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Abstract. The purpose of this article is to present the work done on the implementa-
tion of rules for gliders in a game of life with a non-regular network with bounda-
ries. First of all, we will recall the basic principle of the game of life by mentioning 
some structures that appear regularly and are very important as gliders. We will 
improve the accuracy of the collision rules between gliders. Then, we will intro-
duce non-regular space by adding a new state for cells in boundaries. Thus it will 
be necessary to give the rules relating to this new cellular automaton. We will fi-
nally deal with logic gates by giving which we obtained this modified game of life. 
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INTRODUCTION 

The purpose of this article is to present the work done on the implementation of 
rules for gliders in a game of life with non-regular network with boundaries. First 
of all we will recall the basic principle of the game of life by mentioning some 
structures that appear regularly and are very important as gliders. We will pre-
cise the collision between gliders. Then we will introduce non-regular space by 
adding a new state for cells in boundaries. Thus it will be necessary to give the 
rules relating to this new cellular automaton. We finally will deal with logic 
gates by giving which we obtained with this game of life modified. 

BASICS IN THE GAME OF LIFE 

The game of life is a cellular automaton discovered by John Conway in 1970. It is 
undoubtedly the best known cellular automata and it has been fascinating re-
searchers for almost 50 years. John Conway manages to find a system with simple 
rules and a complex behavior: it is called emergence. Unpredictable complex 
phenomena emerge from simple rules. This idea of emergence is at the heart of 
many fields such as mathematics, physics, artificial intelligence or economics but 
also the social sciences, philosophy or the media [1]. Thus the game of life is an 
object of study for mathematicians but not only. The philosopher Daniel Dennett 
declares that "every philosopher should study the Game of Life carefully and it is 
only by succeeding in thinking about the ideas of conscience and free will in such 
a world that we will understand its true nature" [2]. The game of life can be lik-
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ened to a plan and infinite network of cells. These cells can be in two states: dead or 
alive. Generally dead cells are represented by white boxes and living cells by 
black boxes. The game of life is a discrete dynamic system which means that a 
given configuration will evolve over time, evolution is not continuous but dis-
crete. The evolution rule is applied synchronously to the entire network. This 
rule is very simple and it can summarized as follows: 

• a living cell stays alive if it has two or three living neighbors otherwise it 
dies; 

• a dead cell becomes alive if it has exactly three live neighbors otherwise it 
remains dead. The neighbors of a cell are the cells in Moore’s neighborhood of 
order 1 [3]. In other words, the eight cells whose distance associated with the infi-
nite norm [4] is 1 (see fig. 1). 

To deepen the brief notions that we have just seen, the following videos are 
very complete and very accessible [5] et [6]. Many are working on the game of 
life. And some of them are studying variants among which we can mention: 
the addition of a probability in counting the number of neighbors [7] and [8], 
the modification of the rule of local evolution [9], applying the local transition 
rule asynchronously [10]. We will also be interested in a variant of the game of 
life, as we will see later. 

SPECIAL PATTERN: GLIDERS 

When we consider a random initial configuration with many cells and we study its 
evolution over time we often observe the same phenomenon. A transitory regime 
that seems chaotic where the different living cells interact with each other, then an 
established regime where appear different characteristic patterns of the game of 
life. Among these patterns there are: still life (see fig. 3), oscillators (see fig. 4 and 
fig. 5) and the spaceships (see fig. 6). Still life is a pattern that does not change 
from one generation to the other, oscillators returns to their initial state after a fi-
nite number of generations and spaceships translate themselves across the space 
after a finite number of generations. The vessels are therefore characterized by 
three numbers (a, b, c) where a denotes the horizontal shift, b the vertical shift and 
c the number of steps necessary to recover the initial configuration shifted by a 
cells horizontally and b cells vertically. 

The reader will get more information on these patterns and on the game 
of life in general in the article written by Jean-Paul Delahaye [2]. In this part 
we will focus more particularly on the glider spaceship. 

Fig. 1. Living cell (in black) and its eight neighbours (in grey). An example of evolution 
is given fig. 2. 

t=1 t=2 t=3
Fig. 2. Evolution of a simple structure 
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Let’s begin by explaining how ships are particularly interesting objects 
of study that arouse the interest of different researchers working on the game 
of life. First of all they allowed to show that there are some configurations 
whose the growth is infinite in space. Then, and this is with no doubt the most 

Fig. 4. Oscillators 1/2 

Fig. 3. Still life patterns 

Fig. 6. Some spaceships characterized by (a, b)/c 

Fig. 5. Oscillators 2/2 
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important point, they allow interaction between different regions of space. The 
spaceships are the vectors of the information and for this reason they will be 
useful for the implementation of logical gates. 

The glider mentioned above is particularly popular because of its simplicity 
and rapid discovery. It moves from one horizontal cell and from one vertical cell 
every four generations. Each of them are represented fig. 7. 

It is important to note that the symmetry of the network on which we study 
the game of life (in an infinite plane) assures us that from a ship moving in a 
given direction, we can obtain by symmetry three other ships moving in three 
other directions by successive rotation of 2/π  angle. For this reason it is enough 
to specify the horizontal and vertical displacement of a ship without specifying 
the direction of movement. Then we can get four gliders moving each along the 
four diagonals of space. There are represented on the fig. 8. 

As mentioned above these gliders will allow interactions between different 
space areas. More specifically what will be interesting and will be at the end of 
this part is the interaction of two gliders. When two gliders meet, these will inter-
act to give a few generations later a new configuration. We intuitively call it a col-
lision. Between two gliders there are 73 different collisions. After a collision, two 
gliders can disappear entirely or reveal certain configurations such as still life or 
oscillators or even give birth to a new glider. In his article [11], Jean Philippe 
Renard show a few configurations where two gliders can collide. We will just deal 
with the collisions useful for the implementation of logical gates. We need two 
kind of collisions: those that annihilate the two gliders (see fig. 9) and those 
giving birth to a new glider (see fig. 10 and 11). As for annihilation, the fig. 9 
gives the position of the two gliders just before the collision (the one on the left 
moving down right and the one on the right moving down left). After 4 itera-
tions there are no living cells left, the two gliders have completely disappeared. 

Fig. 7. Configurations of a glider which moves down and to the right 
Time step 0                  1                        2                        3                        4 

Fig. 8. Four gliders which moves down right (1), down left (2), up left (3) and up right (4) 
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Regarding the creation of a new glider, the fig. 10 gives the position of the 
gliders just before collision. After 62 calculation steps, we get 4 blinkers and a 
new glider moving down left. The fig. 11 superimposes the relative position of the 
two gliders before collision and the result of collision obtained 62 generations 
later. There are other faster collisions (62 steps being relatively long on the time 
scale that interest us in this study) that give rise to a new glider. In addition they 
do not let appear unwanted blocks (the blinkers in this case). Unfortunately the 
gliders then created do not move in the desired direction. 

As we saw above (cf part 1), the game of life is defined on a two-
dimensional network. Many are those who have studied the game of life and some 
of them have worked on modified versions. On the other hand, few have proposed 
a study on a different network than the plane space usually used. However we can 
quote the work of Alexander Makarenko [12]. The implementation of a game of 
life defined on an irregular network will be the subject of this part. To do this we 
propose, like Alexander Makarenko [12], to add a third frozen state that will re- 
present the irregularities of our initially two-dimensional network. Thus, in addi-
tion to the two current states: living cells (black boxes) and dead cells (white 

Fig. 10. Configuration of two gliders before collision which would give another glider 

Fig. 11. Configuration of two gliders before (grey) and after (black) collision which 
would give another glider.  Non-regular space 

Fig. 9. Configuration of two gliders before collision which would annihilate them 
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boxes), a third state which will be called "walls" (represented by green boxes) will 
be taken into account. This will allow us to modify the networks as we want (an 
example is given fig. 12). 

This new three-state cellular automaton is not entirely defined since it 
remains to give the local evolution rules. The walls being in a permanent state 
and the living or dead cells behaving like in the traditional game of life as 
long as they do not touch the walls it remains only to define the behavior of 
the living and dead cells when they are in contact with a wall. We will get as 
many different results as it is possible to choose different rules. This leaves us 
with an important choice (cf property 1) and gives us hope that the study of such 
games of life with non-regular networks is a vast subject of research that could 
be exploited in the future. 

Property 1 (number of rules in a network with walls) There are 312610 over 
cellular automata of game life having three states with one of them is permanent and 
having a order one neighborhood of Moore as the game of life. 

Proof 1 (proposition 1) Let be an over cellular automata of the game life with 
three states: state 0, state 1 et state 2. Suppose that state 2 is a permanent state so the 
restriction of A  to states 0 and 1 is isomorphic to the game of life. Counting the 
number of such cellular automata is equivalent to counting the number of local rules 
that can be chosen under such conditions. First, if a box is in state 2, it remains in 
this state. There is therefore no choice. So let’s take the example of a box in state 0 
or 1 (two possible choices). If all it’s neighborhood consists of boxes in state 0 or 1, 
another time we have no choice because the evolution will be governed by the rule 
of the game of life. Only neighborhoods with at least one cell in state 2 are interest-
ing. It is therefore necessary to choose k  cells out of 8 that will be in state 2 with 

]8,1[∈k  which give ⎟
⎠
⎞

⎜
⎝
⎛

k
8  possible choices. 

With the remaining 8-k cells there is a choice between cell in state 0 or cell in 
state 1 that is k−82  choices. Finally, there is: 
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patterns for which the next state of the cell is not yet defined. 
For  each of  these  patterns  we  have  the  choice  between  state 0,  state 1  or  state 2  

which  give  126103    possible rules. 

Fig. 12. Non-regular network with walls (in grey) 



Game of life with non-regular space with boundaries: glider case 

Системні дослідження та інформаційні технології, 2019, № 1 43

Remark 1 (scientific notation) 601612610 1016,33 ×= . 
New local transition rules. In this part we will give the rules we have chosen 
but especially how we got them and in what interest. 

Motivation and approach 

The first idea was to modify the network by adding frozen cells called "walls" in 
order to find some basic optical results. Among them are the laws of reflection 
of Snell Descartes. The light rays represent the information (modeled by glid-
ers), in contact with a diopter (the walls) they are reflected and refracted. Only 
reflection has been retained since the first idea of obtaining an analogy with 
optics has been replaced by the desire to implement logic gates. The goal is to 
obtain, compared to what has already been achieved, different results: simpler 
and more practical to use (see part 5). 

From this objective we have therefore looked for rules that allow the gliders 
to bounce on the walls. At first, we focused on the study of the bounce on a hori-
zontal wall of a glider moving down and to the right (fig. 13). 

There are too many different rules (cf property 1) to look into all of them 
one by one. By observing all possible configurations of a glider moving down 
and to the right on the fig. 7, we can notice that it will collide with a wall in the 
position described fig.14 (cf remark 2). 

Therefore we need to know only a tiny part of the rules to calculate the evo-
lution of this pattern. In our example only the four configurations shown in fig. 15 
are useful. Indeed, we assume that a dead cell with three walls below and dead 
cells around (see fig. 16) remains dead. 

Fig. 13. Wanted trajectory (in weak grey) of a glider (in black) before (on the left) and
after (on the right) interaction 

Fig. 14. First contact between a wall and a glider moving down right 
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It is therefore necessary to determine the next state of the red framed box for 
each of these four configurations. In each case two choices are possible: alive state 
or dead state. There is no creation of walls and the walls are in a permanent state. 

Remark 2 (first contact with a wall). We previously stated that the first con-
tact of a glider moving down and right was given by the configuration of the fig. 14 
and therefore that only the four patterns shown fig. 15 were interesting. This is true 
only if the glider is not modified before coming into contact with the wall. For this 
we considered that a dead box with three walls below, two dead boxes (left and right) 
remained dead (see fig. 19 and 20 from configuration 10 to 17). 

The approach chosen is to focus only on the configurations encountered (fig. 15) 
then to examine the different possible cases. In the next step, the red framed cell 
becomes either alive or dead. Thus, noting n the number of configurations ( 4=n  
in the first step), we have n2  cases to consider. For each of them, we calculate the 
evolution of the glider in contact with the wall. For example, by choosing the red 
framed cells of patterns 1, 2, 3 and 4 of fig. 15 respectively become a living, dead, 
living and dead cell, we obtain the evolution described in the fig. 17. 

At this point we reiterate what we have just realized, which means that we 
only retain the necessary configurations to predict the evolution of the new pat-
tern (knowing that the evolution of a cell in one of the four configurations of 
fig. 15 is already given). We then obtain three new configurations (fig. 18 for 
which it will be necessary, in each of the three cases, to choose if the red framed 
cell becomes alive or dead. 

Fig. 16. Dead cell resting on a wall (bottom) surrounded by dead cells 

1 2
Fig. 17. Evolution from configuration 1 to configuration 2 with the rules described above 

Fig. 18. The three configurations in which we need to give the next state of the framed
cell in order to have the next generation of the pattern on the right of fig. 17 

1 2 3

Fig. 15. The four configurations in which we need to give the next state of the red framed 
cell in order to have the next generation of the pattern given fig. 14 

   1                         2                        3                        4 
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We continue until we obtain one of the four patterns of a glider moving 
up and right (this pattern should not touch the wall). 

Rules obtained 
Finally, we found a local rule involving only the evolution of 24 configurations 
allowing a glider moving down and right to bounce from above on a horizontal 
wall. This local rule is represented fig. 19. 

By symmetry, one can easily find a local rule allowing a glider moving down 
and left to bounce from above on a horizontal wall. We have shown it fig. 20. 

Fig. 19. Local rule allowing a glider moving down and right to bounce from above on
a horizontal wall 

Fig. 20. Local rule allowing a glider moving down and left to bounce from above on
a horizontal wall 
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We can notice that the evolution of the red framed cells having for neighbor-
hood the patterns 18  and 19 of the two rules represented fig. 19 and fig. 20 are 
incompatible. In other words, it will not be possible from these results to find a 
local rule to bounce upwards on a horizontal wall at the same time a glider mov-
ing down right and a glider moving down left. 

This does not mean that there is none, but we did not continue our research 
to find one since, as we will see (see part 5), we do not need such a rule for the 
implementation of logic gates. 

Gliders can bounce from eight different ways: 
• on a horizontal wall from the top (a glider moving down right and a glider 

moving down left); 
• on a horizontal wall from the bottom (a glider moving up right and 

a glider moving up left); 
• on a vertical wall from the right (a glider moving down left and a glider 

moving up left); 
• on a vertical wall from the left (a glider moving down right and a glider 

moving up right). By symmetry and with the rules of figures 19 and 20, it is pos-
sible to obtain a single rule allowing four different types of rebounds among the 
eight described above (a choice to be made on the two possible for each dash be-
cause of the incompatibility). 

In our case, we chose to keep the following rules: 
• bounce from the top of a glider moving down right on a horizontal wall; 
• bounce from the bottom of a glider moving up right on a horizontal wall; 
• bounce from the right of a glider moving down left on a vertical  wall; 
• bounce from the left of a glider moving down right on a vertical  wall. 
Finally we obtain a local rule giving the evolution of 96 of the 12 610 possi-

ble configurations. This leaves many opportunities to work and obtain new results 
by keeping what has already been done. The rule giving the evolution of the 96 
configurations is not explicitly given in this report. Indeed it is directly obtained 
by applying the appropriate symmetries of the rule represented fig. 19 or fig. 20. 

LOGICAL GATES 

The purpose of this part is to present the logical gates [13, 14] that have been im-
plemented from game of life with non-regular network we have just seen. We will 
begin by recalling a few generalities about logical functions, then briefly recall 
what has already been done about the implementation of logic gates with the 
game of life before presenting our study. Finally we will give a striking compari-
son showing the difference between the complexity of the current implementation 
and the simplicity of the implementation carried out during this study. 

Logic gates using Gosper glider guns 

John Conway proved that the game of life was a universal cellular automaton 
[15]. This means that the game of life is able to simulate all calculations made by a 
computer. For more information, consult Nicolas Ollinger’s [16] and Guillaume 
Theyssier’s [17] thesis which deal with universality. 
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The universality of Conway’s cellular automaton makes it possible, among 
other things, to generate prime numbers [18], to create a Turing machine [19] and 
even more surprisingly to create a game of life from the game of life itself. What 
will interest us here is the implementation of logic gates. 

As we saw in the section on gliders (part 2), these can carry information. It is 
for this reason that we find them without exception in all the applications that we 
have just mentioned and the implementation of logic gates does not deviate from 
the rule. Specifically, the structure that appears in each of these applications is the 
glider gun (see fig. 21). The latter makes it possible to continuously gene- rate 
gliders, which makes it an extremely interesting pattern. Bill Gosper is an 
American computer scientist who, by introducing this glider gun, at the same 
time proved the conjecture of Conway asserting that there is a pattern whose 
number of living cells increase all the time. 

Currently the implementation of logic gates is based on the combination of 
several glider guns whose gliders interact with each other to finally let or not pass 
a glider beam. Thus the value at the entrance or exit is 1 if there is a beam of glid-
ers otherwise it is 0. This implementation is difficult and tedious, we will not de-
tail it here since it is very well explained by Jean-Philippe Renard [11]. 

Implementation of logic gates in a non-regular network 

As far as we are concerned, the implementation of logic gates we have made is 
based on three points. First of all the information is no longer represented by 
a glider beam as described above but by a single glider. We no longer need to re-
sort to glider guns, which is a big novelty. Then we set up a particular network 
with "walls". Each logical gate is a particular configuration of space, a feature that 
is exploited by bouncing the gliders wisely as described in part 4. Finally, the 
method relies on collisions between gliders. And especially the two collisions that 
we analyzed in part 2. 

Generally the logic gates set up have two ducts at the top (representing the 
two inputs). A glider in the conduit means that the entry is at 1 otherwise it is at 0 
(see fig. 22). And a conduit down (representing the exit). The particular configu-
ration of the rest of the network will allow or not to obtain a glider in the lower 
conduit depending on the nature of the logic gate.  

Eeach of the four logic gates  have been implemented. Namely: the NOT gate, 
the OR gate, the AND gate and the XOR gate. 

Fig. 21. Glider guns 
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CONCLUSION 

The previous work provides a significant improvement in what has been done so 
far. Indeed, the consideration of a variant of the game of life with a non-regular 
network allowed us to introduce new local rules near irregularities. These rules 
were chosen in such a way as to be able to obtain a particular property: the re-
bound of the gliders on a wall. From this specificity, it is then possible to imple-
ment logic gates much more intuitive and much easier to use than the logic gates 
that have been created so far. 

Moreover, the large number of rules that can be chosen and the networks 
that can be considered gives hope that many interesting results can be ob-
tained by deepening the subject. This study therefore provides an innovative 
result but it also opens up new and interesting perspectives. 
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