

© L.B. Ryzhyk, A.Y. Burtsev, 2005
44 ISSN 1681–6048 System Research & Information Technologies, 2005, № 1

УДК 681.142.2

ARCHITECTURAL DESIGN OF E1 DISTRIBUTED OPERATING
SYSTEM

L.B. RYZHYK, A.Y. BURTSEV

This paper presents the distributed operating system architecture based on the con-
cept of replication of distributed objects. A complete or partial copy of distributed
object’s state is placed in each node where the object is used. Copy coherence is en-
sured by replication algorithms. For each object the most efficient access algorithm,
taking its semantics into account, can be applied. All E1 subsystems are designed to
support replication, which makes E1 a convenient platform for developing reliable
distributed applications.

INTRODUCTION

In modern operating systems distributed computations support is usually limited
to network protocol stack. However, construction of distributed applications re-
quires more advanced communication facilities such as remote procedure calls,
distributed synchronization primitives and distributed shared memory. The grow-
ing complexity of software systems necessitates a new software layer, providing
developers with efficient, reliable and secure access to network resources.

Currently, this layer is most frequently implemented by middleware systems.
Middleware is defined as a layer of software above the operating system but be-
low the application program that provides a common programming abstraction
across a distributed system [1, 2]. For example, in distributed data processing sys-
tems, component-oriented middleware, which supports the common object model
in different network nodes, is widely used [3, 4, 5, 6].

The alternative approach consists of integrating distributed computations
support into the operating system. Nowadays, the advanced communication facili-
ties have become an essential software component like file system or
inter-process communication facilities. OS-level implementation allows the
construction of the most effective architecture, supporting the unified set of primi-
tives for access to local and remote resources.

Distributed OS is a software platform providing applications with common
execution environment within distributed system, including means of access to
hardware and software resources of the system and application communication
facilities.

This paper presents architectural design of E1 distributed operating system.
Such OS should meet three major requirements:

1. Convenient interface. Due to the nature of distributed systems, it is more
difficult for users and software developers to work in them, than in centralized
ones. Among the complexity factors one can name: heterogeneity of access to
local and remote resources, high probability of faults, asynchronous communica-
tion environment, non-uniform memory access. To enable computations in such
an environment, the distributed OS must support a set of abstractions, isolating

Architectural design of E1 distributed operating system

Системні дослідження та інформаційні технології, 2005, № 1 45

developers from the listed complexities and providing a convenient interface to all
the resources of a distributed system.

2. Efficiency. OS efficiency is determined mainly by temporal characteris-
tics of access to various resources. In the distributed environment network laten-
cies become a productivity bottleneck. Therefore distributed OS should minimize
the influence of remote communication on software operation.

3. Reliability. In the absence of fault tolerance mechanisms, a single node
or network connection failure can put the whole distributed system out of order
and cause loss of data. Therefore the distributed OS should provide reliable com-
putations support, including redundant storage and execution, as well as fault re-
covery.

1. Е1 CONCEPTS

This section presents our approach to implementation of the above requirements.

Convenient interface
To provide applications with convenient interface to all computer network re-
sources, Е1 implements a Single System Image abstraction, which implies that for
application software the distributed system looks like a centralized one. This fea-
ture allows a developer to ignore the physical layout of resources but instead fo-
cus on the functionality they provide.

Implementation of single system image in Е1 is based on abstraction of the
distributed object. Distributed objects encapsulate state and functionality of all
OS components. Each object exposes a set of well defined interfaces that can be
invoked by other objects. Objects are globally accessible by their interfaces from
all nodes of a system.

Both OS components and application software relies on a single E1 object
model, i.e. Е1 applications are constructed as a collection of distributed objects.
To an application programmer the computer network looks and fills like a single
virtual computer, its software structured as a set of objects. Access to the
hardware resources, as well as the interaction between software components are
reduced to invoking methods on the corresponding objects.

Efficiency
The distributed software systems consist of interacting components located in dif-
ferent network nodes. As the operations, performed in each node, often depend on
instructions and data received from remote components, the communication la-
tencies eventually affect the performance of the entire system. Two popular tech-
niques, used to overcome this effect are: replacing remote communication by lo-
cal operations, and removing remote communication beyond the critical execution
paths. Replacing remote communication by a local interaction implies that the
state of a server object is cached in the client nodes. In this case read operations
are performed locally on the cached copy of an object. Modifications can some-
times also be applied locally with the subsequent delayed delivery of changes to a
server. Removing the remote communication beyond the critical paths allows the
reduction of the time spent by main computational threads waiting for remote
messages. For this purpose additional helper threads, that speculatively obtain the
data, required by main computations, are used.

L.B. Ryzhyk, A.Y. Burtsev

ISSN 1681–6048 System Research & Information Technologies, 2005, № 1 46

Object replication constitutes a generalization of the indicated approaches.
In Е1 a complete or partial copy of a distributed object’s state can be placed in
each node where the object is used. The state of an object is synchronized (repli-
cated) among nodes. Each invocation of an object method is handled by its replica
in the node, where the call originates. Communication with the remote replicas
occurs only when required by the replication protocol, for example, when it is
necessary to obtain a missing part of an object state.

Thus, the distributed communication in Е1 is moved inside the distributed
object. Hence, efficiency of access to an object is determined by efficiency of the
replication strategy. Obviously, there is no single replication strategy, equally ef-
fective for all types of objects. Therefore Е1 does not impose the use of any spe-
cific strategy or a collection of strategies. Instead, E1 provides services and tools
to simplify the construction of replicated objects. In effect, for each class of ob-
jects the most efficient access algorithm, which takes into account its semantics,
can be applied. Such algorithm can be either selected from a set of existing repli-
cation strategies, or designed specifically for the given class of objects.

Reliability
E1 provides support for reliable distributed applications development through rep-
lication and persistence. Replication can appear not only as a means of efficient
access to an object, but also as a redundancy mechanism. For example, by sup-
porting consistent copies of an object in n different nodes, it is possible to tolerate
up to n — 1 node crashes [7]. Thus, replication utilizes hardware redundancy of
the distributed system to provide reliable execution of applications.

Persistence is the ability of the objects to exist for unlimited time, irrespec-
tively of whether a system functions continuously. For this purpose a copy of an
object is kept in nonvolatile storage and is being synchronized with an active
copy. The stored object state is always correct, even in the face of hardware
failures. (As for now, support for persistence in E1 is not designed in sufficient
details. Therefore, it is not covered in this paper.)

Another important principle underlying the Е1 architecture is component
model support. According to this principle, the replicated objects model is ex-
tended to a valid component model. Such architecture makes Е1 a convenient
platform for the development of distributed applications.

On the low level, the E1 component model relies on the execution primi-
tives, which are essentially different from the ones used by the conventional OS.
The primary execution abstraction in the conventional systems is process or task,
representing an instance of a program, loaded into memory. Each task runs in a
separate address space. Within a task several execution threads can exist. This
model does not appropriately support interacting objects of medium granularity
[8]. Therefore, we abandon it for the new execution model, tailored for compo-
nent systems. In Е1 all executable code and data belong to objects. All objects
reside within a single 64-bit address space. Е1 supports the migrating threads
model [8], in which execution of a thread, invoking an object method, is trans-
ferred to the context of the invoked object. Migrating threads allow the departure
from a server-style object design, where an object runs one or several threads to
process incoming method invocations.

Since both OS services and application software are developed within the
framework of a single Е1 component model, the model has to be highly flexible,

Architectural design of E1 distributed operating system

Системні дослідження та інформаційні технології, 2005, № 1 47

while introducing minimal overhead. These requirements have guided the design
of Е1 component services, presented in the following sections of this paper.

2. COMPARISON WITH OTHER SYSTEMS

Modern distributed operating systems can be divided into two classes, based on
the method of access to distributed system resources: client/server systems and
distributed shared memory (DSM)-based systems. Е1 implements a third ap-
proach, based on replicated objects. This section presents a brief characteristic of
existing architectures and compares them to the Е1 architecture.

In client/server OS’es, similar to E1, all resources of the distributed system
are represented by objects, which are uniformly accessible from all nodes. How-
ever, objects are not physically distributed. Each object is located in one of
system nodes under control of a server process. Global availability of objects is
provided by the remote method invocation mechanism, which hides the
distributed nature of interactions from the client. Two well-known examples of
client/server distributed OS’es are Mach [9] and Chorus [10]. The advantage of
client/server architecture is its relative simplicity. However, it does not provide a
locality of access to resources and, therefore, does not eliminate the influence of
network latencies on the performance of the system. Another disadvantage of cli-
ent/server architecture is the lack of reliability mechanisms. Failure of a single
node can cause a wave of software failures all over the system, a phenomenon
known as the «domino effect». Furthermore, client/server architecture lacks
scalability, as it does not support load balancing among nodes.

DSM-based OS’es [11, 12, 13, 14] use essentially different approach to
implement the distributed object model. The main idea underlying these systems
is to emulate common memory in the distributed environment. The state and
executable code of each object are globally accessible from each node by their
virtual addresses. On the first access to an object, the OS creates local copies of
its pages. The copies are synchronized using memory coherence algorithms [15].
These algorithms can be thought of as universal replication strategies, applicable
for any types of objects. Unfortunately, they often fail to provide acceptable
efficiency of access. To implement efficient access to an object the replication
algorithm should take into account its semantics. Algorithms, working on the
level of virtual memory pages are obviously unaware of object semantics. Thus,
we observe a natural trade-off between generality and efficiency of the replication
strategy.

In E1, the efficient and reliable access to each object is ensured by selecting
replication strategy on the basis of the object’s semantics.

Two examples of standard E1 replication strategies are client/server replica-
tion and memory object replication. These strategies reproduce the types of access
to distributed objects used respectively by client/server and DSM-based OS’es.
Thus, Е1 can be considered a generalization of these architectures.

3. Е1 OVERVIEW

3.1. Distributed object

Distributed objects are first-class citizens in E1. All OS services, as well as appli-
cation software are constructed from distributed objects.

L.B. Ryzhyk, A.Y. Burtsev

ISSN 1681–6048 System Research & Information Technologies, 2005, № 1 48

All objects reside in a single virtual 64-bit address space. Each object ex-
poses one or several interfaces consisting of a set of methods. Each distributed
object interface is identified by its unique 64-bit address. Any object, knowing
this address, can invoke the interface methods from any network node. All inter-
faces in Е1 contain a standard method of navigation between the interfaces of the
same distributed object.

Objects in Е1 can be physically distributed, i.e. keeping partial or complete
copies of the state in several nodes. The copy of an object’s state in one of the
system nodes is called distributed object replica. The distribution of the state
among replicas and replica synchronization is called object replication.

The E1 distributed object architecture aims to separate an object’s semantics
and replication strategy. An object developer implements only the object’s seman-
tics or functionality in local (non-replicated) cases, while a replication strategy
supplier implements the replication algorithm. Replication strategy can be univer-
sal, i.e. applicable to objects of various classes. At the same time, objects of the
same class can be replicated using different strategies.

To achieve the goal above, we put forward the distributed object architec-
ture, in which object semantics and replication strategy are implemented by sepa-
rate structural units. In E1, distributed objects are composed of local objects. A
local object is limited to one node of the distributed system. Note that a similar
distributed object architecture has been implemented by Globe object-oriented
middleware [6].

The E1 local object resembles the structure of a C++ object [16]. It consists
of a fixed-size section, containing data members and pointers to interfaces
(method tables), and the data structures, dynamically allocated by the object from
heap. In terms of C++, the interfaces of the local object are purely virtual base
classes, from which the object is inherited. A similar approach is taken by COM [4].

The distributed object architecture is shown in Fig. 1.
In a simple case when the distributed object has only one replica, it is identi-

fied with a single local object, semantics object. Semantics object contains the
distributed object state, exposes the distributed object interfaces and implements
its functionality.

When the reference to the distributed object is created in the node, where
there is no replica of the given object yet, a new replica is created in this node.
The structure of distributed object with several replicas is shown in Figure 1. A
copy of the semantics object is placed in each node, where the distributed object
is represented. To ensure global accessibility of the distributed object interfaces
by their virtual addresses, semantics objects are placed to the same virtual mem-
ory location in all nodes. The distributed object integrity is maintained by replica-
tion objects, complementing the semantics objects in each node. Replication ob-
jects implement the distributed object replication protocol. Replication object
substitutes implementations of semantics object interfaces by its own implementa-
tions, which allows it to process the distributed object method invocations. (De-
tailed discussion of interface substitution technique lies beyond the scope of this
paper.) While processing the invocation, replication object can refer to the seman-
tics object to execute necessary operations over the local object state, as well as
communicate with remote replication objects to perform synchronization and re-
mote execution of operations. Interface substitution is transparent for other ob-

Architectural design of E1 distributed operating system

Системні дослідження та інформаційні технології, 2005, № 1 49

jects and can be thought of as aggregation of the semantics object by the replica-
tion object. Such architecture eliminates the overhead of supporting replication
objects for the distributed objects that are not actually distributed, i.e. have only
one replica. If an object with several replicas eventually remains with only one
replica, its replication object is deleted.

The presented distributed object architecture has two important advantages.
First of all, it effectively separates the object’s semantics and replication strategy.
Secondly, it does not impose any essential limitations on replication algorithms
used. Hence, for each object the access protocol, providing high efficiency, while
preserving required reliability guarantees, can be applied.

3.2. Е1 architecture
Fig. 2 shows a generalized Е1 architecture. E1 consists of a microkernel and a set
of distributed objects acting at the user level. The microkernel supports a minimal
set of primitives that are necessary for OS construction, such as: address spaces,
threads, IPC and interrupts dispatching. All operating system and application
functionality is implemented by objects.

Microkernel-based design has a number of advantages. First, it is potentially
more reliable than conventional monolithic architecture, as it allows the major
part of operating system functionality to be moved beyond the privileged kernel.
Second, microkernel implements a flexible set of primitives, providing a high
level of hardware abstraction, while imposing little or no limitations on operating
system architecture. Therefore, building an operating system on top of an existing
microkernel is significantly easier than developing from scratch. Besides, since

Semantics
object

Node 1 Node 2

Node 3

Replication
object

Replication
object

Semantics
object

Semantics
object

Replication
object

Object interface

Network

Interface 1 Interface 1

Interface 1

Fig. 1. The distributed object architecture

Semantics
object

Replication
object

L.B. Ryzhyk, A.Y. Burtsev

ISSN 1681–6048 System Research & Information Technologies, 2005, № 1 50

operating system services run at user level, rather than inside the kernel, it is pos-
sible to replace or update certain services at run-time, or even start several
versions of a service simultaneously. Third, and finally, some of the existing mi-
crokernels achieve an IPC performance an order of magnitude over monolithic
kernels [17]. Among these are microkernels of the L4 family [18, 19, 20, 21]. For
object-oriented operating systems, like E1, it is extremely important to minimize
the latency of control transfer between address spaces; therefore, L4 has been se-
lected as the microkernel of Е1.

4. OBJECT INTERACTION AND PROTECTION

In order to perform useful operations, objects interact by means of method calls.
Safe execution of applications is provided by a protection mechanism which
guarantees that object interaction is controlled by precisely defined access control
policy.

4.1. Protection Domains
OS protection model has to be based on facilities provided by the underlying
hardware platform, primarily, virtual memory mechanisms in modern microproc-
essors these are. Therefore, object protection is closely related to virtual memory
organization.

In Е1 all objects reside in a single virtual address space. Object interfaces are
invoked directly by their virtual addresses, just as in C++ methods are invoked
through the pointer to an object. The major advantage of such a virtual memory
organization is a convenient programming model, which greatly simplifies the
communication between objects. A single E1 address space spans the whole dis-
tributed system. Hence, all objects in the system are accessible by their unique
virtual addresses from any network node.

Nevertheless, in order to provide effective object isolation in E1, we intro-
duce the notion of protection domain, representing a part of a single virtual
address space, within which one or several distributed objects are located. Each
object in E1 belongs to exactly one domain. Associated to each domain is a

Fig. 2. Generalized Е1 architecture

Architectural design of E1 distributed operating system

Системні дослідження та інформаційні технології, 2005, № 1 51

separate protection context, isolating internal domain objects from the other
objects in the system. However, objects inside domain are not protected from
each other. Method calls inside domain do not require the protection context
switch. Thus, domains offer a trade-off between efficiency and safety of
interaction.

Domains provide global isolation of objects within the framework of a dis-
tributed system. If the object has several replicas, then in every node its replica
resides in the same domain and at the same memory address. Therefore, if two
objects are isolated from each other, i.e. reside in different domains, then their
replicas will be placed in different domains in all nodes. Like other Е1 primitives,
domains are distributed objects. A replica of each domain is placed in each node,
where there is a replica of at least one object, belonging to this domain.

4.2. Crossdomain calls
Objects in Е1 interact via method calls. This type of communication is synchro-
nous. Each call is accompanied by a set of input and output parameters, specified
by the object developer by means of Interface Definition language (IDL).

In Е1 all method calls are executed by the local replica of the invoked object.
In order to guarantee that such a replica will exist and will not be deleted by the
garbage collection system, one must create a reference to an object before using
any of its methods.

Object methods are invoked through a pointer to one of its interfaces. Since
all objects in Е1 are located in a single address space, this pointer is valid in any
system node and in any protection domain.

Within the domain boundaries, method calls work very similar to C++ lan-
guage: arguments are placed in stack and registers, and the control is transferred
to the address specified in the method table of an invoked object.

Implementation of crossdomain calls is more complicated, although for the
interacting objects the difference is transparent. An attempt to access an object
outside the local domain triggers a page fault exception, handled by Crossdo-
main Adapter (CA), located in the same domain as the object where the excep-
tion occurs. The CA’s task is to prepare the stack, containing the invocation ar-
guments, which will be mapped into the target domain and on which the method
will be executed. All arguments are copied directly to the new stack. Although
crossdomain call mechanism does not explicitly support passing large data arrays
without copying, a similar functionality can be achieved by passing pointers to
objects, representing shared memory regions.

Having created the call stack, the CA transfers control to the microkernel to
complete the call. The kernel then refers to the Object Registry (see Section 5.1)
for the validation of the caller’s capabilities to invoke the given operation, and
finally maps the call stack to the target domain and transfers control to the called
object. Return from crossdomain call occurs in a similar way, through the target
domain CA.

4.3. Threads
The Е1 execution model is based on the migrating threads concept [8]. At any
point in time each thread runs in the context of a specific object. During method
invocation, execution of a thread is transferred to the target object. Thus, the
thread is not permanently bound to any specific object or domain. As shown in

L.B. Ryzhyk, A.Y. Burtsev

ISSN 1681–6048 System Research & Information Technologies, 2005, № 1 52

[8], migrating threads are more appropriate for object-oriented environment, than
traditional static threads.

Since in Е1, distributed object invocation is actually an invocation of its
local replica, it does not cause the transfer of thread execution to a remote node.
There is, however, one particular situation, when such transfer occurs. It is when
the replication strategy requires migration of object replica between network
nodes. The object state is then moved to the target node, along with all of its
threads. After completing execution within the migrated object replica, threads
return to their home nodes.

5. COMPONENT SERVICES

This section describes the Е1 services, which extend the distributed object model
to a full-featured component model. Among these are Object Registry, Access
Control Server, Global Naming Server, and garbage collection system. (Detailed
description of dynamic class loading mechanism lies beyond the scope of this pa-
per.)

5.1. Object Registry
Object Registry lies at the heart of the Е1 component model. It maintains the
information about all local replicas of distributed objects, including their types,
virtual addresses, host domain IDs and reference counting information. The Reg-
istry coordinates execution of such operations as creation and deletion of the dis-
tributed objects and their replicas, crossdomain calls and garbage collection.

Crossdomain calls validation
At the time of crossdomain call, the microkernel refers to the Object Registry
through an IAccessValidator interface to assure the existence of the invoked ob-
ject’s replica in a local node, and also to validate the caller’s rights to perform the
given operation.

The Registry itself does not implement access control policy. Instead, for the
verification of call legitimacy it refers to the Access Control Server, which will be
discussed in the next section.

To improve the efficiency of crossdomain communication, information on
objects and rights can be cached by the microkernel, which avoids having to look
up the Registry for each crossdomain call.

5.2. Access Control Server
Access Control Server (ACS) is a distributed object, which enforces a single ac-
cess control policy across the distributed system by verifying the legitimacy of
each call.

Selection of an operating system access control model is very challenging.
Having its own limitations and drawbacks, none of the existing protection models
can be considered generally optimal. Therefore Е1 does not impose any specific
access control policy to be implemented by ACS. Nor does it limit the ACS
replication strategy or data structures used to store information on rights.
However, the ACS must implement the IAccessControl interface, used by the
Object Registry for crossdomain calls validation. The main method of the
IAccessControl interface, namely ValidateAccess of this interface confirms or

Architectural design of E1 distributed operating system

Системні дослідження та інформаційні технології, 2005, № 1 53

denies the validity of a call, based on the thread identifier, caller and callee
identities, and the invoked method.

A variety of protection models can be implemented within the framework of
the presented approach, including various capability [22, 23, 24, 25] and access
control list (ACL) [26] models. It is also possible to select subjects and objects of
the model in different ways. Some possible choices for objects are: distributed
object, a single interface or even method. While for the role of subjects, one can
use distributed object, protection domain or user.

5.3. Global Name Server
The Global Name Server (GNS) implements a distributed object location proto-
col, which maps the object’s virtual address to the list of its contact points, i.e.
network nodes, containing the object’s replicas. GNS is used by the Object Regis-
try to initiate the creation of a new distributed object replica in a local node.

The choice of a specific object location algorithm, implemented by GNS,
should be based on the scale of the system and on the frequency with which nodes
are added to and removed from it. For small systems a centralized protocol with
one or several name servers is preferable. For large-scale systems with stable
structures the hierarchy of domain servers [27] is usually used. While for highly
dynamic systems decentralized naming protocols, e.g. [28], are most effective.

5.4. Garbage collection
The purpose of the Е1 garbage collection system is to detect and delete of unused
distributed object replicas.

In each node, the garbage collection system maintains only the information
concerning local replicas. For each replica, the list of strong references to it, as
well as the list of references it holds to other replicas, are stored. Both distributed
and local references are taken into account. This information is sufficient to trace
any changes in the reference graph, including those caused by node or network
connection failures, while the simple references counting does not account for
such situations correctly.

Cyclic distributed garbage collection in E1 is based on the partial reference
graph tracing procedure, which verifies the reachability of some specified replica
from Root Object Set [29]. The Root Set consists of system objects, which by
definition are never regarded as garbage.

6. REPLICATION

In Е1 the efficiency of the access to distributed object is determined by the effi-
ciency of the replication strategy. The most efficient strategies are those that take
into account the properties of certain object categories.

6.1. Distributed object replicas communication

Any non-trivial replication strategy requires some communication layer to organ-
ize the interaction between distributed object replicas. In Е1, such a layer is pro-
vided by the Group RPC (GRPC) service, supporting transparent invocation of
remote replication objects. GRPC in turn relies upon the Group Communication

L.B. Ryzhyk, A.Y. Burtsev

ISSN 1681–6048 System Research & Information Technologies, 2005, № 1 54

mechanism which supports the exchange of unicast and multicast messages with
various delivery ordering and reliability properties.

Group communication mechanism. For the purpose of this discussion, a
group is a communication-level abstraction, which corresponds to a set of a single
distributed object’s replicas. The Е1 group communication system includes two
main services: group membership service and message delivery service.

Group membership service allows the addition and removal of object repli-
cas dynamically. In addition, it is responsible for maintaining the consistency of
the group in the face of hardware and software failures, which might cause unex-
pected replica crashes or group fragmentation. This is a nontrivial task, since in an
asynchronous distributed environment it is impossible to distinguish a node crash
from temporary inaccessibility caused by network delays [30]. To overcome this
obstacle, one can use a distributed algorithm, determining accessible group mem-
bers and reaching a consensus concerning a new group structure among its surviv-
ing members [31]. Such an algorithm is implemented by a special membership
service component – Failure Detector (FD).

If some of the group members become inaccessible as a result of network
partitioning, rather than node failures, group fragmentation occurs. In this case,
group membership service initiates formation of a new group in each fragment.
Later on, the fragments may remerge into a single group again.

Message delivery service provides primitives for sending unicast and multi-
cast messages between group members. For each message session, the delivery
protocol properties can be specified. The most important ones are reliability of
delivery and message ordering guarantees.

We plan to build the Е1 group communication system on one of the existing
implementations [32, 33, 34]. Such systems are initially designed to provide rep-
lication support within more complex software systems. Therefore they can be
relatively easily integrated into Е1. Also, being highly modular, they can be easily
extended to support new message delivery properties [33].

Group RPC. Message-oriented communication primitives form the basis for
distributed object replicas interaction. However, it is desirable to provide the rep-
lication strategy developer with a more convenient procedural model, allowing
direct access to methods of the remote replication objects. In the case of point-to-
point communication, the remote procedure call (RPC) mechanism is generally
used to invoke operations on remote objects. The group remote procedure call
(GRPC) is the generalization of RPC for the case of multicast communication. On
the basis of group communication services described above, the GRPC imple-
ments a single primitive allowing a simultaneous invocation of several remote
objects.

Like regular RPC, GRPC implements remote invocation with the help of cli-
ent and server stabs. Stubs are compiled automatically from IDL definitions of
objects’. Client stubs locally expose interfaces of remote replication objects. Each
call to a client stub is converted into a message, sent to one or several remote rep-
licas by means of a group communication system. The message is delivered to a
server stub, which transforms it into a call of an appropriate replication object
method. The result of the invocation is sent back to the caller’s client stub. Hav-
ing obtained the necessary number of responses (determined by the semantics of
the call), the client stub returns control to the calling object.

Architectural design of E1 distributed operating system

Системні дослідження та інформаційні технології, 2005, № 1 55

6.2. Serialization interface
Since replication object is generally unaware of the semantics object’s structure,
the semantics object must implement serialization operations itself. These opera-
tions are available to the replication object through the ISerializable interface.

Some languages, e.g. Java and C#, provide support for automatic object seri-
alization/deserialization, based on run-time type information. We expect that
these languages will be widely used for application programming in Е1.

However, in order to support languages, such as C++, in which automatic
object serialization is not generally possible either at the time of compilation, or at
run-time [35], it is desirable to develop a language-independent method for
generating serialization interface.

In Е1 the support for automatic objects serialization is provided by the
memory management system. Each local object consists of a static part and dy-
namically allocated data. The dynamic memory allocation interface is exposed by
Heap objects. Heap object represents a continuous virtual memory area, upon
which allocation and deallocation operations are defined. Each domain provides
the default local heap, which can be used by all its objects. Besides, any object
can create a separate heap and allocate memory only from it. To serialize such
object, it is enough to store the structure of the heap plus the object’s static part in
some data packet. At object deserialization, the heap is restored in a new node in
the same virtual address. So, the problem of serialization/deserialization of the
semantics object is reduced to a far simpler problem of serialization/deserialization
of a Heap object. This approach is language-independent and can be used for
objects of any type. However, it introduces certain memory overhead, since using
a separate heap per object implies that the object’s dynamic data occupies an
integral number of physical memory pages.

CONCLUSION

This paper presents the architectural design of the E1 distributed operating sys-
tem. In E1 the abstraction of the replicated distributed object is used as a building
block for both OS components and application software. Since the distributed ob-
ject’s interfaces are globally uniformly accessible across the network, the distrib-
uted nature of the system is hidden from application developers and users. Select-
ing replication strategy for each object according to its semantics allows for
efficient access, while providing the required degree of reliability. The internal
architecture of the distributed object effectively separates its semantics and repli-
cation algorithm, which actually reduces the task of distributed object develop-
ment to programming of a local (non-replicated) object.

Remote object access protocols are implemented by the developers of repli-
cation strategies. Most replication strategies are universal, i.e. can be applied to
objects of various types. However, the replication strategy can be designed for a
particular type of objects, which allows it to maximize the efficiency of access by
taking type-specific properties into account. Е1 provides support for the replica-
tion object development, including group communication system, object persis-
tency, and special synchronization primitives.

Е1 runs on top of a microkernel which supports a minimal set of primitives
like address spaces, threads, IPC, interrupts dispatching. All operating system and

L.B. Ryzhyk, A.Y. Burtsev

ISSN 1681–6048 System Research & Information Technologies, 2005, № 1 56

application functionality is implemented by distributed objects. We believe that
microkernel-based architecture improves modularity and reliability of the system,
as well as reduces control transfer costs via the kernel, which is especially impor-
tant for systems oriented at intensive communication of medium-grained objects.

Further work on E1 includes extending the presented architecture with sup-
port for object persistence. After that we plan to proceed to implementation of the
first E1 prototype and its subsequent analysis.

REFERENCES

1. Bakken E.D. Middleware // Encyclopedia of Distributed Computing. — Kluwer Aca-
demic Press. — 2003. — 1110 p.

2. Bernstein P.A. Middleware // Communications of the ACM. — 39. — № 2. — Feb.
— 1996. — P. 68– 98.

3. Object Management Group (OMG). The Common Object Request Broker: Architec-
ture and Specification. Version 3.0 // July. — 2002. — P. 1150.

4. Microsoft Corporation and Digital Equipment Corporation. The Component Object
Model Specification. Version 0.9 // October. — 1995. — P. 274.

5. Sun Microsystems, Inc. EJB specification 2.0. — 640 p.
6. Van Steen M., Homburg P., Tanenbaum A.S. Globe: A Wide — Area Distributed

System // IEEE Concurrency. — January — March. — 1999. — P. 70–78.
7. Schneider F. Implementing fault — tolerant services using the state machine approach:

a tutorial // ACM Computing Surveys. — 22(4). — December. — 1990. —
P. 290–319.

8. Ford B., Lepreau J. Microkernels Should Support Passive Objects. // Proc. I —
WOOOS'93. — December — 1993. P. 226–229.

9. Mach:A New Kernel Foundation for UNIX Development / M.J. Accetta, R.V. Baron,
W. Bolosky et al. // Proc. of the Summer 1986 USENIX Conference. — July. —
1986. — P. 93–113.

10. Chorus Distributed Operating Systems / M. Rozier, V. Abrossimov, F. Armand et al.
// Computing Systems. — 1988. — 1, № 4. — P. 82–98.

11. Chase J. S. An Operating System Structure for Wide-Address Architectures // PhD
Thesis, Department of Computer Science and Engineering, University of
Washington. –August. — 1995. — P. 144.

12. Heiser G., Elphinstone K., Russell S., Vochteloo J. Mungi: A distributed single ad-
dress — space operating system // Technical Report 9314. School of Computer
Science and Engineering, The University of New South Wales. — 1993. —
P. 271–280.

13. The ARIAS Distributed Shared Memory: an Overview / P. Dechamboux, J.-P. Fassino,
Hagimont D. et al. // Lecture Notes in Computer Science. — 1997. — 1175. —
P. 56–73.

14. The Design and Implementation of the Clouds Distributed Operating System /
P. Dasgupta, R.C. Chen, S. Menon et al. // Computing Systems Journal. — 3. —
USENIX. — Winter. — 1990. — P. 11–46.

15. Li K. Shared Virtual Memory on Loosely Coupled Multiprocessors // PhD thesis,
Yale. — September. — 1986. — P. 213.

16. Stroustrup B. The C++ Programming Language (3rd Edition) // Addison — Wesley.
— 1997. — P. 911.

17. Achieved IPC performance (still the foundation for extensibility) / J. Liedtke,
K. Elphinstone, S. Schönberg et al. // Proc. 6th Workshop on Hot Topics in Op-
erating Systems (HotOS). — Chatham (Cape Cod), MA. — May. — 1997. —
P. 28–31.

Architectural design of E1 distributed operating system

Системні дослідження та інформаційні технології, 2005, № 1 57

18. Liedtke J. L4 reference manual (486, Pentium, Pro) // Research Report RC 20549. —
IBM T. J. Watson Research Center, Yorktown Heights, NY. – September. —
1996. — P. 53.

19. Elphinstone K., Heiser G., L4 Reference Manual // Technical Report UNSW — CSE
— TR — 9709. — School of Computer Science and Engineering, University of
New South Wales. — December. — 1997. — P. 79.

20. Potts D., Winwood S., Heiser G. L4 Reference Manual: Alpha 21x64 // Technical
Report UNSW — CSE — TR — 0104. — University of New South Wales. –
Sydney. – March. — 2001. — P. 79.

21. The L4Ka team. L4 experimental kernel reference manual, version X.2 // — Febru-
ary. — 2002. — P. 182.

22. Tanenbaum A. S., Mullender S.J., Renesse R. van. Using Sparse Capabilities in a Dis-
tributed Operating System // Proc. Sixth International Conference on Distributed
Computing Systems. — IEEE. — 1986. — P. 558–563.

23. Gong L. A Secure Identity — Based Capability System // Proc. IEEE Symposium on
Security and Privacy. — 1989. — P. 56– 65.

24. Jones A. K., Lipton R. J., Snyder L. A Linear Time Algorithm for Deciding Security
// Proc. 17th Symposium on Foundations of Computer Science. — Houston,
Texas. — 1976. — P. 33–41.

25. Bishop M., Snyder L. The transfer of information and authority in a protection sys-
tem // Proc. 17th ACM Symposium on Operating Systems Principles. — 1979. —
P. 45–54.

26. Ritchie D. M., Thompson K. The UNIX time sharing system // Comm. ACM 17:7. —
July. — 1974. — P. 365–375.

27. Mockapetris P., Dunlap K. J. Development of the Domain Name System // Proc.
ACM SIGCOMM. — Stanford, CA. — 1988. — P. 123–133.

28. Stoica I., Morris R., Karger D., Kaashoek M. F., Balakrishnan H. Chord: A scalable
peer — to — peer lookup service for Internet applications // Technical Report TR
— 819. — MIT. — March. — 2001. — P. 149–160.

29. Wilson P.R. Uniprocessor garbage collection techniques // Technical report, Univer-
sity of Texas. — January. — 1994. — P. 1–42.

30. Ricciardi A., Schiper A., Birman K. Understanding Partitions and the “No Partition”
Assumption // Proc. 4th IEEE Workshop on Future Trends of Distributed Sys-
tems. — Lisboa. — September. — 1993. — P. 12–26.

31. Schiper A., Ricciardi A. Virtually — Synchronous Communication Based on a Weak
Failure Suspector // Proc. 23rd International Symposium on Fault — Tolerant
Computing Systems. — Toulouse, France. — June. — 1993. — P. 534–543.

32. Birman K. P., Joseph T. A., Exploiting Virtual Synchrony in Distributed Systems //
Proc. 11th ACM Symp. on Operating Systems Principles. — Austin, TX. –
November. — 1987. — P. 123–138.

33. Renesse R. van, Birman K. P., Glade B., Guo K., Hayden M., Hickey T. M., Malki D.,
Vaysburd A., Vogels W. Horus: A Flexible Group Communication Subsystem //
Technical Report TR 95 — 1500. — Cornell University, Ithaca, NY.— 1995.— P. 14.

34. Amir Y., Dolev D., Kramer S., Malki D. Transis: A communication sub — system for
high availability // Proc. 22nd IEEE Fault — Tolerant Computing Symposium
(FTCS). — July. — 1992. — P. 76–84.

35. Shapiro M., Gautron P., Mosseri L. Persistence and Migration for C++ Objects //
Proc. Third European Conference on Object — Oriented Programming. —
1989. — P. 191–204.

Received 08.05.2003

From the Editorial: The article corresponds completely to submitted manuscript.

