МЕТОДИ ОПТИМІЗАЦІЇ, ОПТИМАЛЬНЕ УПРАВЛІННЯ І ТЕОРІЯ ІГОР

УДК 519.872

ЧИСЛЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ МНОГОСКОРОСТНЫХ СИСТЕМ ОБСЛУЖИВАНИЯ ТИПА ГИМПЕЛЬСОНА

А.З. МЕЛИКОВ, М.И. ФАТТАХОВА, Т.С. КАЗИЕВ

Предложены новые методы анализа характеристик многоскоростных систем типа Гимпельсона, в которых обслуживаются заявки двух типов – узкополосные (n-заявки) и широкополосные (w-заявки). Обслуживание n-заявки осуществляется одним каналом, а для w-заявки требуется одновременно m каналов, m > 1. Заявки обслуживаются в режиме без ожидания. Разработаны достаточно простые алгоритмы для расчета и оптимизации вероятностей потери разнотипных заявок при различных стратегиях доступа в каналы. Приводятся результаты численных экспериментов.

введение

В широкополосных цифровых сетях интегрального обслуживания (Broadband Integrated Service Digital Networks, B-ISDN) обрабатываются сообщения с различными требованиями к качеству обслуживания (Quality of Service, QoS). Так, например, речевой трафик имеет скорость передачи порядка нескольких Кбит и не может буферироваться (т.е. пакеты речевой информации не могут ждать в буфере), в то время как высокоскоростные данные передаются со скоростью в десятки Мбит, и пакеты этих данных буферируются.

Для удовлетворения существенно различных требований к показателям QoS в реальных B-ISDN используются разные механизмы обслуживания. Один из них — изменение числа каналов (полос) из общей группы (супер канала) для разнотипных сообщений.

Исследования моделей систем, в которых разнотипные заявки требуют случайного числа каналов одновременно, актуальны благодаря широкому использованию сетей с указанным механизмом обслуживания. Они называются мультиресурсными (Multi-Resource Queue) или многоскоростными (Multi-Rate Queue, MRQ). Такие модели интенсивно исследуются в последние три десятилетия. Обзор работ в этом направлении по состоянию на 1995 г. можно найти в [1,2]. Анализ литературы после указанного срока полностью подтвердил высказанное в работе [2] предположение о том, что исследования моделей MRQ окажутся центральными в прикладной теории

систем обслуживания. Для краткости изложения укажем лишь монографии [3–5], почти полностью посвященные исследованию моделей данного типа и опубликованные после отмеченных обзорных работ.

В настоящей работе исследуются модели MRQ с чистыми потерями, в которых заявки обслуживаются в режиме без ожидания: если в момент поступления заявки любого типа отсутствует необходимое количество свободных каналов, то она теряется. Очень вероятно, что первой опубликованной серьезной работой в этом направлении, была статья Гимпельсона [6]. Потому MRQ данного типа будем называть моделями Гимпельсона.

В работе [6] изучается модель MRQ, в которой на N каналах обслуживаются заявки двух типов – узкополосные (narrow-band, n-заявки) и широкополосные (wide-band, w-заявки). При этом n-заявка обслуживается лишь одним каналом, а для обслуживания одной w-заявки требуется одновременно m каналов, $1 < m \le N$. В этой работе для расчета стационарного распределения модели используется итерационная процедура Гаусса-Зейделя, после чего показатели QoS (т.е. вероятности потери разнотипных заявок) вычисляются известным способом. Такой метод расчета показателей QoS системы достаточно трудоемкий при больших значениях N, что характерно для современных B-ISDN.

В настоящей работе исследуются модели Гимпельсона с чистыми потерями при двух широко распространенных стратегиях доступа к каналам, отличных от полнодоступной стратегии (Complete Sharing, CS) [7]. При использовании CS-стратегии доступа поступившая заявка любого типа принимается системой, если в данный момент для ее обслуживания имеется достаточное количество свободных каналов, и поэтому следует ожидать, что w-заявки будут теряться чаще, чем n-заявки. С целью защиты w-заявок рекомендуется использовать стратегию, ограничивающую доступ n-заявок в каналы (Restricted Access, RA) [8]. Другая превентивная мера защиты w-заявок от частых потерь — использование стратегии резервирования каналов (Trunk Reservation, TR) [9].

Эффективный алгоритм расчета вероятностей потерь при CS-стратегии доступа дан в работе [7]. Этот алгоритм улучшен (в смысле степени сложности) в [10]. В [8] разработан алгоритм расчета для RA-стратегии доступа, основанный на быстрых преобразованиях Фурье. В [9] аналогичный алгоритм (но приближенный) разработан для TR-стратегии доступа. Он также с использованием подхода, предложенного в [10], улучшен и применен для оптимизации исследуемых моделей в работе [11].

В настоящей работе предложен единый подход к исследованию многоскоростных моделей Гимпельсона с чистыми потерями при RA- и TR- стратегиях доступа в каналы.

Важно отметить, что предлагаемый подход отличается от известных [8, 9] и основан на принципах теории фазового укрупнения стохастических систем [12]. Как будет видно ниже, он оказывается эффективным в силу своей простоты, так как его применение не требует сложных математических преобразований.

Отметим, что модели, в которых каналы, обслуживающие *w*-заявки, могут работать лишь в определенных сочетаниях (т.е. эти каналы должны быть соседними), были исследованы в [13,14]. Модели последнего типа с помощью имитационного моделирования были изучены еще в работе [6].

1. МЕТОДЫ РАСЧЕТА МОДЕЛИ ПРИ РАЗЛИЧНЫХ СТРАТЕГИЯХ ДОСТУПА

В данной работе исследуются марковские модели MRQ, т.е. входящие трафики считаются пуассоновскими и времена обслуживания заявок являются показательно распределенными случайными величинами.

Введем следующие обозначения: λ_n (λ_w) — интенсивность потока *n*-заявок (w — заявок); μ_n (μ_w) — интенсивность обслуживания *n*-заявок (w-заявок).

1.1. Расчет модели при RA-стратегии доступа в каналы

При данной стратегии *w*-заявки принимаются всегда, если в момент их поступления число свободных каналов не меньше, чем *m*, а *n*-заявки принимаются лишь тогда, когда имеется хотя бы один свободный канал, и при этом число заявок данного типа не превосходит некоторое пороговое значение *L*, $0 < L \le N$, где *N* — общее число каналов.

Величина *L* называется параметром RA-стратегии доступа.

Замечание 1. Из данной стратегии при L = N получается CS-стратегия доступа.

В силу сделанных допущений функционирование данной MRQ описывается цепью Маркова (ЦМ) с состояниями вида $\mathbf{k} = (k_n, k_m)$, где k_n (k_m) означает число *n*-заявок (w — заявок) в системе. Тогда фазовое пространство состояний (ФПС) системы

$$S_{RA} := \left\{ \boldsymbol{k} : k_n = \overline{0, L}, \ k_w = \overline{0, \left[\frac{N}{m}\right]}, \ k_n + mk_w \le N \right\},$$
(1)

где [x] — целая часть x.

Элементы производящей матрицы (ПМ) данной цепи Маркова с ФПС (1)

$$q_{RA}(\mathbf{k}, \mathbf{k}') = \begin{cases} \lambda_n, & \text{если } k_n < L, \ \mathbf{k}' = \mathbf{k} + \mathbf{e}_1, \\ \lambda_n, & \text{если } \mathbf{k}' = \mathbf{k} + \mathbf{e}_2, \\ k_n \mu_n, & \text{если } \mathbf{k}' = \mathbf{k} - \mathbf{e}_1, \\ k_w \mu_w, & \text{если } \mathbf{k}' = \mathbf{k} - \mathbf{e}_2, \\ 0 & \text{в остальных случаях.} \end{cases}$$
(2)

При использовании данной стратегии доступа, как и при CS-стратегии, стационарное распределение модели $p(k), k \in S_{RA}$ имеет мультипликативный вид. Однако аналогичные вычислительные трудности при нахождении стационарного распределения существуют и при данной стратегии. Поэтому ниже предлагается другой путь решения проблемы, в котором используются принципы теории фазового укрупнения состояний стохастических систем.

Вероятности потери *n*-заявок ($PB_n^{RA}(N,L)$) и *w*-заявок ($PB_w^{RA}(N,L)$) при данной стратегии доступа

$$PB_{n}^{RA}(N,L) := \sum_{k \in S_{RA}} p(k) (I(f(k) = 0) + I(f_{n} = L)),$$
(3)

$$PB_{w}^{RA}(N,L) := \sum_{k \in S_{RA}} p(k) I(f(k) < m), \qquad (4)$$

где I(A) — индикаторная функция события A; $f(\mathbf{k})$ — число свободных каналов в состоянии $\mathbf{k} \in S_{RA}$, т.е. $f(\mathbf{k}) := N - k_n - m k_w$.

Рассмотрим следующее расщепление $\Phi\Pi C(1)$:

$$S_{RA} = \bigcup_{i=0}^{L} S_{RA}^{i} , \ S_{RA}^{i} \cap S_{RA}^{j} = \emptyset , \ i \neq j ,$$

$$(5)$$

где $S_{RA}^{i} := \{ \mathbf{k} \in S_{RA} : k_n = i \}.$

Класс состояний S_{RA}^{i} описывается одним укрупненным состоянием < i >, и строится функция укрупнения

$$U_{RA}(\mathbf{k}) = \langle i \rangle$$
, если $\mathbf{k} \in S_{RA}^i$. (6)

Тогда согласно алгоритмам фазового укрупнения (АФУ) стационарное распределение исходной модели $p(\mathbf{k}), \mathbf{k} \in S_{RA}$ приближенно определяется так:

$$p(\mathbf{k}) \cong \rho^{k_n}(\mathbf{k}) \pi(\langle k_n \rangle), \ \mathbf{k} \in S_{RA}, \ k_n = \overline{0, L},$$
(7)

где $\rho^{i}(\mathbf{k}), \mathbf{k} \in S_{RA}^{i}$ и $\pi(\langle i \rangle), i = \overline{0, L}$ — стационарные распределения соответственно внутри класса S_{RA}^{i} и укрупненной модели.

Стационарное распределение внутри класса S_{RA}^{i} определяется как хорошо известное распределение состояний классической системы обслуживания $M / M / \left[\frac{N-i}{m} \right] / 0$ с нагрузкой v_w эрл, $v_w := \lambda_w / \mu_w$, т.е. с помощью известных формул Эрланга

$$\rho^{i}(i,j) = \frac{\nu_{w}^{j}}{j!} \rho^{i}(i,0), \quad i = \overline{0,L}, \quad j = \overline{1, \left[\frac{N-i}{m}\right]}, \tag{8}$$

где

$$\rho^{i}(i,0) = \left(\sum_{j=0}^{\left\lfloor \frac{N-i}{m} \right\rfloor} \frac{\nu_{w}^{j}}{j!} \right)^{-1}.$$
(9)

Укрупненная модель представляет собой процесс размножения и гибели. С использованием (2), (8) и (9) элементы ПМ этой модели $q_{RA}(\langle x \rangle, \langle x' \rangle), x, x' = \overline{0, L},$

$$q_{RA}(\langle x \rangle, \langle x' \rangle) = \begin{cases} \lambda_n \sum_{i=0}^{\left\lfloor \frac{N-x}{m} \right\rfloor} \rho^x(x,i), & \text{если } x' = x+1, (N-x) \mod m \neq 0, \\ \begin{bmatrix} \frac{N-x}{m} \\ -1 \\ \lambda_n \sum_{i=0}^{n-1} \rho^x(x,i), & \text{если } x' = x+1, (N-x) \mod m = 0, \\ x\mu_n, & \text{если } x' = x-1, \\ 0 & \text{в остальных случаях,} \end{cases}$$
(10)

где $X \mod Y$ — остаток от деления X на Y.

Следовательно, стационарное распределение укрупненной модели при данной стратегии доступа

$$\pi(\langle j \rangle) = \frac{\nu_n^j}{j!} \prod_{k=0}^{j-1} F(k) \pi(\langle 0 \rangle), \quad j = \overline{1, L} , \quad (11)$$

где $\nu_n := \lambda_n / \mu_n$;

$$\pi(<0>) = \left(1 + \sum_{k=1}^{L} \frac{\nu_n^k}{k!} \prod_{i=0}^{k-1} F(i)\right)^{-1};$$
(12)

$$F(j) = \begin{cases} \left[\frac{N-j}{m}\right] \\ \sum_{i=0}^{m} \rho^{j}(j,i), \text{ если } (N-j) \text{mod} m \neq 0, \\ \left[\frac{N-j}{m}\right]^{-1} \\ \sum_{i=0}^{m} \rho^{j}(j,i), \text{ если } (N-j) \text{mod} m = 0. \end{cases}$$
(13)

Таким образом, на основе (8) – (13) можно предложить следующий алгоритм для расчета величин (3) и (4).

Шаг 1. Для
$$i = \overline{0, L}$$
 и $j = 1, \left[\frac{N-i}{m}\right]$ вычисляются величины $\rho^i(i, j)$ из

(8), (9).

Шаг 2. Для $j = \overline{0,L}$ вычисляются величины $\pi(< j >)$ из (11)–(13). Шаг 3. Величины (3) и (4) вычисляются так:

$$PB_{n}^{RA}(N,L) = \pi() + \sum_{i=0}^{L} E_{B}\left(\nu_{2}, \frac{N-i}{m}\right)\pi()I((N-i) \mod m = 0),$$
$$PB_{w}^{RA}(N,L) = \sum_{i=0}^{L} E_{B}\left(\nu_{2}, \left[\frac{N-i}{m}\right]\right)\pi(),$$

где $E_B(v,s)$ — *В*-формула Эрланга, т.е.

$$E_B(v,s) = \frac{v^s / s!}{\sum_{i=0}^s \frac{v^i}{i!}}.$$

Замечание 2. Данный алгоритм при L = N может быть использован для приближенного расчета показателей QoS стратегии CS.

Замечание 3. Здесь и в дальнейшем часто используется *В*-формула Эрланга. Для облегчения вычислений по этой формуле могут быть использованы эффективные рекуррентные алгоритмы [15].

1.2. Расчет модели при TR-стратегии доступа в каналы

Согласно данной стратегии *w*-заявки принимаются, если в момент их поступления число свободных каналов не меньше *m*, а *n*-заявки принимаются лишь тогда, когда число свободных каналов больше Rm, где $0 \le R < \overline{R}$,

$$\overline{R} = \begin{cases} \left\lfloor \frac{N}{m} \right\rfloor - 1, \text{ если } N \mod m = 0, \\ \left\lceil \frac{N}{m} \right\rceil \text{ в противном случае.} \end{cases}$$

Величина *R* называется параметром TR-стратегии доступа.

Замечание 4. Из данной стратегии при R = 0 получается CS-стратегия доступа.

Состояние системы в произвольный момент времени при данной стратегии, как и при использовании RA-стратегий доступа, описывается двумерным вектором $\mathbf{k} = (k_n, k_w)$. Однако ФПС модели при TR-стратегии отличается от (1) и задается следующим образом:

$$S_{TR} := \left\{ \boldsymbol{k} : k_n = \overline{0, N - Rm}, \ k_w = \overline{0, \left[\frac{N}{m}\right]}, \ k_n + mk_w \le N \right\}.$$
(14)

Элементы производящей матрицы соответствующей ЦМ с ФПС (14) можно записать так:

$$q_{TR}(\mathbf{k}, \mathbf{k}') = \begin{cases} \lambda_n, & \text{если } f(\mathbf{k}) > Rm, \ \mathbf{k}' = \mathbf{k} + \mathbf{e}_1, \\ \lambda_w, & \text{если } \mathbf{k}' = \mathbf{k} + \mathbf{e}_2, \\ k_n \mu_n, & \text{если } \mathbf{k}' = \mathbf{k} - \mathbf{e}_1, \\ k_w \mu_w, & \text{если } \mathbf{k}' = \mathbf{k} - \mathbf{e}_2, \\ 0 & \text{в остальных случаях.} \end{cases}$$
(15)

При использовании TR-стратегии доступа в отличие от CS- и RAстратегий не существует мультипликативного решения для стационарного распределения $p(\mathbf{k})$, $\mathbf{k} \in S_{TR}$, что значительно осложняет задачу расчета вероятностей потери разнотипных заявок при TR-стратегии доступа в каналы. При использовании TR-стратегии доступа в каналы вероятности потери n-заявок ($PB_n^{TR}(N,R)$) и w-заявок ($PB_w^{TR}(N,R)$) определяются как

$$PB_n^{TR}(N,R) := \sum_{\boldsymbol{k} \in S_{TR}} p(\boldsymbol{k}) I(f(\boldsymbol{k}) \le Rm), \qquad (16)$$

$$PB_{w}^{TR}(N,R) := \sum_{\boldsymbol{k} \in S_{TR}} p(\boldsymbol{k}) I(f(\boldsymbol{k}) < m).$$
(17)

В ФПС (14) рассмотрим следующее разбиение:

$$S_{TR} = \bigcup_{i=0}^{N-Rm} S_{TR}^i , \ S_{TR}^i \cap S_{TR}^j = \emptyset, \ i \neq j,$$
(18)

где $S_{TR}^i := \{ \mathbf{k} \in S_{TR} : k_n = i \}$, т.е. S_{TR}^i содержит те состояния $\mathbf{k} \in S_{TR}$, в которых число *n*-заявок равно *i*, $i = \overline{0, N - Rm}$.

Класс состояний S_{TR}^{i} описывается одним укрупненным состоянием $\langle i \rangle i = \overline{0, N - Rm}$. На основе разбиения (18) функция укрупнения

$$U_{TR}(\mathbf{k}) = \langle i \rangle,$$
если $\mathbf{k} \in S_{TR}^i.$ (19)

Стационарное распределение внутри классов S_{TR}^{i} определяется точно так же, как и в (8), (9), но при этом следует учитывать, что $i = \overline{0, N - Rm}$.

Замечание 5. Здесь и в дальнейшем для простоты изложения стационарные распределения внутри классов и укрупненных состояний при различных стратегиях доступа обозначаются одинаково. Однако очевидно, что они оценивают вероятности различных состояний в различных моделях.

С использованием (8), (9) и (15) заключаем, что элементы ПМ укрупненной модели $q_{TR}(\langle x \rangle, \langle x' \rangle), x, x' = \overline{0, N - Rm},$

$$q_{TR}(\langle x \rangle, \langle x' \rangle) = \begin{cases} \left[\frac{N-x}{m} - R\right] \\ \lambda_n \sum_{i=0}^{m} \rho^x(x,i), \text{ если } x' = x+1, (N-x) \text{mod} m = 0, \\ \left[\frac{N-x}{m} - R\right]^{-1} \\ \lambda_n \sum_{i=0}^{m} \rho^x(x,i), \text{ если } x' = x+1, (N-x) \text{mod} m \neq 0, \end{cases}$$
(20)
$$x\mu_n, \text{ если } x' = x-1, \\ 0 \text{ в остальных случаях.}$$

Тогда с помощью (8), (9) и (20) находится стационарное распределение укрупненной модели

$$\pi(\langle j \rangle) = \frac{\nu_n^j}{j!} \prod_{i=0}^{j-1} G(i) \pi(\langle 0 \rangle), \ j = \overline{1, N - Rm},$$
(21)

где

$$\pi(<0>) = \left(1 + \sum_{i=1}^{N-Rm} \frac{v_n^i}{i!} \prod_{j=0}^{i-1} G(j)\right)^{-1}, \qquad (22)$$

Системні дослідження та інформаційні технології, 2005, № 2

89

$$G(i) = \begin{cases} \begin{bmatrix} \frac{N-i}{m} - R \\ \sum_{j=0} \rho^{i}(i, j), \text{ если } (N-i) \mod m \neq 0, \\ \begin{bmatrix} \frac{N-i}{m} - R \\ m \end{bmatrix} - 1 \\ \sum_{j=0} \rho^{i}(i, j), \text{ если } (N-i) \mod m = 0. \end{cases}$$
(23)

Следовательно, с помощью (20) – (23) можно предложить следующий алгоритм для расчета величин (16) и (17).

Шаг 1. Для $i = \overline{0, N - Rm}$ и $j = \overline{1, \left[\frac{N-i}{m}\right]}$ вычисляются величины $\rho^i(i, j)$

из (8), (9).

Шаг 2. Для $j = \overline{0, N - Rm}$ вычисляются величины $\pi(< j >)$ из (21)–(23). Шаг 3. Для $k_n = \overline{0, N - Rm}$ и $k_w = \left\lceil \frac{N - k_n}{m} - R \right\rceil + 1, \left\lceil \frac{N - k_n}{m} \right\rceil$ вычисляют-

ся величины $p(k_n, k_w)$ из (7).

Шаг 4. Величины (16) и (17) вычисляются так:

$$PB_{n}^{TR}(N,R) = \begin{cases} \sum_{i=0}^{N-Rm} \sum_{j=\left[\frac{N-i}{m}-R\right]}^{N-i} p(i,j), \text{ если } (N-i) \text{mod } m = 0, \\ \sum_{i=0}^{N-Rm} \sum_{j=\left[\frac{N-i}{m}-R\right]}^{N-i} p(i,j), \text{ если } (N-i) \text{mod } m \neq 0, \end{cases}$$
$$PB_{w}^{TR}(N,R) = \sum_{i=0}^{N-Rm} E_{B}\left(v_{m}, \left[\frac{N-i}{m}\right]\right) \pi(\langle i \rangle).$$

2. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ РАСЧЕТОВ МОДЕЛИ

Здесь приводятся результаты численных экспериментов, выполненных с помощью разработанных в п. 1 алгоритмов расчета модели при различных стратегиях доступа в каналы. Все вычислительные программы разработаны на языке Object Pascal в интегрированной среде Delphi 6. Цель выполнения этих экспериментов — определение поведения вероятностей потерь n- и w-заявок при изменении нагрузочных параметров трафика, а также изучение их поведения при различных значениях параметров рассматриваемых стратегий доступа в каналы.

Часть результатов численных экспериментов показана на рис. 1–4. Анализ результатов численных экспериментов при различных стратегиях доступа позволяет сделать следующие выводы:

Численные методы исследования многоскоростных систем обслуживания типа Гимпельсона

Рис. 1. Зависимость вероятности потерь разнотипных заявок от *L* при RA-стратегии доступа (N = 60; m = 60; $v_n = 10$; $v_w = 5$)

Рис. 2. Зависимость вероятности потерь разнотипных заявок от *L* при RA-стратегии доступа (N = 60; m = 12; $v_n = 10$; $v_w = 5$)

Рис. 3. Зависимость вероятности потерь разнотипных заявок от *R* при TR-стратегии доступа (N = 60; m = 6; $v_n = 5$; $v_w = 10$)

Рис. 4. Зависимость вероятности потерь разнотипных заявок от *R* при TR-стратегии доступа (N = 60; m = 12; $v_n = 5$; $v_w = 10$)

1) при фиксированных N, m, v_n, v_w функция $PB_n^{RA}(N,L)$ — монотонно убывающая, функция $PB_w^{RA}(N,L)$ — наоборот, монотонно возрастающая относительно аргумента L (рис. 1,2);

2) при фиксированных N, m, v_n, v_w функция $PB_n^{TR}(N, R)$ — монотонно возрастающая, а функция $PB_w^{TR}(N, R)$ — наоборот, монотонно убывающая относительно аргумента R (рис. 3, 4).

3. ЗАДАЧИ ОПТИМИЗАЦИИ МОДЕЛИ ПРИ РАЗЛИЧНЫХ СТРАТЕГИЯХ ДОСТУПА

Проведенный выше анализ показывает, что при использовании каждой из рассматриваемых стратегий доступа в каналы имеются определенные управляемые параметры и путем выбора их соответствующих значений можно улучшить те или иные желаемые показатели QoS-системы. Зачастую в реальных системах оказывается достаточно трудным управление входящим трафиком (т.е. в зависимости от текущей ситуации динамически управлять интенсивностями входящих трафиков, хотя в некоторых работах исследуются и такие системы). Поэтому реальными являются проблемы улучшения показателей QoS-системы путем выбора соответствующих значений скоростей обслуживания заявок (особенно изменением значения параметра m), числа каналов обслуживания, а также параметров используемых стратегий доступа в общие каналы.

Здесь рассматриваются некоторые задачи подобного типа при RA- и TR-стратегиях доступа. Для краткости изложения в рамках каждой стратегии доступа рассматривается только одна задача оптимизации.

3.1. Оптимизация модели при RA-стратегии доступа

Оптимизация модели при данной стратегии доступа осуществляется путем выбора ее параметра L при условии, что общее число каналов (т.е. N) является фиксированным.

Для примера рассмотрим следующую задачу.

Пусть заданы ограничения на вероятности потери разнотипных заявок

D / /

$$PB_n^{RA}(N,L) \le \varepsilon_n, \qquad (24)$$

$$PB_{w}^{RA}(N,L) \le \varepsilon_{w}, \qquad (25)$$

где ε_n и ε_w — заданные величины.

Задача оптимизации ставится следующим образом.

При фиксированном N требуется найти такой интервал максимальной длины $[L_1^*, L_2^*] \subset [1, N]$, чтобы для всех $L \in [L_1^*, L_2^*]$ удовлетворялись условия (24) и (25).

При разработке алгоритма решения данной задачи используются свойства монотонности функций $PB_w^{RA}(N,L)$ и $PB_n^{RA}(N,L)$ относительно аргумента L при фиксированном N, а также соотношения

$$PB_n^{RA}(N,N) \le PB_n^{RA}(N,L) \le PB_n^{RA}(N,1),$$
(26)

$$PB_{w}^{RA}(N,1) \le PB_{w}^{RA}(N,L) \le PB_{w}^{RA}(N,N).$$

$$(27)$$

Тогда, с учетом (26) и (27) можно предложить такой алгоритм решения рассматриваемой задачи.

Если $PB_n^{RA}(N,N) > \varepsilon_n$ и/или $PB_w^{RA}(N,1) > \varepsilon_w$, то задача не имеет решения. В противном случае параллельно решаются задачи

$$L_n^* := \arg\min_L \left\{ PB_n^{RA}(N,L) \le \varepsilon_n \right\},$$
(28)

$$L_{w}^{*} \coloneqq \arg \max_{L} \left\{ PB_{w}^{RA}(N,L) \le \varepsilon_{w} \right\}.$$
⁽²⁹⁾

Задачи (28) и (29) могут быть решены с применением метода дихотомии. Если $L_n^* > L_w^*$, то исходная задача опять не имеет решения. В противном случае решением рассматриваемой задачи является $L_1^* := L_n^*$, $L_2^* := L_w^*$.

3.2. Оптимизация модели при TR-стратегии доступа

Рассмотрим выравнивание значений вероятностей потерь разнотипных заявок путем выбора соответствующих значений параметра TR-стратегии доступа R. В этом случае также используются свойства монотонности функций $PB_w^{TR}(N,R)$ и $PB_n^{TR}(N,R)$ относительно аргумента R при фиксированном N.

Из формул (16) и (17) видно, что при таком определении TR-стратегии доступа, когда число резервируемых каналов для *w*-заявок является кратным *m*, абсолютное справедливое обслуживание (в смысле равенства значений вероятностей потерь различных потоков) достигается лишь при m = 1 и R = 0, т.е. при многопотоковой модели Эрланга без резервирования. Абсолютного справедливого обслуживания при данной стратегии можно достичь лишь тогда, когда число резервируемых каналов для *w*-заявок не является кратным *m*, а равно m - 1.

В связи с изложенным выше ставится задача определения ε -справедливого обслуживания, т.е. при фиксированных N и m требуется найти такие значения параметра R данной стратегии, для которых абсолютное значение разницы вероятностей потерь разнотипных заявок не превосходит заданное число ε , $0 < \varepsilon < 1$, или более формально: требуется найти такой интервал максимальной длины $[R_1^*, R_2^*] \subset [1, \overline{R}]$, чтобы для всех $R \in [R_1^*, R_2^*]$ удовлетворялось условие

$$\left| PB_{w}^{TR}(N,R) - PB_{n}^{TR}(N,R) \right| \le \varepsilon .$$
(30)

Решение данной задачи можно осуществлять в два этапа. На первом — решается задача

$$\left| PB_{w}^{TR}(N,R) - PB_{n}^{TR}(N,R) \right| \to \min_{R}.$$
(31)

Обозначим решение задачи (31) через R^* (решение существует в силу конечности области допустимых значений R). Для нахождения R^* можно использовать такую схему.

В исходном интервале $[1,\overline{R}]$ методом дихотомии находится такой интервал единичной длины $[\widetilde{R},\widetilde{R}+1]$, для которого $PB_w^{TR}(N,\widetilde{R}) > PB_n^{TR}(N,\widetilde{R})$ и $PB_w^{TR}(N,\widetilde{R}+1) < PB_n^{TR}(N,\widetilde{R}+1)$. Тогда решение задачи (31) имеет вид

$$R^* := \arg\min\left\{PB_w^{TR}\left(N,\widetilde{R}\right) - PB_n^{TR}\left(N,\widetilde{R}\right), PB_n^{TR}\left(N,\widetilde{R}+1\right) - PB_w^{TR}\left(N,\widetilde{R}+1\right)\right\}.(32)$$

После определения R^* из (32) можно предложить следующий метод решения исходной задачи.

Если условие (30) не удовлетворяется при $R := R^*$, то исходная задача не имеет решения. В противном случае в интервалах $[1, R^*]$ и $[R^*, \overline{R}]$ находятся такие минимальное (R_1^*) и максимальное (R_2^*) значения параметра R, чтобы удовлетворить условие (30). При этом для нахождения R_1^* и R_2^* , также исходя из свойства монотонности функций $PB_w^{TR}(N, R)$ и $PB_n^{TR}(N, R)$, может быть использован метод дихотомии.

4. РЕЗУЛЬТАТЫ РЕШЕНИЯ ЗАДАЧ ОПТИМИЗАЦИИ МОДЕЛИ

С использованием предложенных в п. 3 алгоритмов разработаны соответствующие вычислительные программы на языке Object Pascal в интегрированной среде разработки Delphi 6 и показана их практическая реализуемость в любом диапазоне изменения структурных и нагрузочных параметров модели.

Часть результатов вычислительных экспериментов показаны в табл. 1 и 2, где символ \emptyset означает, что задача не имеет решения.

Анализ результатов вычислительных экспериментов позволяет сделать следующие выводы:

1) в задаче оптимизации модели при RA-стратегии доступа и фиксированных N, m, v_n, v_w с уменьшением ε_n и/или ε_w длина интервала $L_2^* - L_1^*$ также уменьшается;

2) в задаче оптимизации модели при TR-стратегии доступа и фиксированных N, m, v_n, v_w с уменьшением ε длина интервала $R_2^* - R_1^*$ также уменьшается.

Таблица 1. Результаты решения задачи оптимизации модели при RAстратегии доступа в каналы, N = 100

Пара- метры	Значения параметров											
V_n	15	15	15	10	5	10	15	25	25	25	5	10
V_w	10	10	25	20	10	5	15	15	15	15	10	15
т	6	6	6	6	12	12	12	12	24	24	24	24
\mathcal{E}_n	10^{-1}	10 ⁻¹	$4 \cdot 10^{-1}$	$4 \cdot 10^{-1}$	10^{-1}	10^{-1}	10^{-2}	$5 \cdot 10^{-1}$	10 ⁻¹	10^{-1}	10^{-1}	$2 \cdot 10^{-1}$
\mathcal{E}_{w}	10^{-1}	$5 \cdot 10^{-2}$	$5 \cdot 10^{-1}$	$3 \cdot 10^{-1}$	10^{-1}	10^{-1}	10^{-3}	$6 \cdot 10^{-1}$	9.10^{-1}	10^{-2}	$7 \cdot 10^{-1}$	$8 \cdot 10^{-1}$
$\left[L_1^*,L_2^*\right]$	[17, 100]	[17, 18]	[10, 100]	[7,7]	Ø	[12, 100]	Ø	[13, 23]	[27, 100]	Ø	[100, 100]	[11, 100]

Таблица 2. Результаты решения задачи оптимизации модели при TRстратегии доступа в каналы, *N* = 100

Пара- метры	Значения параметров											
V_n	15	15	5	5	10	10	1	0,1	5	5	20	20
V_w	5	5	15	15	5	5	1	1,0	5	5	0,4	0,4
т	6	6	6	6	12	12	12	12	16	16	16	16
ε	10 ⁻²	10 ⁻⁴	10^{-1}	10 ⁻²	10^{-1}	10 ⁻²	10 ⁻³	10 ⁻⁴	10^{-1}	10 ⁻²	10 ⁻³	10 ⁻⁴
$\left[R_1^*,R_2^*\right]$	[1,13]	[11,11]	[10,100]	Ø	[1,5]	Ø	[1,3]	[1,2]	[3,3]	Ø	[1.4]	[1,3]

ЗАКЛЮЧЕНИЕ

Предложен единый подход к решению проблемы расчета вероятностей потерь разнотипных заявок в многоскоростных системах Гимпельсона при использовании двух наиболее известных стратегий доступа в каналы. Он отличается простотой, позволяет сформулировать и решить различные задачи оптимизации исследуемой модели практически в любом диапазоне изменения параметров.

Важно отметить, что этот подход позволяет также успешно исследовать модели Гимпельсона при наличии приоритетов различных типов и/или очередей. Эти исследования представляют предмет дальнейших публикаций.

ЛИТЕРАТУРА

- 1. Kelly F.P. Loss networks // Ann. Appl. Prob. 1991. 1, №3. —.P. 319–378.
- 2. Меликов А.З. Методы расчета и оптимизации моделей мультиресурсных систем обслуживания // Кибернетика и системный анализ. 1996. № 6. С. 92–112.
- Ross K.W. Multiservice loss models for broadband telecommunications networks. N.Y.: Springer-Verlag, 1995. — 240 p.
- 4. Schwartz M. Broadband integrated networks. N.Y.: Prentice-Hall, 1996. 412 p.
- 5. Лагутин В.С., Степанов С.Н. Телетрафик мультисервисных сетей связи. М.: Радио и связь, 2000. 320 с.
- 6. *Gimpelson L.A.* Analysis of mixtures of wide- and narrow-band traffic // IEEE Trans. Commun. Technol. 1965. 13, № 3. P. 258–266.
- Kaufman J.S. Blocking in shared resource environment // IEEE Trans. Commun. 1981. — 10, №10. — P. 1474–1481.
- 8. Ross K.W., Tsang D.H. Teletraffic engineering for product-form circuit-switched networks // Adv. Appl. Prob. 1990. **38**, № 8. P. 1266–1271.
- Pioro M., Lubacs J., Korner U. Traffic engineering problems in multi-service circuit-switched networks // Comput. Networks and ISDN Syst. 1990. 1–5. P. 127–136.
- 10. *Меликов А.З.* Об одном алгоритме расчета мультиресурсных систем обслуживания // Электрон. моделирование. 1992. 14, № 25. С. 52–56.
- Melikov A.Z., Deniz D.Z. Non-exhaustive channel access strategy in multi-resource communication systems with non-homogeneous traffic // Proc. of 5th IEEE Symposium on Computers and Communications, July 3-6, 2000, France. — P. 432–437.
- Korolyuk V.S., Korolyuk V.V. Stochastic models of systems. Boston: Kluwer Academic Publishers, 1999. 185 p.
- Ross K.W., Tsang D.H. Optimal circuit access policies in an ISDN environment: A Markov decision approach // IEEE Trans. Commun. — 1989. — 37, № 9. — P. 934–939.
- 14. *Меликов А.З., Молчанов А.А., Пономаренко Л.А.* Мультиресурсные системы массового обслуживания с частично коммутируемыми каналами // Электрон. моделирование. 1992. 14, № 8. С. 89–91.
- Freeman R.L. Reference manual for telecommunications engineering. N.Y.: Wiley, 1994. — 235 p.

Поступила 11.06.2004

ISSN 1681–6048 System Research & Information Technologies, 2005, № 2