@Irr HOBI METOAU B CUCTEMHOMY AHANI3I,
IHOOPMATULI TA TEOPIi NPUUHATTA PILLEHb

YAK 517.9

METHOD OF APPROXIMATION OF EVOLUTIONARY
INCLUSIONS AND VARIATIONAL INEQUALITIES BY
STATIONARY

P.O. KASYANOV, V.S. MEL’NIK, L. TOSCANO

The method of finite-difference approximations, advanced by C. Bardos and
H. Brezis for the nonlinear evolutionary equations, is generalized on differential-
operational inclusions which are tightly connected to evolutionary variational ine-
qualities in Banach spaces.

INTRODUCTION

At studying of nonlinear evolutionary equations the some spread methods are
used: Faedo-Galerkin, singular perturbations, difference approximations, nonlin-
ear semigroups of operators and others [1, 2]. The dissemination of these ap-
proaches on evolutionary inclusions and variational inequalities encounters a se-
ries of basic difficulties. The method of nonlinear semigroups of operators in
Banach spaces was developed for evolutionary inclusions in works of
A.A. Tolstonogov [3], A.A. Tolstonogov and J.I. Umanskij [4], V. Barbu [2] and
others. A method of singular perturbations H. Brezis [5] and Yu. Dubinskiy [6] on
evolutionary inclusions have disseminated in A.N. Vakulenko’s and V.S. Mel’nik
works [7-9], a method of Galerkin’s approximations in P.O. Kasyanov’s works
[10, 11].

In the present work the attempt to disseminate a method of difference ap-
proximations [1] on evolutionary inclusions and variational inequalities is under-
taken for the first time.

PROBLEM FORMALIZATION

Let @ be separable locally convex linear topological space; @' be the space
identified to topologically conjugate to @ space such, that ® c ®’; (f,p) is the

inner product (canonical pairing) of devices f e ®' and pe®.

Let the three spaces V', H and V' are given, moreover

OcVcd, OPcHcD', OcV'cd’ 1

with continuous and dense embedding;
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H is a Hilbert space (with inner product (#;,h,), and corresponding norm

17l )
V' be reflexive separable Banach space with norm || v || ;

V' is the conjugate to ¥ space with dual norm || £} .

If o,y €D, that (p,y)=(@,y)y is inner product of devices p €V and
wel'.

Let V=V, NV, and |-}y =y +II"llys . where (73.[|"lly,). i=1.2 is re-
flexive separable Banach spaces, embedding ® cV; c®’ and d cV/cd' is
dense and continuous. Spaces (V|- ”Vi') , i=12 are topologically conjugate to
(ViulI-1ly, ) concerning the bilinear form (-,-). Then V'=v+V,.

Let A:V, > V], @:V, > R be a functional, A is non-bounded operator,

which operates from V' to V' with definitional domain D(A;V,V"). The follow-

ing problem on searching of solutions by a method of finite differences is consid-
ered (see [1, chapter 2.7]):
ue DNV, VY, 2)

Au+ A(u)+op(u) > f, 3)

where f eV’ fixed element; dp:V, 3V, is subdifferential from the functional
o (see [13]).

THE BASIC GUESSES

Let us assume, that a set @ is dense in space

VOVLIvily +1vly). “4)
Remark 1. From (4) it follows, that
VOAV'cH. (5)

Really, if ve @, that || v ||%1, <[vIlly I vIly whence, due to (4) it follows (5).
Remark 2. If V' — H, it is possible to not introduce @ and identifying H
and H', at once receive the following line-up of embeddings:
VcHCcV' Q)

Definition 1. The family of maps {G(s)} >, refers to as a continuous semi-
group in a Banach space X, if Vs>0 G(s)el(X;X), GO0)=1Id,

G(s+1t)=G(s)oeG(t) Vs,t20, G(t)xix ast—>0+ VxelX.

Operator A. Let the family of maps {G(s)},>o be such that {G(s)} ¢ is
continuous semigroup on ¥V, H, V', that is there are three semigroups, defined in
spaces V,H , and V' correspondingly, which coincide on @ . Each of them we
shall designate as {G(S)} 05
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{G(5)} 40 1s non-expanding semigroup in H ,
that is || G(s) | (. S1 Vs 20. (7)

Further let — A be the infinitesimal generator of a semigroup {G(s)}>
with a definitional domain D(A;V) (accordingly D(A;H) or D(A;V')) in V
(accordingly in H or in V'). In virtue of [14, theorem 13.35] such generator ex-

ists, moreover, it is densely defined closed linear operator in space ¥ (accord-
inglyin H orin V").

Let {G*(s)} s>0 be the semigroup conjugated to G(s), which operates ac-
cordingly in V,H , and V'. Let — A" is the infinitesimal generator of a semi-
group {G (s)},5o with definitional domain D(A";¥) in ¥, D(A";H) in H

and D(A*;V') in V' . The operator A in H (accordingly in ¥ orin V") is con-
jugated in sense of the theory of unlimited operators to the operator A in H (ac-
cordingly in ¥ or in V"). It takes place the following.

Lemma 1. The sets D(A;¥")N\V and D(A";V")(\V are densein V.
Proof. Really, YuelV Ve&>0 ZFped: |u-¢|,<& @,:=
-1
=[1—1Aj peDNVHYNV, @, >@ inV as n— 0.
n

The lemma is proved.
Now we define A as non-bounded operator, which operates from V to V'
with definitional domain D (A;V,V"). Let us put

DAV, VY={veV |the form w— (v, A*w) is continuous on
D(A*; VYOV in topology, induced from space V7}. ®)
Then there is unique element &, e¥V': (v,A'w)=(§,,w). If ve D(A;V")
(V ,that £, = Av. Thus, generally we can put &, = Av, whence
(v, A'w)=(Av,w) YweDA VYOV . )

If we enter on D(A;V,V") the norm || v|, +| Av|, , we receive a Banach

space. Let us similarly define space D(A’k VL,V
Remark 3. If V < H , then

DAV, V)Y =VNDA; V') and D(A“;V,V')=VNDA";V").
In case when 7 does not include in H# we assume that
VOAD(A; V") dense in D(A;V, V'),
VOD(A";V'") dense in D(A";V,V"). (10)
Remark 4. ([1, chapter 2, remark 7.5., 7.6.]).
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(Av,v)20 YveDAV,V'), (Av,v)=0 VveDASV, V). (11)

Let us enter some new denotations. Let ¥ be some reflexive Banach space.
As C,(Y) we designate the system of all nonempty convex closed bounded sub-

sets from Y . For nonempty subset B<Y we consider the closed convex hull
of the given set co(B):=cly(co(B)). With multi-valued map 4

it is comparable upper [A(y),w], = sup <d,w>y and lower [A(y),®] =
ded(y) N

= inf <d,w>y function of support, where y,meY. Properties of the given
ded(y)

w
maps are considered in works [15-17]. Later on y,— y in Y will mean, that y,
weakly converges to y in space Y .

THE CLASSES OF MAPS

Let us consider the next classes of maps of pseudomonotone type:
Definition 2. Operator A:V — V' refers to pseudomonotone, if from

ntnso <V, v, K)yo in V, and 1lim (4(y,),», —»¢)<0 it follows, that

n—>®

E]{ynk}kzl C{yn}nZI:
5im (A, )Y, — W)= (AQg) g —w) Ywel.

k—0

Definition 3. The next set:
op(v)={peV'|<pu—-v><pu)-p(v) Vuel}

refers to subdifferential map form functional ¢:V — R inpoint vel .

Definition 4. Multi-valued map 4:V = V" refers to:

1) A-pseudomonotone, if from {y,},.o<V. », —W>y0 in ¥V and

1im(d,.y, - v,)<0, where d, ecoA(y,) Vn=>1 it follows, that it is possible

n—0

to choose such {y, 120 C{Vyinz0> {dn Faz0 C1d, )20 that

VwelV M(dnkaynk_W)Z[A(yO)ayO_w]i;

k—0

2) bounded, if A translates arbitrary bounded in 7 set in bounded in V'

3) coercive, if || v||f,1 [A(v),v], = 4o as ||v]|y = +©;

4) satisfies condition (x) if the map V3v—>||v||171 [A(v),v], eR is
bounded from below on bounded in ¥ \ 0 sets, that is

_ 4
VDV \ {0} —boundedin ¥ e eR: LAV L gyep.

vy
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Remark, that the bounded multi-valued maps and monotone multi-valued
operators, including subdifferential maps, are satisfying condition («x).

Definition 5. Multivalued map A:V — C, (V") satisfies property (M), if

from {y,},so <V, d,€A(y,) Vn21l: y, —W>y0 in Vv, dn—w>d0 in V',
Tim (d,,7,)<(dy,y,) it follows, that d, € A(y,) -

n—»0

Definition 6. Operator L:D(L)cV — V" refers to maximally monotone, if
it is monotone and from (w-—L(u),v—u)=>0 YueD(L) it follows, that
veD(L) and L(v)=w.

Lemma 2. Let V', W be Banach spaces, densely and continuously embed-
ded in locally convex linear topological space Y, A:V3V', B:WIIW' —
multi-valued A -pseudomonotone maps and one of them is bound-valued. Then

the multi-valued operator 4:= A+ B: VW 33V'+ W' is A -pseudomonotone.

Proof. Let y, gy in X:=VOW (thatis y, X)y in? and y, LV)y in W)
and the next inequality is holds:

1im<dnayn_y>XSOa (12)
n—>w
where
d, €0 A(y,) =0 A(y,) + 0 B(y,). (13)

Let us prove the last equality. It is obvious, that coA(y,)=coA(y,)+

+coB(y,) and, moreover, o A(y,)> o A(y,) + EB(yn) . Let us prove the in-
verse inclusion. Let x is a frontier point of A(y, ). Then 3{x,,},> ccoAd(y,)=

=coA(y,)+coB(y,): x, —W>x in X as m— oo, because of Mazur theorem
(see [14]), for an arbitrary convex set its weak and the strong closure is coincide.
Hence, Vm>1 3v, €A(y,), Iw, €B(y,): v, +w, =x, and, taking into
account bound-valuededness of one of the maps and Banach-Alaoglu theorem, we

w w
obtain, within to a subsequence, v,, >v in V, w, ->w in W for some
ve 5/1( Yy), WE 53( v,). The statement (13) is proved. Consequently
d,=d! +d", where d! ecoA(y,), d! €coB(y,) . From here, within to a sub-

sequence, we obtain one of two inequalities:

lim <d),y, = y>y<0,  lim <d},y, —y>y<0. (14)

n—>0 n—>0

Without loss of generality, let us consider, that (within to a subse-

quence) lim <d,,y, —y>y <0. Then, due to A-pseudomonotony of A4,
n—>0

3{ym}m C{yn}n21:
lim <djy. v, —v>y 2[4y -v] Vvel,

m—>0
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Let us put in last equality v =y, then
lim <dp, =y >yz[4(»),y-y] =0.
m—>0
Hence, 3 1im <d,,, ¥,, —¥>y=0. Then, due to (12), lim <d, . Vm-
n—»0

m—>0
—y>,,<0. Taking into account (14), A -pseudomonotony of 4 and B, we have

h7m<d;tk,ynk _V>V2[A(J’):y—v]_ VVEV,

k—

1im<d;,l’k,ynk—W>WZ[B(y),y—W]7 Vwel.
k—o0
Then from last two relations it follows
m<dnk’ynk _x>XZh7m<dll’lkﬂynk _X>V+m< l’,;k7ynk_x>WZ
k—o k—o0 k—o
VYxeVNOW.

2[A(y),y—x] +[B(y),y—x] =[A(),y—x]

The lemma is proved.
Lemma 3. Let V', W be Banach spaces, densely and continuously embed-

ded in locally convex linear topological space Y, A:V3V', B:W3W' are
multi-valued coercive maps, which satisfies condition (k). Then the multi-valued

operator A:=A+B:VOAWI3V'+W' is coercive.
Proof. We obtain this statement arguing by contradiction. Let’s assume, that
[4(x,).x, ), _

I bpsr X [y =X, Iy + 1%, |l > +%0 as n— o0, but sup
w1 %

< +00.
Casel. ||x, ||y >4+0asn—>o, ||x,||p<c Vn2l;

[A(V)’V]+ 7/8 (V):Z lnf M, r>0,

74(r)= inf ,
Miy=r  IvIly =y Wil
Remark, that y,(r)—>+w, yp(r) >4+ as r—>+4wo. Then Vn2xl
- [4(x,), x,]
||xn || VI[A(xn)a xn]+ ZJ/A (”'xn ||V)||xn ||V and H;—||n+27/A(Hxn ||V)><
n X

X

1 llx
In this case, due to condition (x), Vrn>1

—0 at n—> oo,

[B(x,),x,] %, llw [, 1w
— et 2yl x, lly) - ¢ -
I, Il x I, 1l x

X, [l x
where ¢; € R is the constant from condition (x). It is clear, that
[AC)x5,). _[AG)x), [Be)x),
1, llx

1% [1x [l Ly
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We have an inconsistency with boundedness of the left part of the given ex-
pression.

Case 2. The case || x,, ||[y<c Vn21and | x, ||y > as n—> o is investi-
gated similarly.

Case 3. Let us consider the situation, when || x,, ||, >« and || x, ||;; >
as n — . Then,

A(x,),x X
+00>sup[ ( n) n]+ ZJ/A(Hxn ||V) || n”V
nx1 |1 X, [y 1% [y +11x, [l
Il % I
+ 751 x, lly) - . (15)
1%, 1y + 11 %, [l
. . X x .
It is obvious, that Vr>1 w> 0 and w> 0. And, if even one of
[P X 1l
x x x
A N P EN

Y _51. We have an
Xn ||X ”xn HX ||xn HX

inconsistency with (15).
The lemma is proved.

limits, for example

THE MAIN RESULT

Theorem. Leta) A:V;, — V' be bounded pseudomonotone on ¥, operator, which
satisfies the following coercive condition:
(A(u),u)

— 400 as ||u||V1—>+oo; (16)
lully,

b) functional ¢:V, — R is convex, lower semicontinuous and the following
takes place:
P(v)

— 400 as ||v||V2—>+oo; 17
Vi,

c¢) The operator A satisfies all listed above conditions, including conditions
(7) and (10).

Then for every f €V’ there exists such u, that satisfies (2) and (3).

Remark 5. If V' < H , inclusion (2) implies, that u € V(1 D(A; V).

Proof. The approximate solutions. Natural approximation of inclusion (3) is
inclusion

LW, v aw) + 00w 1 (h>0). (18)

Though, if V' does not include in H (18), generally speaking, has no solu-
tions, and it is necessary to modify the given inclusion in appropriate way. We
choose such sequence 8, €(0,1), that

1-6,
h

>0 as h—0. (19)
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Letus put 6, =1 when V < H . Further, we take

1-6,G(h
A, = 4() (20)
h
and also replace (18) with the inclusion
Ajuy, + A(uy) +00(uy) > f 21)
Lemma 4. Inclusion (21) has a solution u, e V(1 H.
Proof. Let us enter the map
B=A,+A:HNV, > H+V}. (22)
We consider the following variation inequality:
(B(up),v—up)+ o) —pw,)=(f,v-u,) VveVH. (23)

Let us prove the existence of such u;, € V(1 H, that is a solution of the given
inequality. The given statement follows from [15, theorem 7], if to put
V=HNOV,, W=V,, A=B, ¢ = ¢ and under condition of realization

Lemma 5. Operator B satisfies to the following conditions:

. (B(u),

B o as 10— 0 (24)
I

ii) B is pseudomonotone on H\V;; (25)
iii) B is bounded on HNV;. (26)

Proof. i) As G(s) is non-stretched on H , then Vve H
1 1( 2 )
(Ahvav):Z(V_HhG(h)v’V)ZZ VIl =0, 1 GGVl vl )2

1—h¢9h v

From here it follows the coercive condition and condition (x) for A, on
H . Thus, due to (2), we can use lemma 3 for maps A=A, on V=H and
B=A4 on W =V, whence it follows (24), if we prove, that A4 satisfies condition

> I - 27)

(k). Really, if it is not true, then I{w,}, V] \0 such bounded in # , that
lw, ||;11 [A(w,),w,], &> —o as n—> o, but in virtue of boundedness of 4, we
have

-1 -1
||Wn ||V1 [A(Wn)awn]+ :H Wy ||V1 (A(Wn)awn)z_supnA(Wn)HVl > —00.
n=1

iii) The boundedness of B on H () V; follows from the boundedness of A A
on H and 4 on V). The boundedness of A, on H immediately follows from

the definition of A, and estimation (6).
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ii). Let us prove the pseudomonotony of B on H (V. For this purpose we
use lemma 2 with A=A, on V=H and B=4 on W =V,. From here, due to
the pseudomonotony and to the property of bound-valuedness of 4 on V}, it is
enough to prove pseudomonotony of A, on H . Let

Yoy i H, lim (Ayy,,y, =) <0.
n—»0

Then, from estimation (27) we have

1im (A y,s Yy, —¥) 2 1im (A, y, = Ay, y, —¥)+ lim (A, »,», —»)20+0=0.

n—0 n—0 n—>0

Hence 3 1im(A,y,,y, —»)=0. Further, YueH, Vs>0 let w:=y+
n—>0

+s(u—y). Then

SNy, y=uw)2=(Npy,, v, =)+ AW, y, = y) —s(Ayw,u—y) Vnxl
and

SM(AhJ’nay_”)Z_S(AhW,u_Y)QM(Ahynay_u)Z_(AhWa“—J’)-

n—>0 n—>0

Let s — 0+ then Tim (Ayy,, —u)2—~(Ayv,u~)=(Ayy,y —u) and

n—>0

dim (Apy,, vy —w) 2 lim (Apy,, v, —y)+

n—>0 n—>0

+M(Ahynay_u)2(l\hyay_u) VueH.

n—»0

Thus we have the required statement.

The lemma is proved.

To complete the proof of lemma 4 it is necessary to show, that for fixed
u, e HNV, the variation inequality (23) is equivalent to inclusion (22). If
ve H(\V, is arbitrary, then, by definition of subdifferential map, the inequality
(23) is equivalent to f — B(u;) € 0¢p(u;, ), that in turn, by definition of B, it is
equivalent to (22).

The lemma is proved.

The boundary transition on 4. From lemma 4 for every >0 the exis-
tence of such u, e H "V} and d;, € 0p(u,,), that

Ah“h +A(“h)+dh:f (28)

is follows. If we put in (23) v=0, we obtain

(B )oup) +9(uy) < (f ) + (0). (29)
Let us prove boundedness of {u,},-, in V' as & close to zero. For this pur-

pose we use advantage coercive conditions (16) and (24). Let us assume, that
e =l Ny, +llay [y, = o0

Case 1. [[uy Iy =, [luy lly, <c;
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e = inf LU Gy ey 20

, r>0
el =r Nl ey, =r 12t [l

Remark, that pyp(r) >+ and y,(r) >+ as r—+wo. Then
g 17" By )y = 7 (el 1y, and

00) . (frup) +9(0) _ (Bluy)uy) +o(uy)
luplly — Nug lly - [y [y -

1A =l f e +

_7m ) lun lhy 7l Uy gl

luy lly g lly

7l )ty 79l ) 1y

lup lly, +¢ llun lly

+0 as |uylly—>o©.

We have an inconsistency with boundedness of the left part of the given ine-
quality. It is necessary to notice, that last item in a right-side of last inequality
tends to zero. It follows from boundedness from below of ¢ on the bounded sets

(see [13]).
Case 2. The case || u,, ||V1 <c, |luy ||V2 — o is investigated similarly.

Case 3. Let us consider the situation, when ||, ”Vl — 0, |lu, ||V2 — oo, Then,

p(0) _ Vs lnlly) 1wy lly . Vo (luy llyy) g Iy,

N lly ~ Nunlly, +lunlly, Nl + 1l Ll

1A =l Ml +

. (30)

lully, [ully
IS an 2

It is obvious, that > (. And, if even one of bounda-

lully lully
2 Iy, 2 Iy, 2 ]y,
ries, for example, 1 , 2 =1- L _51. We have an incon-
ully 2]y el
sistency in (30). Thus,
u, are bounded in V as h—>0. 3D
Prove, that
d, are bounded in ¥V, as h—O0. (32)

First, from equality (28) we receive:

sup(dhn,uhn)<oo Vih,} <(0,40): h, >0 as n—owo. (33)

Due to u;, € H, from equality (28), estimation (31) and boundednesses of an
operator 4 we have

sup(dy, > uy, ) =sup(f,uy )+sup(=A(u; )u; )+
n n n

#sup(=Ay, w1y VI L Ny suplluy, [l +supll Ay )l suplluy, [ly<+oo.
n n n n
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Now, in virtue of (33), we prove (32). From d B, € op(y hy, ) and from defini-

tion of subdifferential map, VveVl,

sup (dhn ,v) <sup (dhn s Vh, ) +sup (dhn V=V, ) <sup (dhn sV, )+ o(v)— (D(J’hn )<
n n n n

<sup (dy, vy, )+ @) =inf @(y) ) <+,
n n

as functional ¢ is bounded from below on bounded sets. From here, under Ba-
nach-Steingauss theorem (32) is follows.
From (31) and boundedness of an operator 4 on V] it follows, that

A(u,) are bounded in V| as h—O0. (34)

From equality (28), estimates (31), (32) and (34), under Banach-Alaoglu
theorem, the existence of such subsequences {u h, Yust S Um0, {d hy, bz €

c{dy 0 {A(uhn Vs € {A4@y)} =0 (0<h, — 0), which further we will des-

ignate simply as {uj};~0, {dp}i>0, 14u,)},=0 accordingly, and elements
ueV, yeV,, d eV, the next convergences

w . w . w
up—u in V. Aw,)—>y in V' d,—>d
in Vi Lu,—>Lu in V' (35)
are follows, in particular,
v, = Ay +d, >y +d=1w in V. (36)

Let us enter the following map: C(v)= A(v)+0p(v):V > C,(V'). Now
prove, that the given map satisfies property (M) . For this purpose it is enough to

show A -pseudomonotony of C on V. If C is A-pseudomonotone on V and
WitwoccV,d,eC(y,) Vnzl:

w w -
Ya—Yyy in V, d,—>d, in V' and 1lim(d,,y,)<(dy,y0),

n—o0
then
Tim (d,),y, = o)< lim (d,»y,) + lim (d,,,—y0) < (dg>v0) — (dg» ) =0.
n—oo n—oo n—®©

Hence, due to A-pseudomonotony of C it follows, that El{ynk}k21 c

- {yn}nzl ’ {dnk }kzl - {dn}nzl :

VwelV m(dnkﬂyizk _W)Z[C(y0)9y0_w]_'

k—o0

From here

[C(yO)a Yo _W]— S@(dnkaynk _W)Sm(dnﬂyn _I'V)S

1
k—o0 n—00
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<(dy,yo—w) Vwel.

Hence d, € C(y,). Thus C satisfies condition (A) on V.
In turn, lemma 2, pseudomonotony and bounded-valuedness of 4 on V)
provides the last, if to prove A-pseudomonotony of d¢ on V,. As it is known,

the last statement follows from [20.111, lemma 2, remark 2].
We use the fact, that C satisfies property (M) on V. Let us take v from

VN D(A";V'). From (28) and (36) it follows, that

(s Nyv) + (v ) = (f V). (37)
But
A= I‘i(h) v+ [_heh G(h)"v (38)

and due to (20), A*hv —A'vin V'; and consequently, as /4 tends to zero in (37)
we receive:

(u,A*v) +(w,v)=(f,v) VYveVND(A";V"
and (in virtue of (7), (8)) ue D(A,V,V")
Au+w=f
and we prove the theorem, if we show that
weC(u). 39)
On the other hand, because of (28) and (36) for ve VIID(A; V')c H, we have
Vpsup =v)=(fouy =v) = (Apviuy, —=v) = (A () = v),uy, —v) <
< (foaty =) = (A vy =),
as A, 20 in A(H;H). From here
limsup (v;,,uy,) <(w,v) = (f,u—v)—(Av,u—v) VYve VDAV

But, due to (9), the same inequality is fulfilled Vve D(A;V,V'"), and when
v =u we obtain

limsup (vj,,uj,)<(w,u),
and also (39), because of C is the operator of type (M) . The theorem is proved.

Example. Let Q in R” be a bounded region with regular boundary 0Q,
S§'=[0,T] be finite time interval, Q =Qx(0;T), I'; =0Qx(0;T) . As operator A
we take (Au)(t) = A(u(t)), where

Ap)=-3 -2

i1 0%;

p-2 P
—a(p +o|" (40)
X

1

4
Oox;
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(see [1, chapter 2.9.5]); V' is closed subspace in Sobolev space whr (), p>1
such, that

Wyl (Q) cV WP (Q) 1)

and
=L,0,T;V), H=L,(0,T;L,(Q)), V,=L,y(0,T;L, ().

We consider convex lower semicontinuous coercive functional y:R — R

and its subdifferential ®:R 3R, that satisfies growth condition.

If we put V=V, NV, (from here V' = L, (O,T;V*) + L,(0,7;L,(€)), where
1

—+l =1), we obtain the situation (6), if p>2. At 1< p <2 the common case
P 9

takes place, if to take ® = D(0,7T;V) (see [1]).
As an operator A we take the derivation operator in sense of space of sca-
lar distributions D" (0,T;V"), DAV, V') :=W = {(yeVNH|y eH+V"}

G)p(t):={p(t—s) at t>s; 0 at t<s}.

Due to [1, chapter 2.9.5] and to the theorem, the next problem:

M_Zn:ﬂ |5y(x,t)|p_26y(x,t) .
ot o1 0x; | 0x; | ox;

1

+| y(x,1) |p*2 y(x, )+ D(y(x,0))3 f(x,1) ae. on O, 42)

»(x,00=0 ae. on Q, )
oy(x,0) _ g(x,t) ae. on Tj, (“44)
aVA

has a solution y el , obtained by finite differences method. Remark, that in
(42)—(44): f eV', yy € L,(Q) are fixed elements.
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