nξ  to θ  in E  we have inverse inequality, so 
θξ →n  strongly in E . Theorem is proved. 
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