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HIGHLY EFFICIENT METHODS FOR REGIONAL WEATHER 
FORECASTING 

A.YU. DOROSHENKO,  V.A. PRUSOV,  YU.M.TYRCHAK 

A model and computational method is offered for the high performance forecasting 
regional meteorological processes. Relying on «unilateral influence» relationship of 
macro- and mesoscale models it suggests avoiding the Cauchy problem in the at-
mospheric model and replacing it by a boundary-value problem with specific inter-
polation technique that has a number of advantages of computational efficiency and 
good suitability for parallelization. The method and its parallel implementation on 
multiprocessor cluster architecture are considered. 

INTRODUCTION  

In recent years a great attention is taken by mesoscale weather events (floods, tor-
nadoes, strong winds and others) as they can cause many deaths and result in huge 
economic losses [1]. Mitigating the impacts of such events would yield enormous 
economic and societal benefits, so models and methods of high performance large 
scale computation leading to regional forecasting regional atmospheric processes 
are of great importance to provide accommodation the real time, on-demand, and 
dynamically-adaptive needs of mesoscale weather research. 

Regional atmospheric processes are influenced by macroscale atmospheric 
circulation, so modeling meteorological values in restricted area is to be consid-
ered as a task with transitional boundary conditions. To achieve a prescribed level 
of accuracy of the solutions for a model in places of heavy gradients of related 
functions it is often necessary to apply a numerical method with variable grid 
steps for restricted terrains. However the common techniques of mathematical 
physics [2] cannot often satisfy these requirements because of low accuracy, slow 
divergence and stability problems, so some dedicated numerical methods are 
needed to make computation more time- and cost-effective.  

Following «unilateral influence» approach to combine macro- and mesoscale 
models [3,4] in this paper we describe our technique for modeling and forecasting 
atmospheric processes over a region [5,6] that replaces the Cauchy problem in the 
atmospheric model by a boundary-value problem and introduces a specific inter-
polation method that has advantages of computational efficiency and good paral-
lelization. The methodology is well tested and approved in complex regional eco-
logical-meteorological modeling in Ukraine [5, 6, 7]. 

REGIONAL WEATHER FORECASTING PROBLEM STATEMENT AND A 
METHOD OF ITS NUMERICAL SOLUTION 

For forecasting values of meteorological quantities (components 321 ,, vvv  of ve-
locity V , pressure, temperature, specific humidity, specific liquid water content, 
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concentration of pollutants and others) in the atmosphere in a bounded territory 
G  we will follow the basics of the method of «unilateral influence» [3], where 
results of analyses and forecasts received from a macroscale (hemisphere or 
global) model are used as boundary conditions in a regional model.  

Let the state of the atmosphere at spatial point ( )σϕλ ,,=r  of the macro-
space area G  be defined by a vector of meteorological quantities ( )tr,ℜ  of 

discrete values of the analysis and, similarly, forecast ( ) ( )rtr mm 11, ++ ℜ=ℜ  re-

ceived from a macroscale model at time 1+= mtt  ( )Mm ,...,1,0=  with a step 
mm tt −= +1τ .  

Then for determining the atmospheric state in the bounded domain 
( ) ( )rGrG ⊂  at [ ]1, +∈∀ mm ttt  we will solve a task of the following kind in vec-

tor representation: 

 ℜ=
∂
ℜ∂ D
t

,  [ ]1, +∈∀ mm ttt ,  Gr∈∀ , (1) 

 ( ) )(, 11 rtr mm ++ ℜ=ℜ ,  Mm ,...,1,0= , where 
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is the right-hand side function describing the momentum, heat and mass transmis-
sion in spherical coordinates with sink/source term F . 

Now replace continuum G  by a spatial grid of points gained by a spatial 
grid of points obtained by discretization of the domain G  with a set of 1−J  
elements jλ∆ , 1−K  elements kϕ∆  and 1−L  elements lσ∆ . Let us construct a 
vector { }jklr , defining the continuous variable r  only in points ( )Jjj ≤≤1 , 
( )Kkk ≤≤1 , ( )Lll ≤≤1 . As a result we will have  
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In the domain G  instead of function ( )tr,ℜ  defined on a macroscale grid, 
we will construct below a function of discrete argument on a regional grid in the 
nodes ( ) Rt m

lkj ∈,,, σϕλ , Jj ≤≤1 , Kk ≤≤1 , Ll ≤≤1 , Ll ≤≤1 . Our aim is 
to put in correspondence the differential operator D  in (1) and the grid operator 
Λ  (see the next section). After filling up function ( ) 11 ++ ℜ=ℜ m

jkl
m

jkl t  in the 

nodes of the regional grid and computing the right parts ( )=+1mtf  
11 ++ ℜΛ== mmf , Mm ,...,2,1= , in all nodes of the grid, ( )lkj σϕλ ,, , Jj ≤≤1 , 
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Kk ≤≤1 , Ll ≤≤1 , we will search for a solution of the problem (1) for 
[ ]1, +∈∀ mm ttt  with the help of a Hermite polynomial like above for number of 

points 3=M : 
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for each node of the grid ( )lkj σϕλ ,, , Jj ≤≤1 , Kk ≤≤1 , Ll ≤≤1 . 

It is easy to check up that the scheme (2) has interpolation properties, 
i.e. at mtt =  or ( )0=−= mttτ  and 1+= mtt  or ( )01 =−= + tt mτ  the equalities 

( ) mmt ℜ=ℜ  and ( ) 11 ++ ℜ=ℜ mmt  hold, respectively. So the maximal error of the 

solution of problem (1) with the help of (2) is inside the interval 1+≤≤ mm ttt and 
it has an order of approximation ][ 4)(τO . 

It was shown in [5] that constructed interpolation formulae involving a func-
tion and its derivative ( ) ( )if ηα , Ni ,...,2,1= , 1,0=α , have following advan-
tages: 

• they have greater accuracy than any of the formulae using only function 
values ( )if η ; 

• no data are required on the right border of the interpolation interval, and 
so the formulae can also be used for the rightmost interval; 

• the values of function ( )if η  and its derivatives ( ) ( )if ηα  can be given 
through unequal intervals. 

APPROXIMATIONS OF DIFFERENTIAL OPERATORS  

To provide a fourth-order approximation of a differential operator D  in (1) by a 
grid operatorΛ  we need to guarantee the accuracy of the same order in the inter-
polation method for smooth filling up of the given discrete function in the nodes 
of the regional grid. To this aim we propose in this section the following compu-
tational scheme. 

Designate with η  one of the horizontal axes of the system of coordinates 
( )σϕλ ,,=r  and with interval ba ≤≤η  the linear size of the area of the 

solutions of the macroscale model along this axis. Let any points 
ba N <<<<< −121 ... ηηη , form a non-uniform macroscale grid [ ]bah ,ω  
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with grid step 11 −− −= iiih ηη . Let us enumerate all nodes in some order 

Nηηηη ,...,,, 210  and consider the values of macroscale function ( )m
i t,ηℜ  in the 

nodes of a grid as components of a vector ( ){ }Nit m
i ,...,1,0, =ℜ=ℜ . 

The task of filling up values of a function defined on a macroscale grid in 
nodes of a regional grid on each interval [ ]1, +ii ηη  will be performed with the 
help of a polynomial of the fifth degree: 

 ( ) ( ) ( ) +−+−+= 2
210 iii aaaQ ηηηηη  
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As for vertical changes of the meteorological values near the underlying sur-
face, where they have the heaviest gradients, it is needed to use grids with small 
steps. On the other hand, to save computer memory and time it is expedient to 
make use of a rough grid far from the land surface. So, irregular grids are needed 
for solving mesoscale problems. However macroscale models are usually deter-
mined on the standard levels of pressure σ  ( )hPa, ...,500,700,850,0z  where 0z  
stands for sea level. Evidently, there is no unique interpolating formula which 
provides necessary accuracy of interpolation in the segment [ ]850,0z  of the at-
mospheric boundary layer. 

Let us divide the domain height H=σ  into two pieces: h≤≤σ0  and 
Hh ≤≤σ , where h  is the 850 hPa pressure level. Values of the meteorological 

quantities in the nodes of the vertical grid Hh ≤≤ σ  will be filled in with an 
interpolation polynomial spline like (3) above, and values on another layer 

h≤≤σ0  will be based on the commonly known theory of the turbulent atmos-
pheric boundary layer [7]. 

We will adopt the conditions of horizontal homogeneity of the 
meteorological fields, the absence of heating or chilling effects and other factors 
except turbulent exchange in the atmosphere. Then a system of equations for the 
mesoscale processes in the layer h≤≤σ0  can be written as follows: 
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where t  is time, playing the role of the iteration parameter; 1v  and 2v  are the 
components of the wind velocity; gv1  and gv2  are those at the height h=σ  
(geostrophic wind); θS  and qS  the sources and outflows of enthalpy and humid-

ity, respectively; Tν  is the turbulent viscosity; Pr  is the Prandtl number; cS  is 
the Schmidt number,  is a Coriolis parameter. The further designations are 
commonly known. 

We construct a vertical grid of M  levels with uneven grid steps estimated as 

 
( )[ ] ( )[ ]{ }
( ) ( )[ ]1/1ln

1/1ln1
−+

+−−+
−=

ββ
σβσβ hhz , (5) 

where ∞<< β1  should hold and the closer parameter β  to 1 the more nodes are 
collected nearby the level 0=z .  

The formulated nonlinear problem (4) has a numerical solution on the grid 
(5) [7]. 

Equation system (4) concerns all internal points of the whole layer 
Hz << σ0 . Particularly, for the sub-domain Hh <<σ , where the turbulence 

viscosity coefficient can be considered as constant, system (4) has an analytical 
solution [7]. Combining the numerical solution on the segment hz <<σ0  with 
the analytical solution on the other segment Hh <<σ  and imposing respective 
boundary conditions one can define a divergent iterative process to reproduce the 
vertical profiles of the meteorological fields based on their known values on the 
standard levels ( )hPa ,...,500,700,850,0z . 

The offered method of filling up the vertical grid allows us to take into ac-
count the heterogeneity of the underlying surface, which can disturb the macro-
scale flow. 

Now the computation of the grid values of the partial derivatives of the first 
order ( )ii ηψ ∂ℜ∂=  and of the second order ( )ii

22 ηζ ∂ℜ∂=  included in 
m
jkl

m
jklf ℜΛ= , will be performed on the basis of the following relations: 
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It is obvious that the relations (6),  (7) have the third order at 1−≠ ii hh  and 

the fourth order at 1−= ii hh . Derivatives ( )ii ηψ ∂ℜ∂=  and ( )ii
22 ηξ ∂ℜ∂=  

belong to (4),  (5) implicitly. But these are systems of algebraic equations with 
tridiagonal matrices, so solutions can be found effectively with the help of the 
sweep method [8] with the boundary conditions 

 ( ) [ ]4
1

1

12
2112

1 2
6

hO
h

h
+

ℜ−ℜ
=++−− ψψξξ ,  (8) 

 ( ) [ ]4
1

1

1
11

1 2
6 −

−

−
−−

− +
ℜ−ℜ

=++−− N
N

NN
NNNN

N hO
h

h
ψψξξ . (9) 

The main advantage of the offered method for the approximation of 
derivatives is that the solution of the system of algebraic equations (6)–(7) at all 
points depends on values at other points, i.e., it depends on iℜ  globally, which 
means smooth filling up and approximation of the differential operators by the 
grid operators. 

SOFTWARE IMPLEMENTATION AND EXPERIMENTS  

A software package of the method considered above was implemented and ex-
perienced in short- and intermediate-term regional meteorological forecasting for 
the territory of Ukraine and nearby areas. The meteorological functionality of the 
package includes following options:  

• setting up an area of the initial data and weather forecast; 
• downloading and decoding initial meteorological data; 
• adaptation of the initial meteorological data; 
• weather forecast on required term; 
• visualization of results of the forecast. 
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The size of area and the parameters of a grid depend on parameters of model 
of numerical weather forecast of hydrometeorological service DWD Offenbach 
(Germany) from which the initial meteorological data are accepted. 

Initial data are downloaded via Internet channels from Offenbach in GRIB 
binary representation and then decoding is performed. This task is launched twice 
per day after 5.00 and 17.00 at local time. The program of weather forecast on 
required term (from 1 to 5 days with a step of 1 hour) can be started on demand 
any times. The execution begins with the analysis of presence of files with the 
initial data, and process is visually supervised. 

Experiments on parallel implementation of the package were carried out on 
cluster multiprocessor (2.6 MHz, 512Mb of main memory for each Intel Xeon 
processor, Dolphin SCI interconnection) and exposed good suitability of the task 
to parallelization. Below a diagram is depicted (see Figure) concerning interpola-
tion of data received from macroscale grid into points of mesoscale grid. The dia-
gram shows computation time (in sec, axis Z ) on various numbers of processors 
(from 1 up to 8, axis Y ) at the various sizes mesoscale grid (axis X ). 

CONCLUSION 

We have presented a new computational method for the efficient solution of the 
complex problem of forecasting regional meteorological processes. Our method 
follows the approach of “unilateral influence” to combine macro- and mesoscale 
models [3,4]. It gives opportunity to replace the Cauchy problem in the atmos-
pheric model (1) by a boundary-value problem and introduces a specific interpo-
lation method (2) that has a number of advantages:  

• the time step in getting macroscale information for regional forecasting 
can be significantly increased and reach 12=τ  hours [6]; 

• as opposed to classical numerical methods for solving the equations of 
mathematical physics, the offered method is deprived of instability problems; 
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• the accuracy of the offered method has fourth order and is determined by 
the same order of accuracy of the following constituent methods: smooth filling 
up of macroscale values into mesoscale grid nodes (3),  (4), approximating differ-
ential operators by grid ones (6)–(9) and interpolation method (2) for solving the 
boundary-valued problem based on the approach of «unilateral influence». 

The model and method have been implemented in a software package and 
tested by the Hydrometeorological Center of Ukraine. The comparison with actual 
wheather cards has shown that the numerical forecasts qualitatively and 
quantitatively well coordinate with real observed data. The model and method 
have been successfully applied in regional short- and middle-term weather fore-
casting for districts of Ukraine. 

Results of experiments in parallel implementation of the computational 
scheme for solving problems in regional meteorological forecasting in Ukraine 
show its good computational efficiency, scalability and applicability for parallel 
computation. 
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