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GLOBAL ATTRACTOR FOR NON-AUTONOMOUS WAVE
EQUATION WITHOUT UNIQUENESS OF SOLUTION

G. IOVANE, O.V. KAPUSTYAN

In the paper the non-autonomous wave equation with non-smooth right-hand side is
considered. It is proved that all its weak solutions generate multi-valued non
autonomous dynamical system, which has invariant global attractor in the phase
space.

Introduction. One of the main directions to investigate the asymptotic behaviour
of solutions of non-linear problems is given by the mathematical physics through
the theory of minimal attracting sets (global attractors). The topic methods of this
theory and a great number of applications are described in [1-3]. This theory pre-
sents some generalizations in the cases of non-uniqueness of solutions [4—7] and
also non-autonomous problems [8—11].

From this point of view, non-linear wave equation is difficult for studying
because under conditions of global resolvebility it does not generate compact
semigroup ( even with smooth non-linearity). Different variants of additional
conditions on non-linear term, which provide the existence of global attractor in
spite of non-compactness of semigroup are discussed in [1, 2].

In [7] it is suggested a new idea of verifying Ladyzheuskaya’s condition ( or
asymptotic semi-compactness condition ) in order to prove the existence of global
attractor for wave equation without the restrictive conditions imposed in the non-
linearity for uniqueness of solution. In this paper we use a similar approach in
situations of non-autonomous problem.

Setting of the problem We consider the problem

uy +yu, —Au+ f(t,u)=0,

ulpn=0, @

Ul =u (), uy = =v, (%), (2)
where y >0 is constant, QcR"” is bounded domain with smooth boundary,
n>3, r€R and non-linear term f satisfies the following condition

f’ ‘ft' € C(Rz ): lim inf inf f(t’ M)

‘u‘_)oo teR u

>—,11,

| f(t,u)|SC(1+|u|n—2], | f{tw)| < a(0) + BO)|ul, (3)
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where C>0 is constant, A, >0 is the first eigenvalue of —A in H(l) (Q),
a()20, B(:)=0 are given continuous functions from L (R).

We denote by || ,(-,7) and

,((+)) the norm and scalar product in L*(Q) and

H é (Q) respectively.

u(t)

Our aim is to study the asymptotic behaviour of @(¢) =( (t)j in the phase

u;
space E=H (1) (Q) x I? (©2) on t —> o by the methods of the theory of global at-
tractors of multivalued non-autonomous dynamical systems.

u; ()
if u(‘)eLw(r,T;H(l)(Q)), u,()eL”(z,T; L*(Q) and VyeH)(Q) Ve
eCy(z,T)

Definition 1. Function go(-)=(u()j is called solution of (1) on (T,T),

T T
~ [ vy, + [ (o w) + @) + (f Gy =0, )
where u, denotes the distributional derivative with respect to ¢ of u.
2n
Note, that since H (1) (Q) is continuously embedded in L"~2(Q), by (3) for

every uelL” (T,T;Hé (Q2)) we have f(t,u)e I? (z,T; I? (©2)). Then for each so-

lution ¢@(*) :(u('))J of (1) from [2] we have u(") E(C([T,T];H(l) Q), u,()e

u

eC([7,T1;L*(Q)), Y e H)(Q) (u,(),w)eC(z,T) and Vi e(z,T)

%(ut,lﬂ)+7(ut,lﬂ)+((u,l//))+(f(t,u),w))=0- )

Firstly we prove that under conditions (3) the problem (1), (2) VT >71

u
Vo, =( TJE E has at least one solution on [T,T ], and each solution of (1), (2)
1%

T
(independently from the method of finding) satisfies certain energy equality
(Lemma 5).

Note that there is no Lipschitz's condition on f with respect to variable u ,
so the problem (1), (2) is not necessary uniquely resolved.

Since f depends on ¢, solutions of (1), (2) do not generate semigroup, but
under additional condition on f as a function of ¢ we can construct non-
autonomous analogue of semigroup.

For this purpose, following by [9], we consider the space M = C(R;Rz) of
)210)
P2()
gence topology on each segment [Vl Vo ] c R, thatis

continuous vector-functions p(-) =( ] and equip it with a uniform conver-
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p,—pin M@V[vl,v2]cR sup ||pn(v)—p(v)||Rz —0.
VE[V],Vz]

It is known that with such topology M is a complete metric space.

Further we consider the space C(R;M) of continuous functions g(¢), € R
with values in M. It is also equipped with a uniform convergence topology on
each segment [1,,7, | R that is

gn—~g in CRM & V[r.6]cR sup (g, 0.8(1) 0.
te[tl ,tz]

It is known that with such topology C(R;M) is a complete metric space.
For every g e C(R; M) we put

H(g)=clemun 18+ 1) | heR}.

The function g e C(R;M) is called translation-compact (tr.-c.) in C(IR; M)
if the set H(g) is compact in C(R;M).

Our additional condition on function f , which we use to construct the non-
autonomous dynamical system is the following:

[JJ:'J is tr.—c. in C(R;M). (6)
t

As an example of the function f which satisfies (3), (6), we can consider

2
f(t,u)=e™ u+ h(u), where h € C(R) (but not smooth),

timinf ") > 2, and |h(u)|§C{l+|u|nnz j
u

[0

~ o 2
Then |f(t,u)<C {1 + || 2 j lim inf inf (e_t + Mj ~ liminf 2 > 4,

|u| >0 1€R u u|>0 U

|f,'(t, u)| = ‘— 2[e_t2 u

<2|t|e—f2 |u| and (]{'] is obviously tr. -c. in C(R; M).
t

We note, that in this example f and f; are not almost-periodic in Bohr

f
=H| " | 7
[f,’J ()

From [9] we have that continuous shift group {T(h) LS Z}hER ,
T(h)o(t)=o(t+h) actson X.
Now we need the following Lemma.

sense. We denote

!

Lemma 1. Each function o €X has the form o= ( &
8

J, and functions g,

g, satisfy the following conditions:

g(t,u)
u

liminf inf
‘u‘—mo teR

>—,11,

g(t,u)| < C[l + |u|ni2}

8,6 < (0)+ B, (0,
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where Taa (t)dt < T a(t)dt, T B ()dt < Tﬂ (t)dt .

Proof . For each o= (‘?] €2 according to (6) there exists sequence {h,, }
such that V[tl,tz]c]R V[VI,VZ]CR

sup  sup (If(t+hn,v)—g(t,v)|+|f,'(t+hn,v)—l(t,v)|)—>0, n—>o0.
[E[l],tz]ve V15V2

n
From this we can easy obtain /(¢,v) = g;(¢,v). Since f(t+h,,v)< C(l + |v|an ,

we have |g(7,v)[< C[l - |V|n—2J. Choosing & >0 such that liminf inf PGSR

oo RV
>-A +¢&, we have

f@+h,,v)

v

(t,v)

t . . .
So £ v) >—J, + & and we obtain lim inf inf £
% e 1RV

Since |f/(t+h,,v)|<a(t+h,)+B+h,)[, we have for h, >

g (t,v)=0 and for h,—>hy |g/t.V)|<a(t+hy)+pB(t+hyp|, where

AR>0 V||[2R VieR Vnxl >-4 +¢€.

+00 +00 +00 +o0
j a(t+hy)dt = j a(t)dt j Bt + hy)dt = j B(t)dt . Lemma is proved.

Now we dip the problem (1), (2) into the family of similar problems:
Uy +yu, —Au+g(t,u)=0,
u |8Q =0, (1)0

Ul =1 (x), Uy |==v (%), 2)o

where GZ(g,jeZ.
&

As functions g, g; satisfy the conditions (3), for each o € X the problem

u
1)y, (2), 1s globally resolved for all ¢, =( rJ € E . The main object which
VT
we consider in this paper is a family of multivalued maps
{UU:Rde—>2E} Rdz{(t,f)€R2|lZT}

oeX ’

u
UO' (t, 7,0, ): {¢(Z) | Q)() = (u

t

(('?)j is solution of (1), ¢(z)= go,}. (8)

For the family (8) our goal is to prove the existence in phase space £ of
minimal invariant uniformly attracting set — global attractor.
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Global attractor for non-autonomous wave equation without uniqueness of solution

Elements of abstract theory of global attractors for multivalued non-
autonomous dynamical systems. Let (X, p) be a complete metric space. We

denote by P(X)(£(X)) the set of all non-empty (non-empty bounded) subsets of

X, VABc X dist(4,B)=supinf p(x,y), Os(A4)={xe X |dist(x,4)<5},
xeAd yeB

B, = {xeX|p(x,O) < r}. Let £ be some complete metric space, {7 (h):Z —>
— X} ,cr be some continuous group acting on X.

Definition 2. The family of multivalued maps {UU R,y xX —)P(X)}GEZ is
called family of multivalued processes (MP) or non-autonomous multivalued
dynamical system, if VoeX , Vxe X :

1) UG(T,T,X):X VrelR;

) U, (t,z,x)cU,(t,5,U,(s,7,x)) Vizs>7;

YU, (t+ht+hx)c UT(h)O,(t,r,x) Vtx>r, VheR.

The family of MP is called strict, if in conditions 2), 3) equality takes place.
We denote Uz(t,r,x)= UUU(t,r,x) .

oel
Definition 3. The set ®y c X is called global attractor of the family of
MPU,}, s ,if ©;#X and

1) ®y is uniformly attracting set, that is

VBe f(X) VreR dist(Uy(t,7,B),05)—>0, t > o0;

2) Oy is minimal uniformly attracting set, that is for arbitrary uniformly at-
tracting set ¥ we have Oy cclyY .

Global attractor ®y is called semi-invariant (invariant) if ¥ (¢,7)eR,
0y cUs(1,7,05), (05 =Us(t,7,0y)).

Lemma 2. 1) If the family of MP{U, } _ satisfies the following condi-

tions:

VBep(x) AT =T(B)| JUs(1.0,B)e p(X), )

=T

VBepX) Vi, It, >of VI, &, €Us(t,.0,B))

. : (10)
the sequence {5,, } is precompact in X,
then there exists global attractor Oy,
Oy :UGZ(T):®Z(O)’ (11)
T

where O (7)= U ws(z,B), ws(z,B)= ﬂUUz (t,7,B) is compact in X ;
Bep(X) s2Tt2s

2) if, additionally, V¢ >0 the map
Xx23(x,0)>U,(t,0,x) (12)

has closed graph, then ®5 is semi-invariant;
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3) if, additionally, the family of MP{U, |__ is strict, then Oy is invariant.

Proof. The properties 1), 2) directly derived from the result of [11].
Now we prove 3). From [11] we have the embedding wy (O,B)c
cUs(t.0,05(0,B)) VBepB(X) Vi>20. So Vp=0 Us(t+ p.t,w5(0,B))c
cUs(t+p,t,Us (.0, 05 (0, B))) =Us (t + p,0,5(0,B)). Then Us(p,0,ws(0,B))=
=Ur(z (0,05 (0,B)=Us (t + p,t,05 (0, B)) = Us (¢ + p.0, 5 (0, B)).. From this
forall p>0,forall 7> p

Us (p.0,05(0,B)) = | JU3 (£,0,05 (0, B)) = | JU5 (k0,05 (0, B)).

k>t k>t
So,
Uz (p.0,05(0,B)) = () |JUs (k0,05 (0, B))= 05 (0,05 (0, B)) = Oy .
2p k>t

Therefore, V p>0 Us (p,O,@E)C Os.

Then VreR Uz(p+T,r,®z)=UT(T)Z(p,O,®Z)ZUZ(p,O,GZ)C(BZ and
Lemma is proved.
Properties of solutions of the problem (1), (2). We put F(t,u)=

:.[:f (t,s)ds , F/(t,u)= J:ﬁ'(t,s)ds .Then F, F/e C(]Rz) and according to (3)

there exist constants A<4;, C; >0, C, e R which only depend on C>0,
n>3 and A, >0 such that V(t,u)e R?

2n-2
|F(tu)|<Ci| 1+u| 2 |, F(t,u)z—iu2 +C,,
2 (13)
) <alof + 2P
u()

In view of (13) for every function qo(-)=( 0
u, (-

Je C(e.7]:E) we can cor-
rectly define the following functionals:
V(o) =Sl OF + S + (Fleale))
1{e.gl0) =V (t0(0) + 2 u, 0.0)),
H(e.p(0)= (7, (1)« P D) =2 ()

Lemma 3. The following properties take place:

1) functions (F(-,u(-)),l), (Ft' (-,u(-)),l), (f('a”('))a“('))s (f('s”('))a”t(‘))e

IS (C([T,T]);

2) it {p,(VeCe.T] #)(@)) and Vie[n.T] p,()—>ult) in HIQ),
then Vte[r,T]

(F (e, p (W) > (Fu)1), (7 € p, (1)~ (7] (u@)1),
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(162, () s ()= () ue)).
If, additionally, {pn ()}c c! ([r, T];Hé (Q)) and Vte [T, T] ph(t)—>u,(z) in
L2(Q), then (f(z. p, (). £, (1)) = ( (.0, (2)

Proof. In the proof of this Lemma and in all results, given below, we use the
following version of the dominated convergence Lebesgue's Theorem: if for

measurable functions {fn} w10 & we have &, —»¢& ae, §n|<77n a.e. and

n, —>n in L', then &, —>¢ in L.

We consider the function (f (-,u(-)),u,(-)) (for others one can apply the same
arguments). Let ¢, —1,. Then u(z,)—>u(ty) in Hy(Q), u,(,)—>u,(t,) in
L*(Q), s0 ult,,x)—>ulty,x) ae., u,(,,x)—>u,(ty,x) ae. Since f e C(Rz), we
obtain £ (¢,,u(t,,x)k,(t,,x)— f(ty.u(te,x))u,(ty,x) a.e. Moreover, in view of

3) |f(tn,u(tn,x))u,(tn,x]SC|ut(tn,x)|+C|u(tn,x1£|ut(tn,x)|. As Hé(Q)c
2n 2n

c L2(Q), we have u(z,,x)— u(ty,x) in L2 . Since u,(t,,x)— u,(ty,x) in
I (Q), we easy obtain |u(tn ,xlﬁ |ut (z, ,x)| - |u(t0 ,xlﬁ |u, (¢ ,x] in L'(Q).
Applying Lebesgue's theorem, we have f(¢,,u(t,,x)u,(t,,x)—

— f(tg,ultg,x))u,(ty,x) in L'(Q) and thus f(,u())u,()e C([z,T]) . Statement
2 can be proved in the same way. Lemma is proved.
As a consequence of Lemma 3 we immediately obtain that V(p(-)z

= (:t(())) e C([z,T} E) functions (-, o()), I( o(-)), H(, ¢(-)) belong to C([r,T]).

Lemma 4. For every u(-)e (C([r, T).H} (Q)) u,()e (C([T,T];L2 (Q)) function
(F(-,u(-)),1) belongs to C'(z,7T) and V¢ e(r,T)
Ll )= () D (e 1) (14)
Proof. From Lemma 3 it suffices to show that V[, ]c(z,T)
VneCylt.t)
- [ ECa) = [ (F )+ (eaha O as)
We can mollify u with respect to ¢ to obtain a sequence

(0,0 €' [0, 0 1 H3(@) with p, >u in . 1HY@). oy —>u, in
(C([z‘o,z‘l];L2 (Q)) Equality (15) obviously holds for p, () Using Lemma 3 and

boundness of [p’fj in (C([to 4 ];E ) we can apply Lebesgue’s theorem and obtain
Pn

(15) by passing to the limit in the same identify for p, . Lemma is proved.
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Lemma 5. Under conditions (3) VreR VI >z Ve, =(uTJeE
VT

problem (1), (2) has at least one solution on (z,7). Moreover, for each

solution go(-)=(u((.))J of problem (1) on (z,T) the functions (x,(-),u(")),
u

V(9(), I(,o()) belong to C'(z,7) and V7 e(r,T) we have

Ly 0= x+( w())l) (16)
L ) =0 =l 0ale) - -G eahate). a7
%1 (t.0(0))= 7 (t.0(1) + H(t, (2)). (18)

Proof. We construct solution of (1),(2) using the Faedo-Galerkin method.
Let {a)j }j_]:l be a complete system of functions in Hy(Q) and u,,(t)=

m
= Zgi(m)(t)a)i be the Galerkin approximation, satisfying the following ordinary

differential system
2
:litz ( m>@ )+7/Z( a)j)+((um,a)j))+(f(t,um),a)j)=0, j=L...m (19)
with the initial conditions
wy(@)=ul’, u,(0)=v],

where u” —u,, m—w in Hy(Q), v" >v,, m—w in L*(Q). Local exis-

tence of u,,(-) is obvious. Existence on [T,T ] will be guaranteed by following a
priori estimates:

(gt )+ 7| + (e )+ (£ (0 )0y ) =0,
d ! ! !
5 {um|2 et + 2(F .1, ),1)}+ 2pup| = 2(F) (¢, 1 1)=0.
From this equality and (13) we deduce that V¢ >7

|u;n(z)|2+||um(z)||2sc3[|u;,,(f)|2+||u O 4 (s 41+

T

 [lals) 6, o +||um<sx|2)as} o0

where constant C3 >0 depends only on 4, >0, C>0, n>3. Using Gronwall
inequality, we obtain:

(O [t OF < C ity () + i () +
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+ e (2 )||2nn — +1j Jiels)+ Als)s 1)

From (21) we deduce that [u',”] is bounded in L*(z,T; E).
u

So we can extract a subsequence, still denoted m , such that
u, —>u in L” (T,T;H(l)(Q)) weak —star,
u, >u, in L” (T,T; I? (Q)) weak — star .
Thanks to a classical compactness theorem
u, —>u in L[* (T,T b (Q)) strongly .
Hence on some subsequence u,, (t,x)— u(t,x) a.e. and so f(t,u,,(t,x))—
— f(t,u(t,x)) ae. From (21) {u,,(t)} is bounded in L” (T,T;H(l) (Q)), SO
{ f(t,u, (t))} is bounded in L? (T,T L? (Q)) . Then in a standard way we obtain
feu,, (€)= f(t,ult)) in 12 (r T,I? (Q)) weakly. It allows us to pass to the limit
in (19) and find that ¢()= (u (())JEL (z,T;E) and satisfies (4). Thus o) is
t

a solution of (1), ¢()eC([r,T} E). Moreover, as {u”,} is bounded in

m

r (T,T;H_l (Q)), from compactness theorem we have
Vielr,T] u,,(t)— ult) weakly in L*(Q),
Vielr,T) u, (t)—>u,(t) weakly in H'(Q)
and, again applying (21), ¢, (t)= ( ’"8} p(t) weakly in E. In particular,

m u
o, (7)= [u:n J —>olr)= ( rJ in E and existence is proved.
U, v

Now let (o ( J is an arbitrary solution of (1), (2) on (r T )

Since f(t,u(t))e L*\z,T; L? (Q)), from [2] we deduce that in the sense of
scalar distributions on (z,7)

L ol )= 0 (), 0) )

2dt

Similarly to the proof of Lemma 4 we can obtain in the sense of distributions

d
<“tz’“>25(“z’”)_|“z|2a (23)
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where <,> is the scalar product between H (1) (Q) and H™! (Q) From (23) and (1)
we have equality (17) in the sense of distributions on (z,7).

u()
u, ()
(u,() u() X +||u )" belong to (Cl(r T ) and so identities (17), (22) take
place in class1cal sense Ve (z,T). Then using the result of Lemma 4 and (17),

(22) we can easily obtain (16)-(18). Lemma is proved.
Remark 1. As T >t is arbitrary, we can state a global resolvebility of (1),

According to (p(-)—[ JEC([T,T ;E) we deduce that functions

(2), that is we say that (p(-)=( (())JE(C([T +oo] E) is a solution of (1), (2), if
U,

(p(f)= @, and (p() satisfies (4) VT >r.
Remark 2. It is easy to see that if (16)-(18) hold, then for each solution

u .
(p(-)=( (())J of (1) we can repeat arguments, using in proof of Lemma 5 and ob-
u, (-

u()

tain (21). Hence, for arbitrary solution (p(-)=( 0
u;

J of (1), for which
||u(r)||2 + |ut (712 <R, we have

vize  [ule)f +u () <K(R), (24)
where constant K ( )> 0 depends only on constants R>0, 4, >0, C>0,n2>3

and values of j I ﬁ

Main results. For every o = ( g’ J € X we consider the problem (1), (2),.
&1

u
In view of Lemmas 1, 5 forevery re R, ¢, =( Tj € E the problem (1), (2),
UT

has at least one solution on (7,+o0) and for all solutions of (1), (2), the equali-
ties (16)—(18) take place, if we change V', I, H on V_, I, H, respectively.

Lemma 6. Let ¢,(-) be a solution of (1), , where o, = [g'fj -0 =[gJ
&n g

in £ and ¢, (r)—) ¢, weakly in .

Then VI >7 Vte [r,T] 0, (t)— pl(t) weakly in E , where ¢(-) is solution
of (Ng. plc)=p, and (F, (tu, (1) 1) (F (culr)) 0 5 (60, (O)1) >
= (Fule))) /5, (u, (0)) w, (1)) = (75 (ule)). u(0)) - where 1, = g,
foi=g.
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Proof. Thanks to Lemma 1, (16)-(18) and boundness of {(p,, (r)} in £ we

. . . _ un() X
can in the same way as in Lemma 5 obtain for ¢, (-)= o)
u,(

V137 uy (O + iy 0 < G (0 + o (2 +
+ ||un (r)"% + ljefz’)(a(t) * ’B(t))dt . (25)
So using the compactness theorem we can extract a subsequence such, that
0, > @ =(: J in L”(z,T;E) weak — star ,
t

0,(t)> o(t) in E weakly Vie [r,T], (26)
u, >u in L*(¢,T; L (Q)) strongly
u,(2,x) > u(t,x) ae.

From Lemma 1 and (25) {gn (t,un )} is bounded in L? (z,T; I? (Q)) . Accord-
ing to convergence o, — o in £ we have VR>0

sup sup|gn t v) g(t,v]—)O, n— o,
te[r T]M<R

Hence g, (t,u,(t,x))— g(t,u(t,x)) a.e. and from Lions Lemma we obtain

g (t,un )—) g(t,u) in L (z,T . L? (Q) weakly. It allows us to pass to the limit in
_[uC)) . :
(4), wrote for ¢,(-), and we deduce that ()= 0 is solution of (1),
u;(

olt)=o..
Now we prove that Vte[f T] (Fa (t,u,(t)), 1) (F(z,u(z).1) (other

statements can be proved by similar arguments). Firstly £ (t,un (t,x))—>

—>Fa(t,u(t,x)) for a.a. xeQ and from Lemma 1 and (13) ‘an (t,un(t,x)js

2n-2
SC{1+|un(t,x]n—2}.As Vielr,T]

“u t,x)- tx 2 dx .Hu £,x)— t,x)|-|un(t,x)—u(t,x)|n%2dxﬁ
Q

<ty (6) = ) ()= )2

and u,(t)—>u(t) in L,(Q) strongly, from (25) we deduce that |u,, (£, x) 2 —
2n-2
|u t x)|nn7 in ! (Q) So we can apply Lebesgue theorem and obtain that

Vielr,T] F, ( 1, (t,x) = F, (t,u(t,x)) in L'(Q). Lemma is proved.
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Remark 3. From Lemma 6 we have that Vre(r,T] H, (t,0,(t)—

— H_(t,¢(r)) and the following estimate holds:
sup [H,, (1.0, (1))| < Cs, @7)
teft,T]

where constant C5 >0 dependes only on C, from || ?, (r)|| <Cy.

Theorem. Under conditions (3), (6) the family of maps, constructed in (8), is
a strict family of MP{U, : R, x E — P(E)} for which there exists an invari-

ant global attractor in the phase space F .

Proof. Let us prove that the family (8) satisfies Definition 2 with equalities
in 2), 3). Condition 1) is obvious. Let £ € U (t,7,@, ). Then &= g(r),¢() is solu-
tion of (1), on (7,+©), go(T)Z @,.Then Vse [T,T] (/)(s)e U,(s,7,90,). We put
l//(p):(p(p), p=s. Then gz/() is solution of (1), on (s,+oo), w(s) =g/)(s). So
E=y(t)e U, (t,s,0() U, (t,5,Uy(5,7,0,)) .

Let &eU,(t,s,Uy(s,7,0,)). Then &eU_(t,s,m7), neU,(s,7,9,).
Hence & =g(t), () is solution of (1), on (s,+0), ¢(s)=7, n=w(s), w() is
v (p), pelr,s]

o(p).p>s
&= qo(t)= 6(t), 6(-) is solution of (1), on (r,+ oo), O(r)=w(r)=¢,. Thus
6 EUo'(taz-awr)

Let SeU,(t+h,t+h,¢,). Then &= go(t + h), go() is solution of (1), on
(r + h,+oo), (p(r + h)= @,. We put v(p)= (p(p + h), p =17.Then v(-) is solution
of (D7(nyo on (z,+0), V(1) =@, 50 §=v() €Ur(1yo (1,7, 9;)

Let $eUrpyo(t,7,¢,). Then &= o(t), () is solution of (D7 on
(z,+0), ¢(z)=p,. We put v(p)=p(p—h), p=t+h.Then vz +h)=p,, v()
is solution of (1), on (r + h;+ oo), thatis =v(t+h)eU, (t+h,t+h,p,). So,
v, }creZ is a strict family of MP .

Now we verify conditions 1)-3) of Lemma 2. From estimate (24) with
7 =0 we immediately obtain property (9).
Let &, €U, (t,0,n,), &, =&, n, = n in E . Since T is compact, we can

oex’

solution of (1), on (r,+ oo), v (r)=¢,. We put Q(p)z{ . Then

claim o, »> o in X. Then &, =¢,(t), ¢,() is solution of Do, > 0,(0)=

=7, = 1. From Lemma 6 we deduce that Vs>0 ¢, (S)—> (o(s) weakly in E,

where ¢(s)eU, (s,0,7). Thus &, =@, (t)— ¢(t)=& €U, (1,0,n) and property 2)
is proved.
To finish the proof we should check the property (10). Let &, e

€U, (t,.0.n,), n,eBepB(E), t, >, o,—>0c.Then & =9,(t,), ¢,() is
solution of (1), . ¢, (0)=7, . Using (24) we have that {p,(z,)} is bounded in

E . Hence there exists 6 € E such that on some subsequence &, =g, (tn)—> o
weakly in £ . In the same way VM >0 ¢, (tn —M)—) 6, weakly in E .
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Moreover V120 @,(t, =M +t)eU, (t, =M +1,t, =M., (t, -M))=
= UT(tn—M)Gn (.0,0,(t, —M)). 1t follows that ¢, (t, —M +1)=v,(t), v, () is
a solution of (I)T(tn—M)Gn= v,(0)=9,(t, —M). Since &, :=T(t, -M)o, -
— & in %, from Lemma 6 we obtain that V>0 v, () v(t) weakly in E,
where V(t)e U(2,0,6,,). In particular, v,(M)=¢&, >v(M)=0ecU5(M,0,60,,)
weakly in £ .

From equality (18) writed for v, () we have V>0

o ()= 1o (0o, (O) + [P0, (pov, ()

and with 1 =M

M
[En (M’ §n ) = I&,l (O’ Va (0))6_7M + J.ey(p_M)HEn (pa Vi (p))dp .
0

Hence
liminf 75 (M,&,)<limsup 75 (0,v,(0))e™™ +

n—»0 n—o
M
+limsup [P, (p.v, (p)dp. (28)
n—»0 0

Thanks to (24) limsup /5 (0,v,(0))< C¢ ,where constant Cg >0 does not

n—»0
depend on n and M . Moreover, from Remark 3 we conclude that
M M
timsup [’ 1 (p.v, (p)dp = [z (pv(p)dp.  (29)

If we write equality (18) for function v(-) and for =M , then
M
1 (M v(M))= 15 0.0(0)e ™ + [P (pv(p)dp.  (30)
0

N (al)
oreover, if we denote v(-)= , then
@, ()
liminf 75 (M,&,)>

n—>®©

» + (o, (M) o))+ (F

5 (M, o(M))1). (31)

Sl

From (28)—(31) we obtain

211iminf
2 n—00

Bl s

-mM - _
<Coe ™ —I5 (M, v(M))-15 (0,v(0)e ™ =
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= Coe ™ 1 0.0 4 [0l + 7 (o, ()b )+ (5 (M, 0(00)1).
So

€]

%linm_)igrolf " <Coe™ ~1,(0.v(0))e +%||0||2. (32)

From (24) |, (1, - M)|, <K(B). where constant K(B)>0 does not de-
pend on n, M. As 9,(t,~M)—>6, weakly in E. we have |6, <
<1iminf||¢n(tn —M)||Z<K(B). Since ), =v(0), then we can pass to limit in (32)

n—>0
for M — o and obtain

1
L <5l

€]

1. .
—liminf
2 5w

In view of weak convergence &, to € in E we have inverse inequality, so
&, — 0 strongly in E . Theorem is proved.

REFERENCES

1. Babin A.V., Vishik M.I. Attractors of evolution equations. — Moscow: Nauka, 1989.
— 284 p.
2. Temam R. Infinite-dimensional dynamical systems in mechanics and physics. —
New York: Springer, 1997. — 615 p.
3. Chueshov I.D. Introduction to the theory of infinite-dimensional dissipative systems.
— Harkiv: ACTA, 1999. — 415 p.
4. Kapustyan O.V., Melnik V.S. Attractors of multivalued semidynamical systems and
their approximations // Report of NAS Ukraine. — 1998. — Ne 1. — P. 21-25.
5. Kapustyan O.V., Valero J. Attractors of multivalued semiflows generated by differ-
ential inclusions and their approximations // Abstract and Applied Analysis. —
2000. — 5, Ne 1. — P. 33-45.
6. Ball J.M. Continuity properties and attractors of generalized semiflows and the Na-
vier-Stokes equations // Nonlinear Science. — 1997. — Ne 7. — P. 475-500.
7. Ball JM. Global attractors for damped semilinear wave equations // Discrete and
Continuous Dynamical Systems. — 2004. — 10. — P. 31-52.
8. Viskik M.I., Chepyzhov V.V. Attractors of non-autonomous dynamical systems and
their dimension // J.Math. Pures Appl. — 1994, — 73, Ne 3. — P. 279-333.
9. Viskik M.I, Chepyzhov V.V. Evolution equations and their trajectory attractors //
J. Math. Pures Appl. — 1997. — 76, Ne 10. — P. 913-964.
10. Kapustyan O.V. Global attractors of non autonomous reaction-diffusion equation //
Differential Equations. — 2002. — 38, Ne 10. — P. 1378-1382.
11. Kapustyan O.V., Melnik V.S., Valero J. Attractors of multivalued dynamical proc-
esses generated by phase-field equations // Int. J. Biff. and Chaos. — 2003. —
13, Ne 7. — P. 1969-1983.

Received 05.10.2005

From the Editorial Board: The article corresponds completely to submitted manuscript.

120 ISSN 1681-6048 System Research & Information Technologies, 2006, Ne 2



