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As a rule, algorithms of recognition of time series anomalies are based on time fre-
quency or statistical analysis . This article is devoted to detailed formal description 
of new fuzzy set based algorithm FLARS (Fuzzy Logic Algorithm for Recognition 
of Signals). It recognizes time series anomalies by means «smooth» modelling (in 
fuzzy mathematics sense) of interpreter’s logic, which searches for anomalies at the 
record. 

INTRODUCTION 

The present article extends the fuzzy set theory approach [11] to recognition of 
high-frequency anomalies on time series. It may be considered as an extension of 
the series «Mathematical methods of geoinformatics» [1–5]. This article is de-
voted to detailed formal description of new fuzzy set based algorithm FLARS 
(Fuzzy Logic Algorithm for Recognition of Signals). Applications of FLARS to 
wide spectrum of geophysical data time series along with the application of 
DRAS algorithm of the same family give successful results [10]. 

As a rule, algorithms of recognition of time series anomalies are based on 
time frequency or statistical analysis [6–8, 12]. An exclusion is constituted by the 
algorithm of «probabilistic» modelling of interpreter’s logic [9], which was de-
veloped by B. Naimark already in 1966. In a certain sense, our article extends the 
ideas [9]. 

The algorithm FLARS may be considered as a results of «smooth» model-
ling (in fuzzy mathematics sense) of interpreter’s logic, which searches for 
anomalies at the record. Moreover, FLARS is really based on fuzzy mathematic 
principals. We proceed from the following understanding of interpreter’s logic. At 
first, interpreter glances at the record and estimates activity of its sufficiently 
small fragments by positive numbers. At the same time, he puts some numeric 
marks to the centres of the fragments. In this way, from initial record interpreter 
necessarily proceeds to a non-negative function. It is naturally to call this function 
by rectification of the initial time series. Indeed, greater values of this function 
(Figs. 1a, 1b) correspond to more anomalous points (centres of fragments). In the 
other words searching the anomalies on the record can be found by searching the 
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uplifts on its rectification (Fig. 1b). Thus, FLARS works on two levels. The local 
one is rectification of the record, and the global one is search of the uplifts on the 
rectification. 

Let us proceed with exact statement. 

FLARS LOCAL LEVEL. RECORD RECTIFICATION 

Activity at a record (time series) is a multivalued notion, which can change from 
record to record and within a record. The notion of activity doesn’t have a formal 
mathematical definition like notions as «set», «element», «function», etc. Thus 
we interpret «activity of a record» as intuitively clear notion. For its adequate 
modelling we introduce strictly defined «rectifications» opened for replenish-
ments. Rectifying functionals serve as basis of the described below FLARS algo-
rithm. 

Let us proceed with exact statement. 
We consider a discrete semiaxis +

hR { , 0kh h= > , 1, 2,3, }k = …  and a record 
(discrete function, time series) { ( ), 1, 2,3, }ky y y kh k= = = … , which is defined 

on a «coherent» subset (registration period) +⊂ hY R . At the semiaxis +
hR  we in-

troduce the parameter of a local observation 0∆ > , which is divisible by «h», 
+∈∆ hR . The segment of the time series «y» with centre at a point «kh» 

a

b

c

Fig. 1. The example of FLARS working: а — the initial record «y»; b — the rectification 
)(kyχ ; c — the measure of anomality )(kµ  
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 { }, , , ,k
k h k k hy y y y−∆ +∆∆ = ∈… …

12
+

∆
hR  

we call by a fragment of local observation. 
Definition 1. A non-negative mapping :yχ ℑ→ +R  defined on the set of 

fragments { }k yℑ= ∆ ⊂
12
+

∆
hR  we call by a functional of the time series «y». 

In the set { }yχ  there is a subset ( )y kΦ  of the functionals, which transfer 

anomalous fragments { }k y∆  into «uplifted» points on the graph of the corre-
sponding curve { }yχ . 

Definition 2. We call any function ( )y kΦ  by rectification of the initial time 
series «y». Correspondingly, we call functional yΦ  by a rectifying functional of 
the given record «y». 

In FLARS we use the following functionals of time series, which in many 
important cases occur to be the rectifying functionals: 

1. Length of the fragment 

 ( )
1

1

k
h

k
j j

j k
h

L y y y

∆
+ −

+
∆

= −

∆ = −∑ . 

2. Energy of the fragment 

 ( ) ( )2
k

h
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j k

j k
h

E y y y

∆
+

∆
= −

∆ = −∑ , where 
2

k
h

k j

j k
h

hy y
h

∆
+

∆
= −

=
∆ + ∑ . 

3. Difference of the fragment from its regression of order n  

 2( ) [ Regr ( )]k

k
h

k n
n j y

j k
h

R y y jk

∆
+

∆
∆

= −

∆ = −∑ , 

here as usual Regr k
n

y∆
 is an optimal mean squares approximation of order n of the 

fragment k y∆ . If 0=n  we get the previous functional «energy of the fragment» 
(see 2.): 
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4. Oscillation of the fragment 

 ( ) max min
k k

h hk
j j

j kj k
hh

O y y y

∆ ∆
+ +

∆∆ = −= −
∆ = − . 

Illustration of rectification in the case of natural electric potential in the re-
gion of La Furnaise volcano (Reunion island, France) is given in Fig. 1,b . 

FLARS GLOBAL LEVEL 

Having the results of the rectification procedure (local level operations) FLARS 
starts to search uplifts on the corresponding graph. As it is shown at the Fig.1b the 
relief of the rectification may be enough complicated. Therefore, generally speak-
ing analysis of only vertical level of the curve ( )y kΦ  is insufficient to define of 
the uplifts. Anomalies may not possess constant high intensity. Often, the anoma-
lies they are heterogeneous. There is a majority of active fragments, divided by 
short non-anomalous segments. In this case the corresponding fragments of recti-
fication occur to be oscillating uplifts. Analysis of rectifications ( )y kΦ  shows 
that its domain of definition Υ consists of three types of points: anomalous, which 
belonging to uplifts, background (calm), located far enough from the uplifts, and 
potentially anomalous (not calm), which have intermediate character. The latter 
formally not belong to uplifts, but locate close enough to them to experience their 
influence. 

FLARS makes such division of Υ into above three subsets in two steps. At 
the one the algorithm constructs an alternating-sign measure of extremality 

( ) [ 1,1]kµ ∈ − , which characterises yΦ  in a point «kh». Possibility of growth of 
( )kµ  from –1 to +1 corresponds to growth of «maximality of yΦ  in the point 

« kh » and in this way to growth of anomality of the initial record in that point. 
Apparently, ( ) 1kµ =  corresponds to maximum anomality and when ( ) 1kµ = −  — 
to maximum calmness in the point «kh». Being based on ( )kµ , FLARS chooses 
in Υ the segment A, that consists of certainly anomalous points. On the next step 
the complement \A Y A=  of non-anomalous points, is divided by FLARS into 
the set of calm (background) points S ′  and the set A′  of not calm (potentially 
anomalous) points. One-sided background measures αL ( )y kΦ  and αR ( )y kΦ , 
which characterise the rate of calmness of the rectification yΦ  from left and right 

hand sides of the point «kh», play key role in the division A S A′ ′= ∪ . It should 
be noticed here that FLARS principally differs from DRAS [11], which is based 
on the same principle of rectification. Indeed, FLARS at first recognizes the 
fragments of a certain anomality which form the set A . On the next stage frag-
ments of a potential anomality A′  are added to the set A . On the contrary, DRAS 
at the first stage recognises the set A A′∪  of potential anomalies and at the sec-
ond stage establishes certainly anomalous zones A A A′⊂ ∪ . 

Let us proceed with exact statements. 
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First we introduce the FLARS free parameter Λ >> ∆ , +∈Λ hR , which we 
call by parameter of a global observation,. The following set we call as a fragment 
of a global observation  

 ( ), , ( ), , ( )k
y y y yk k k

h h
Λ Λ⎧ ⎫Λ Φ = Φ − Φ Φ + ∈⎨ ⎬

⎩ ⎭
… …

12
+

Λ
hR . (1) 

We denote by ℵ  the set of fragments (1). 
In FLARS we will use the following weight function on the segment 

[ , ]kh kh− Λ + Λ  

 
h

kkhh
kk +Λ

−−+Λ
=)(δ . (2) 

It is easy to see that the graph of this weight function (2) looks like an isos-
celes triangle with the base 2 ⋅ Λ  and the height 1. 

The function kδ  represents another model of global observation of the frag-

ment k
yΛ Φ . In this model we, in a certain sense, «look at the fragment» giving 

bigger weight to the points ( )kh k∈Λ , which are located closer to the centre «kh». 

We symbolize 

 ( ) { [ , ] : ( ) ( )}y yk k h kh kh k k+ + +Λ = ∈ −Λ + Λ Φ ≥ Φ , 

 ( ) { [ , ] : ( ) ( )}y yk k h kh kh k k− − −Λ = ∈ −Λ + Λ Φ <Φ . 

The following sum will be an «argument» for minimality (backgroundness) 
of the point «kh» 

 ( )( , ) ( ) ( ) ( ) : ( )y y kk k k k k h kσ δ+ + + + +Λ = Φ −Φ ∈Λ∑ . (3) 

At the same time the following sum will be an «argument» for maximality 
(anomality) of the point «kh» 

 ( )( , ) ( ) ( ) ( ) : ( )y y kk k k k k h kσ δ− − − − −Λ = Φ −Φ ∈Λ∑ . (4) 

The measure ( )kµ  is a result of the comparison of the «arguments» (3) and (4) 

 ( , ) ( , )( ) ( ) [ 1,1]
max ( ( , ), ( , ))

k kk
k k

σ σµ µ σ σ
σ σ

− +
− +

+ −

Λ − Λ
= < = ∈ −

Λ Λ
. 

The measure ( )kµ  gives «more delicate assessment» of difference between 
positive numbers than just a simple difference | |x y− . Indeed, the difference in 
age between five-year-old and ten-year-old children is more considerable than the 
same difference between 70-year-old and 75-year-old people. Apparently, it is 

reflected in the values of the measure µ : ( 1(5 10)
2

µ < =  and 1(70 75)
15

µ < = ); 

while 10 5 5 75 70− = = − . 
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Decision on the presence of an anomaly is taken in FLARS by analysis of 
the vertical level.  

Definition 3. Let [ 1,1]α∈ − . A point kh Y∈  is α -anomalous, if ( )kµ α> .  
We denote by Aα  the whole set of the anomalous points. 
The set Aα , unfortunately, does not give a complete picture of the anomality 

of the record «y». Indeed, as it is seen on the Fig.1, c, there can be narrow zones 
between the fragments of anomality located closely with each other. These zones 
should not be considered as calm zones since they are too small. To take it into 
account we transform the initial measure ( )kµ  and construct above-mentioned 
one-sided background measures αL ( )y kΦ  and αR ( )y kΦ . For that we need «the 
helping function» ( )xαψ  (Fig. 2). 

 
, 1

1( )
, 1

1

x x
x

x x
α

α α
αψ
α α
α

−⎧ ≤ ≤⎪⎪ −= ⎨ −⎪ − ≤ ≤
⎪ +⎩

, where 1 1α− ≤ ≤ . 

It’s easy to see that ( ) ( ( ))k kα αµ ψ µ=  possesses the following properties: 

 ( ) 0 ( )k kαµ µ α> ⇔ > , 

 ( ) 0 ( )k kαµ µ α= ⇔ = , (5) 

 ( ) 0 ( )k kαµ µ α< ⇔ < . 

From (5) we can simply state. 
Statement 1. If ( ) 0kαµ > , the point kh Y∈  is α -anomalous. 
Let us introduce left and right background measures. We assign Θ  — the 

parameter of intermediate observation: ∆ < Θ ≤ Λ . Thus,  

-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8

α=0.3

Fig. 2. The helping function )(xαψ  
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 αL
( ) ( )
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k k k hk
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δ
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∑

, (6) 
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( ) ( )

( ) , [0, ]
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k
y

k

kh k
k k k hk

αµ δ
δ

ΘΦ = ∈ +∑
∑

. (7) 

The parameter Θ  in FLARS plays similar role to the parameter of a global 
observation in the algorithm DRAS [11]. It is necessary to emphasise that formu-
las (6) and (7), which define left and right background measures in our case, dif-
fer from functions )(kL yΦα  and )(kR yΦα , which define background measures 
for the algorithm DRAS [11], although both are introduced for the same purpose.  

Definition 4. We call the point kh A∈  α-not calm (potentially anomalous), 
if ( ) 0)(),(max >ΦΦ kk yy αα RL . 

Definition 5. We call the point kh A∈  is α-calm (background), if 
( ) 0)(),(max ≤ΦΦ kk yy αα RL . 

Informaly the constructed measures can be interpreted as follows. The less 
are values of )(kyΦαL  and )(kyΦαR  — the calmer (α-calmer) is the record «y» 
in the point «kh» (correspondently from the left and from the right). Contrariwise, 
the greater are values of the membership function the «more anomalous» (more α-
anomalous) is the initial record in the given point. Thus, )(kyΦαL  and 

)(kyΦαR  may be interpreted as alternating-sign membership functions of the 
fuzzy set of not calm points kh Y∈ . 

We denote by S ′  the set of the background points, and A′  the set of poten-
tially anomalous points. Thus, the searched division of the set Y  is constructed:  

 Y A A S′ ′= ∨ ∨ . (8) 

FLARS FORMAL ALGORITHMICAL MODEL 

FLARS has the following free parameters to be chosen by user: 
a)  +∈∆ hR  — parameter of local observation; 

b)  +∈Λ hR , ∆>>Λ  — parameter of global observation; 
c)  [ 1,1]α∈ −  — vertical level of extremality; 

d)  +∈Θ hR , ∆ < Θ ≤ Λ  — parameter of intermediate observation. 
In more «flexible» implementation of the algorithm additional parameter 

1 1β− ≤ ≤  is introduced. It is horizontal background level. By substituting the 
condition ( ) 0)(),(max >ΦΦ kk yy αα RL  by the condition ( )(max kyΦαL , 

) βα >Φ )(kyR  in the definition 2 and the in equation ( )(max kyΦαL , 
) 0)( ≤Φ kyαR  by the condition ( ) βαα ≤ΦΦ )(),(max kk yy RL  in definition 3 for 

[ 1,1]β∈ −  we obtain another, «more flexible» version on FLARS. In other words, 
upon proper «tuning» of the algorithm it pays attention only to those outputs 
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above level «α», which are massive enough by time: they will be surrounded by 
an aureole of not calm points. Such «tuning» is achieved with the help of a 
free parameter [ 1,1]β∈ −  and conditions βα ≤Φ )(kyL , ) βα ≤Φ )(kyR . 

For each «β» a corresponding dichotomy of non-anomalous points of A  
arises: 
 [ ] { }βαα ≤ΦΦ∈=′ )(),(max: kkAhkS yy RL , 

 [ ] { }βαα >ΦΦ∈=′ )(),(max: kkAhkS yy RL . 

It is natural to call parameter «β» a horizontal level of a background, since a 
massiveness of anomaly by time is its horizontal extension. The bigger is «β» the 
bigger segment of a record is related to a background and the smaller aureole will 
correspond to each anomalous fragment. 

Block-scheme of the algorithm FLARS is given in Fig.3. 

THE APPLICATION OF FLARS FOR THE SUPERCONDUCTING 
GRAVIMETER DATA PREPROCESSING 

The network of the Superconducting Gravimeters (SG) was started in the course 
of Global Geodynamic Project at the 1st of July 1997. Now it consists of about 20 
instruments deployed all around the globe that continuously measure the time 
variations of gravity with the accuracy reaching the 29 m/s10−  and sampling in-
terval less or equal to 1 minute. Thus it is clear that the total amount of SG data is 

Record rectification 

yΦ  
Anomality measure 

)(kµ  

Record fragmentation 
)( hkyyk =  

Anomaly on the 
record 

Background  
on the record 

Potential anomaly 
on the record 

Background measures 
)(),( kRkL yy ΦΦ αα  

No anomaly on 
the record 

>0 <0∆

Λ

Fig. 3. The block-scheme of the algorithm FLARS 
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now really huge and the processing and analysis of this data possess a real scien-
tific and technical challenge. 

The main purpose of the GGP is to reveal the information about the Earth’s 
inner structure and dynamics by interpreting the SG data in terms of Earth’s tides 
as well as non-tidal gravity variations that are related to the Earth axis precession, 
core nutations and core modes. Some processes that could manifest themselves in 
very weak periodical gravity variations were theoretically predicted, thus the 
problem arises of proving or rejecting these hypotheses on the basis of compre-
hensive analysis of SG data. 

The scientific approaches that are used to reveal the periodical variations are 
generally based on the harmonic (or Fourier) analysis. A process of revealing the 
weak peaks in the Fourier power spectra could be very unstable with respect to 
noise in the data. On the other hand it is clear that SG time series always contain a 
significant noise associated with a wide spectra of sources. Even the small rain at 
the site of the SG deployment would produce a substantial signal of tens of mi-
crogals. Other noise sources are the earthquakes, atmospheric pressure variations, 
soil humidity variations, snow cover and technical sources of external (autos, 
trains and nearby factories) as well of internal (electrical power instabilities, ma-
nipulations with instrument, etc.) origin. It is important that all these sources pro-
duce the noise of a wide variability of features such as amplitudes, frequencies 
and specific shapes that may include spikes, gaps, offsets and others. Thus it is 
difficult to remove all these noise signals on the base of convenient noise reduc-
tion approaches such as frequency filtering or cutting by the signal amplitude or 
amplitude of signal time derivative. But FLARS algorithm by its fuzzy logic na-
ture provides a powerful tool for the solution of this problem. 

We have successfully applied the FLARS algorithm for the processing of 
data recorded by the SG deployed in Strasbourg, France, in the period from April 
to December 1997 (Fig. 4). These records were processed previously by different 
authors [13] and the detailed comparison of different approaches could be per-
formed. It has been demonstrated, in particular, that algorithm FLARS is able to 
find almost all noise events on SG records.  

Рис. 4. An example of noise (interval marked black) detection in SG data. Note the stable 
detection of different noise patterns: first four signals are the seismic waves distant earth-
quakes, the fifth disturbance of unknown origin and the sixth is the offset associated with 
the instrument operation 
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Depending on choice of free parameters it could act in a more «strong» or 
«soft» rejection approaches used by different authors. The present version of the 
FLARS algorithm software adopt the «TSoft» data format which is the standard 
for the SG community. 
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