ИСПОЛЬЗОВАНИЕ МЕТОДА ЧИСЛЕННО-АСИМПТОТИЧЕСКОГО ПРИБЛИЖЕНИЯ ДЛЯ ИССЛЕДО-ВАНИЯ ПРОЦЕССА ВЗАИМОДЕЙСТВИЯ *β*⁻- ИЗЛУЧЕНИЯ С ЛИНЕЙНЫМИ ГИБКОЦЕПНЫМИ ПОЛИМЕРАМИ

А.Я. БОМБА, В.В. КЛЕПКО, Ю.Е. КЛИМЮК, Б.Б. КОЛУПАЕВ, Б.С. КОЛУПАЕВ, Е.В. ЛЕБЕДЕВ

Построен алгоритм асимптотического приближения решения одного класса модельных нелинейных сингулярно возмущенных краевых задач радиационной физики пространственно-неоднородных линейных гибкоцепных полимерных систем. Приведены результаты численных исследований взаимодействия

 β^- -излучения с поливинилхлоридом.

введение

Установлено, что комплекс свойств полимерных материалов изменяется при воздействии на них излучений высоких энергий [1]. Так, в случае электропроводности это связано с тем, что кроме дырок, ионов, дефектов структуры образуются фотоэлектроны и комптоновские электроны, принимающие участие в создании тока проводимости [2]. Такие электроны, постепенно теряя свою энергию, создают в образце множество $\bar{\gamma}$ - электронов [3]. Кроме того, электроны захватываются различными ловушками, взаимодействуют с ионами и радикалами [4]. Все это приводит к тому, что концентрация носителей заряда изменяется не только в элементарном объеме среды, но и во времени. Особо следует отметить, что определенный интерес представляют исследования взаимодействия β^- -излучения с линейными гибкоцепными полимерами, которые широко используются в науке и технике. Для таких систем возможен захват образованного электрона макромолекулой, вызывающий изменения релаксационных состояний и переходов в системе. Характерно, что β^- -частицы испытывают столкновения с атомами среды, в результате которых случайным образом изменяют направление своего движения. Образованные при этом локальные флуктуации концентраций частиц вызывают диффузионные процессы.

Если учесть, что система находится и во внешнем электрическом поле, то наряду с диффузией происходит также дрейф носителей заряда. Дефекты, возникающие под действием β^- -излучения [4], занимают множество эквивалентных положений в полимере. При этом предполагается, что скорость захвата ими электронов, а также их рекомбинация зависят от подвижности боковых групп или сегментов полимерной матрицы [5]. В конечном итоге все это приводит к тому, что полимер, подверженный действию

© А.Я. Бомба, В.В. Клепко, Ю.Е. Климюк, Б.Б. Колупаев, Б.С. Колупаев, Е.В. Лебедев, 2006 138 ISSN 1681–6048 System Research & Information Technologies, 2006, № 2 β^- -излучения, представляет собой пространственно неоднородную систему [6], описание которой требует новых модельных подходов и математических методов.

В данной работе в виде модельной линейной сингулярно возмущенной краевой задачи аналитически описан процесс изменения концентрации электронов проводимости, возникающих под действием потока β^{-} -частиц, в результате их взаимодействия с линейными гибкоцепными полимерами.

ПОСТАНОВКА И РЕШЕНИЕ ЗАДАЧИ

Рассмотрим модельную задачу расчета среднего числа C(x,t) электронов проводимости для линейного случая (все C_i зависят от x и t, т.е. для области $\sigma = \{(x,t) : x_* \le x \le x^*; 0 \le t \le \infty\}$), образованных в полимерной системе под действием β^- -излучения. С учетом рассматриваемого процесса реакционное кинетическое уравнение имеет вид

$$\varepsilon\lambda(x,t)C_{xx}(x,t) + \beta(x)C_x(x,t) - \alpha(x,t)C(x,t) + \gamma(x,t) = C_t(x,t), \quad (1)$$

$$C(x^*,t) = c_*(t), \ C(x_*,t) = c^*(t), \ C(x,0) = c_0^0(x),$$
(2)

где C(x,t) — концентрация электронов проводимости в точке x в момент времени t; $\lambda(x,t)$, $\beta(x)$, $\alpha(x,t)$, $\gamma(x,t)$ — некоторые ограниченные функции; ε — малый параметр ($\varepsilon > 0$); $c_*(t)$, $c^*(t)$, $c_0^0(t)$ — достаточно гладкие функции, согласованные между собой.

Решение задачи C(x,t) с точностью $O(\varepsilon^{n+1})$ ищем в виде асимптотического ряда

$$C(x,t) = C_0(x,t) + \sum_{i=1}^{n} \varepsilon^i C_i(x,t) + \sum_{i=1}^{n+1} \varepsilon^i \Pi_i(\xi,t) + R_n(x,t,\varepsilon),$$
(3)

где $R_n(x,t,\varepsilon)$ — остаточный член; $C_i(x,t)$ $(i = \overline{0,n})$ — члены регулярной части асимптотики; $\Pi_i(\xi,t)$ $(i = \overline{0,n+1})$ — дополняющие функции в окрестности точки $x = x_*$; $\xi = (x - x_*)\varepsilon^{-1}$ — соответствующее регулирующее преобразование (растяжение).

В результате подстановки (3) в (1) и выполнения стандартной процедуры приравнивания коэффициентов при одинаковых степенях ε [7], получим следующие задачи для нахождения главной части $C_0(x,t)$ решения и поправок $C_i(x,t)$ ($i = \overline{1,n}$):

$$\begin{cases} l_i \lambda(x,t) C_{i-1 xx}(x,t) + \beta(x) C_{ix}(x,t) - \alpha(x,t) C_i(x,t) + m_i \gamma(x,t) = C_{it}(x,t), \\ C_0(x,0) = u_i(x), \ C_0(x^*,0) = w_i(t), \ i = \overline{0,n}, \end{cases}$$
(4)

где $u_0(x) = c_0^0(x)$, $u_i(x) = 0$, $w_0(x) = c_*(t)$, $w_i(t) = 0$, $l_0 = 0$, $l_i = 1$, $m_0 = 1$, $m_i = 0$.

Системні дослідження та інформаційні технології, 2006, № 2

В результате их решения имеем

$$C_i(x,t) =$$

$$= \begin{bmatrix} x_{x}^{*} \frac{\alpha(s,f(s)-f(x)+t)}{\beta(s)} ds \begin{pmatrix} x_{y}^{*} \frac{q_{i}(s,f(s)-f(x)+t)}{\beta(s)} ds \begin{pmatrix} x_{y}^{*} \frac{q_{i}(s,f(s)-f(x)+t)}{\beta(s)} ds \end{pmatrix} \\ x_{y}^{*} \frac{\alpha(s,f(s)-f(x)+t)}{\beta(s)} ds + k_{i}c_{*}(t) \end{pmatrix}, \\ t \ge f(x), \\ t \ge f(x), \\ t \ge f(x), \\ t < f(x), \\$$

где $f(x) = \int_{x}^{x^{*}} \frac{ds}{\beta(s)}$ — время прохождения некоторой частицы от точки x^{*} к

точке x; f^{-1} — функция, обратная f относительно переменной x (отметим, что такая функция существует, поскольку $\beta(x)$ — непрерывно дифференцируемая, ограниченная, положительно определенная функция); $q_0(x,t) = \gamma(x,t), q_i(x,t) = \lambda(x,t)C_{i-1}xx(x,t), k_0 = 1, k_i = 0$ ($i = \overline{1, n}$).

Функция $\Pi = \sum_{i=0}^{n+1} \Pi_i \varepsilon^i$ предназначена для устранения «неувязки», вне-

сенной построенной регулярной частью $C = \sum_{i=0}^{n} C_i \varepsilon^i$ асимптотики, в окрестности точки $x = x_*$ (выхода β^- -частиц из среды), т. е., должно выполняться условие $(C + \Pi)|_{x=x^*} = c_* + O(\varepsilon^{n+1})$. Для ее нахождения

$$\lambda(x_*,t) \Pi_{i\xi\xi} + \beta(x_*,t) \Pi_{i\xi} = d_i(\xi,t),$$

$$\Pi_i(\xi,t) \xrightarrow{\xi \to \infty} 0, \ \Pi_i(0,t) = p_i(t), \ i = \overline{0,n+1},$$
(6)

где

сформулируем задачи [8]

$$\begin{aligned} d_0(\xi,t) &= 0, \ d_1(\xi,t) = \Pi_{0t} - \beta'_{\xi}(x^*)\xi\Pi_{0\xi} + \alpha(x^*,t)\Pi_0 - \gamma(x^*,t)\xi, \\ d_2(\xi,t) &= \Pi_{1t} - \beta'_{\xi}(x^*)\xi\Pi_{1\xi} - \beta''_{\xi\xi}(x^*)/2!\xi^2\Pi_{0\xi} + \\ &+ \alpha(x^*,t)\Pi_1 + \alpha'_{\xi}(x^*,t)\xi\Pi_0 - \gamma'_{\xi}(x^*,t)\xi, ..., \\ p_0(t) &= c_*(t) - C(x_*,t), \ p_i(t) &= 0 \ (i = \overline{1,n+1}). \end{aligned}$$

ISSN 1681–6048 System Research & Information Technologies, 2006, № 2

ЭКСПЕРИМЕНТ, РЕЗУЛЬТАТЫ И ИХ АНАЛИЗ

В качестве объекта исследования выбран типичный представитель линейных гибкоцепных полимеров — поливинилхлорид (ПВХ) суспензионной полимеризации марки C-65, очищенный переосаждением из раствора с ММ 1,4 · 10⁵ [6]. Образцы для исследований готовили в T-р режиме при $P = 10^7$ Па и T = 403 К в виде дисков толщиной (*l*) (13...14)10⁻⁶ м и диаметром (Ø) 6 · 10⁻² м. Электрические свойства ПВХ исследовали соответственно Госстандарту 64332 – 71 и 25209 – 82. Источником β^- -излучения служил ₉₁Pa²³⁴ (UX₂) с верхней границей энергетического спектра W = 2,32 МэВ (80%), а также β^- -частиц с энергией 1,5 МэВ (13%) и 0,60 МэВ (7%) [5].

Согласно соотношению (1) предполагаем, что изменение во времени концентрации $C_i(x,t)$ электронов в элементарном объеме ПВХ обусловлено происходящими в нем процессами образования носителей заряда $\gamma(x,t)$ за счет действия источника β^- -излучения и их захвата ловушками $\alpha(x,t)C(x,t)$. Предполагаем также, что при отсутствии действия источника β^- -излучения начальная концентрация электронов проводимости в ПВХ составляет величину $C_0^0(x) = n_0$. Если интенсивность β^- -частиц при выходе из образца ПВХ толщиной l составляет (по закону $N = N_1 \exp(-\mu x)$ [2]) величину $N_1 = N_0 \exp(-t/\tau) \exp(-\mu l)$, где N_0 — начальная интенсивность β^- -частиц; μ — коэффициент их поглощения; τ — время жизни [4], тогда $C^*(0,0) = n_0 + N_0 \cong N_0$, поскольку темновая проводимость ПВХ незначительная [1].

Согласно [9], когда на поверхность образца ПВХ падает N_0 β^- -частиц, а поглощение их в объеме определяется коэффициентом экстинкции ξ , скорость генерации носителей заряда на глубине x в единицу времени

$$\gamma(x,t) = \eta \xi N_0 \exp(-t/\tau) (1 - \exp(-\mu l)) (1 - \exp(-\mu x)) t^{-1},$$
(7)

где η — квантовый выход образования носителей. Если предположить, что распределение ловушек по энергиям в полимерах описывается зависимостью [4]

$$N(E) = A \exp(-E/(kT)), \qquad (8)$$

где N(E) — концентрация ловушек на единичный интервал энергии; E — глубина потенциальной ямы; k — постоянная Больцмана; T — температура, то

$$\alpha(x,t) = t^{-1} \exp(-t/\tau) (1 - \exp(-\mu x)) A \exp(-A/(kT)).$$
(9)

Системні дослідження та інформаційні технології, 2006, № 2

Исходя из результатов работы [9], $\beta(x) \cong 2lt^{-1}$, где l — длина свободного пробега β^- -частицы; $l = \sqrt{2 \ln E/E_d} \sigma^{-1} N_a^{-1}$; E, E_d — соответственно максимальная энергия и энергия, передаваемая β^- -частицей при соударении с неподвижным атомом; N_a — число атомов в единице объема; σ сечение процесса взаимодействия β^- -частицы с ПВХ. Подставляя соответствующие значения величин в соотношение (5), находим, что

$$C_{i}(x,t) = \begin{cases} B \mu x \Big|_{0}^{t} \exp\left(-A_{1} \mu x\right)\Big|_{t}^{s} + K_{i} c_{*}(t), & t < f(x), \\ K_{2} \mu x^{2} \Big|_{x}^{x^{*}} \exp\left(-K \mu x^{2}\right)\Big|_{s}^{t} + K_{i} c_{0}^{0}(x), & t \ge f(x), \end{cases}$$
(10)

где $B = \eta \xi N_0 (1 - \exp(-\mu l)) \exp(-t/\tau);$ $A_1 = A \exp\left[-(t/\tau + E/(kT))\right];$ $\mathcal{I} = \sigma N_a \times \left(2\sqrt{2\ln E/E_d}\right)^{-1};$ $K_2 = \frac{1}{2}B\mathcal{I};$ $K = A_1\mathcal{I}.$

На рисунке показаны результаты расчета изменения во времени и в фиксированных точках x_i образца концентрации электронов, принимающих участие в проводимости ПВХ при $\overline{E} = 2,5 \cdot 10^6$ В/м и $x_* = 0$, $x^* = 1,0$, а также равномерной сетке деления $x_i = x^* - \frac{i}{20}$ ($i = \overline{0,20}$).

Распределение концентрации электронов проводимости, образованных в ПВХ под действием β^- -излучения: 1, 2, 3 — при $t_1 = 8 \cdot 10^2$ c; $t_2 = 12 \cdot 10^2$ c; $t_3 = 26 \cdot 10^2$ c, а также ее изменение во времени (4, 5, 6) в фиксированных точках: $x_1 = 0,7$; $x_2 = 0,3$; $x_3 = 0,1$ при T = 293 K; A, B — соответственно отсутствие и наличие источника β^- - частиц

выводы

Метод численно-асимптотического приближения позволяет решить и проанализировать феноменологическое уравнение кинетики равновесия носителей заряда, описывающее процесс взаимодействия β^- излучения с линейными гибкоцепными полимерами. Это дает возможность прогнозировать изменение комплекса свойств полимерных систем с учетом модифицирующего действия радиации.

ЛИТЕРАТУРА

- 1. Электрические свойства полимеров / Под ред. Б.И. Сажина. Л.: Химия, 1977. 376 с.
- 2. Друкарев Г.Ф. Теория столкновений электронов с атомами и молекулами. М.: Наука, 1978. 217 с.
- 3. *Позднев С.А.* Резонансы в рассеянии электронов молекулами // ЖЭТФ. 2004. **126**. Вып. 5 (11). С. 1051–1072.
- 4. Доул М. Радиационная химия макромолекул. М.: Атомиздат, 1978. 325 с.
- 5. Рогаля А.М., Колупаев Б.Б., Шилов В.В. Дослідження поглинання бетавипромінювання гетерогенними системами на основі гнучколанцюгових полімерів // Физика конденсированных высокомолекулярных систем. — 2004. — № 10. — С. 98–101.
- 6. *Френкель С.Я., Цыгельный И.М., Колупаев Б.С.* Молекулярная кибернетика. Л.: Світ, 1990. 166 с.
- Бомба А.Я. Асимптотический метод решения одной сингулярно возмущенной задачи массопереноса. — Киев: Киевский ун-т, 1986. — Деп. в УкрНИИН-ТИ, № 286-Ук86. — С. 3–17.
- 8. Вишик М.И., Люстерник Л.Я. Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром // Успехи математических наук. 1957. Вып. 5. № 12. С. 3–122.
- 9. *Нелипа Н.Ф.* Введение в теорию многократного рассеяния частиц. М.: Атомиздат, 1960. — 286 с.

Поступила 02.10.2005