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SPIKE SEPARATION BASED ON SIMMETRIES ANALYSIS IN 
PHASE SPACE 

A.I. POLYARUSH, A.S. MAKARENKO, I.V. TETKO 

The present study introduces an approach for automatic classification of 
extracellularly recorded action potentials of neurons based on geometrical approach. 
Neuronal spikes are considered as geometrical objects, namely trajectories in phase 
space. It is shown that for spikes, generated by the same neuron, it is possible to find 
such symmetry transformation under which their trajectories are invariant in phase 
space. On the other hand, the phase trajectories of spikes generated by other neurons 
change significantly under action of that transformation. Thus it is possible to define 
a special symmetry transformation that only typifies the spikes of the given neuron. 
The proposed algorithm is explained and an overview of the mathematical 
background is given. The method was tested on simulated data and showed good 
results in real experiments. 

INTRODUCTION 

Analysis of populations of neurons represents an important step for better under-
standing of brain functioning. The present theories of brain functioning stress ac-
cent on the neuronal interactions in term of syncronized firing across many neu-
rons, or spatio-temporal interactions and presence of specific patterns. Many such 
neuronal interactions cannot be observed with recording from single neuron. 
Thus, analysis of neuronal populations does not simply provide an additive 
scheme for increase experimental data but make possible to detect some features 
of brain functioning that could never be observed with recording of only single 
neuron. 

The basic hypothesis used to detect and separate action potential of neurons 
assumes that spikes generated by the same neurons have similar shapes and these 
shapes are unique and conservative for each recorded neuron. The shape of 
neuron spikes detected by the electrode depends on the distance, relative position, 
properties of the media, e.g., presence and distribution of glia cells, between 
electrode and neurons. The shape also depends on resistance of electrode and 
neuron. Thus, even if two neurons are identical, their action potential detected at 
the microelectrode can be different and, thus, spikes from such neurons could be 
separated. 

The number of different methods used in the neurophysiology for spike 
sorting dramatically increases. One of the most popular methods is template 
matching. These techniques use templates that represent some typical waveform 
shapes of neurons in time domain. A classification of a candidate spike is done by 
its comparison to all templates and selecting the best matching one. The recent 
trends include appearance of more computationally expensive methods, such as 
neural networks wavelet transforms. 
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There are many basic problems should be solved for successful spike 
sorting. The first basic question concerns the number of different types of neurons 
that should be separated in the experimental data. The usual practice is to use a 
«supervisor», i.e. the experimentator, who can provide a preliminary classification 
of data, e.g. selection of template spikes, based on his experience and knowledge. 
This is, for example, a feature of Multi Spike Detector (MSD) software (Alpha 
Omega Ltd., Nazareth) that is based on the template matching algorithm of. 
However, even if number of classes is identified, the separation of spikes remains 
very difficult problem due to extracellular and intracellular noise that can disturb 
the form of the action potential. 

The extracelular noise is usually taken into account by the most of models as 
an additive noise. The intracellular noise that can produce variation in the spike 
waveform is more difficult to account for. Recently we have proposed a new 
method for spike sorting that consider the problem of spike sorting in phase space 
and describe the spike waveform as an ordinary differential equation with 
perturbation [1]. This approach made possible to account for both extracellular 
and intracellular noise. The differential equation describing the activity of a 
neuron was supposed to have a limit trajectory in phase space, and noise was 
treated as deviation of the signal from that trajectory. Current study provides 
further development of this idea. As contrasted to [1], we proposed a numerical 
method that takes into account that the variety of spike waveforms generated by 
the same neuron cannot be only explained by influence of both kinds of noise on 
some «typical» for a given neuron impulse, but is should be considered as a 
whole. Therefore, the new theoretical background uses a wider class of 
differential equations, not necessarily describing self-oscillating systems. Another 
principal difference is that the activity of a neuron is described by a symmetry 
transformation in phase space. Criterion of classification is the steadiness of the 
portrait in phase space of a spike against the transformation that corresponds to 
the given neuron. A computational method for modeling transformations is 
introduced and tested.  

1. MATHEMATICAL STATEMENT OF THE PROBLEM 

Let us consider a microelectrode signal )()()( 0 ttxtx ξ+=  that is observed at dis-
crete times ...,1,0=t . Here )(tξ  is a sequence of independent identically distrib-

uted random variables with zero mean and finite variance ( ∞<2
ξσ ). The signal 

)(tx  is characterized by the occurrence of repeated intervals with amplitudes sig-
nificantly exceeding the variance of )(tξ . These intervals are assumed to be the 
occurrences of neuronal discharges, i.e. the spikes. 

Let us suppose that every observed spike )(txi  of the i -th neuron is a solu-
tion of an ordinary differential equation with perturbation  
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where )(⋅F  is a perturbation function. The perturbation function ),...,( txF , 
bounded by a small value, is a random process with zero mean and small correla-
tion time T<<*τ . The solution of the equation 
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describes a self-oscillating system. The duration of spikes is limited, so we can 
suppose that )(tx  is defined on some interval ( )ba; . In practice parameters a and 
b are chosen manually by an expert. Set of differential equations 
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where )(kx  is the k -th derivative of )(tx  is equivalent to (2). 

If function if  is defined in open domain 3RD ⊂  then any solution x(t) of 

(3) induces phase trajectory ( ) ( ) ( ) ( ) ( ) ( )( )TtxtxtxtX 210 ,,)( =
G

. In this case the trajec-
tory is also an integral curve for (3). The theorem about existing of a solution for 
an ordinary differential equation applies that for an arbitrary point Dp ∈  exists 
such integral curve ( )tX p

G
 that ( ) ptX p =0

G
 for some t0 and ( )tX p

G
 is a solution 

of (3). 
The equation (3) induces local one-parameter group G  on D  [2]. Let us de-

fine some action Gg ∈τ  on D . Consider integral curve ( )tX p
G

 that passes p 
when 0tt = . Then 

 ( )0: tXpg p +ττ
G

6  (4) 

i.e., ( )pgτ  describes the state of system (3) at time moment 0t+τ  under initial 
conditions p. 

If the action of G  on D  is known we can introduce a criterion that allows to 
determine whether an arbitrary function x(t), defined on interval ( )ba; , is a solu-

tion of (3). That is, ( ) ( ) ( ) ( ) ( ) ( )( )TtxtxtxtX 210 ,,)( =
G

 is an integral curve for (3) if 
and only if  

 ( )( ) ( )tXtXg
GG

=−ττ   (5) 

for any ( )bat ;∈  and any permissible ( )εετ +−∈ ; . 
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Let us consider set Φ  of all curves 

 ( ) Dba →;:ϕ
G

. (6) 

A natural distance function on Φ  can be given as 

 ( ) ( )( ) ( ) ( )( )∫ −=⋅⋅
b

a

dttt 2
2121 , ϕϕϕϕρ
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.  (7) 

The action of G  on Φ  can be defined as: 

 ( )( ) ( )( )τϕϕ ττ −=⋅ tgtg GG )( . (8) 

If ( )tϕ
G

 is a solution of (3) if and only if ( )( ) ( )⋅=⋅ ϕϕτ
GG

g  for any permissible 
( )εετ +−∈ ; . This statement is a formalization of (5) in terms of functions. 

Let us introduce a deviation function 

 R→Φ∆ :τ , (9) 
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In other words, τ∆  is a numerical criterion that shows how accurately an ar-
bitrary phase trajectory ( )tϕ

G
 can be described by differential equation (2). ( )tϕ

G
 is 

a solution of (3) if and only if ( )( ) 0=⋅∆ ϕτ
G

 for any permissible τ . 
Consider an arbitrary spike )(tx  that solves system (1) and its phase trajec-

tory ( )tϕ
G

. Point ( )0tp ϕ
G

=  gives an initial condition for system (1). If the pertur-

bation ),,,( 2

2

dt
xd

dt
dxxtF  is small enough then the phase trajectory ( )tϕ

G
 of )(tx  

will stay close to phase trajectory ( )tX p
G

 of some solution )(tx p  of undisturbed 
system (3) for ( )εε +−∈ 00 ; ttt , where ε  is small enough (Fig.1). 

X(t)

)()( 0 xtXpg p +=τ)( 0tXp p=D 

Fig. 1. Vector field on D  and its integral curves that correspond to solutions of equation 
(3). The action of tg  on point p  is shown 
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It is true for any ( )bat ;0 ∈ . There-
fore the phase portrait ( )tϕ

G
 of the ob-

served spike will be locally steady against 
the transformation with group G for every 

( )bat ;0 ∈ . Deviation function (10) 
makes it possible to obtain a numerical 
criterion for the whole interval ( )ba; . 
The greater is the influence of the 
perturbation F , the greater is the value 
of τ∆  (Fig.2). 

So, one of the differences of the 
method presented from our previous 
work [1, 3–6] is that we do not put into 
accordance to the undisturbed system the 
only limit phase trajectory, but character-
ize it by group of transformations G , 
which describes the whole set of solu-
tions of (2). We also have developed 

some ideas on symmetry application [8, 9]. The other difference is that instead of 
calculating the distance between the phase trajectory ( )tϕ

G
 of an observed spike 

and the limit trajectory chosen as a sample for a given neuron we analyze the 
steadiness of ( )tϕ

G
 against the action of group G . The set of integral curves that 

correspond to all solutions of equation (3) defines a vector field V  on D . Sup-
pose we know how group G  acts on subset D  of phase space. Then we can esti-
mate how well the following spike classification criterion can be. 

2. DESCRIPTION OF ALGORITHM STEPS 

The algorithm to separate neuronal spikes several intermediate steps: 
1. Spike detection from the noisy signal; 
2. Calculation of distances between the phase trajectories of the detected 

spikes; 
3. Detection of spikes that hypothetically belong to the same neuron; 
4. Building a numerical model of transformation group that correspond to 

every neuron observed; 
5. Classification of spikes. 
The three first steps were performed similar to our previous analysis and are 

described in details in elsewhere [1, 4, 5]. In this article we only briefly summa-
rize the main implementation details and parameters of calculations of these steps 
that are important to reproduce our work. The vector field approach (steps 4 – 5) 
is described in details and main differences between old and new algorithm are 
emphasized. 

The first 4 steps corresponded to the training phase on which the number of 
spike classes was estimated and the vector field for each class was constructed. In 
order to perform this analysis few tens of spike occurrences, usually correspond-

yx

n( t1) 

n( t2) 

t1 

t2 

Fig. 2. The deviation of spike y(t) relative 
to spike x(t). Deviation vector n(t) at time 
points t1 and t2 
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ing to few minutes of recording time were required. Like in our previous ap-
proach a human expert could participate at step 3 were the number of spike 
classes were detected. 

2.1 Spike detection from the noisy signal and derivative calculation 
methods. The derivatives of the signal were calculated following [1]. We repre-
sent time signals used at Fig. 3–9. 

 

Fig. 3. 100 ms trial of brain activity observed in real experiment  

Fig. 4. 100 ms trial of first derivative with detected spikes 

Fig. 5. Spike templates one and its portraits in phase space. The centers of the spikes are 
at 0.41 ms 
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The estimation of the variance 2σ  was calculated for the second derivative. 
The time intervals in which the latter exceeded σc  were accepted as centers of 
potential spikes. Coefficient c was chosen by an expert manually with regard of 
spike amplitude and noise level. In our experiments, it equaled to 3. 

The derivatives of function ( )x t  were estimated using integral operators  

 ( ) ( )( )i i

R

D x t t f dα αω τ τ τ= −∫ , (11) 

where i
αω  is the i -th derivative of kernel function αω , which satisfies the fol-

lowing conditions [1]: 
i. ,0)( =tαω if  α>|| t ; 

Fig. 7. Spike templates three and its portraits in phase space. The centers of the spikes are 
at 0.41 ms 

Fig.. 8. Spike portraits in phase space for three modeled neurons. In other words, they are 
projections of vector fields on 2R , which describe the activity of each of the three neurons 

Fig. 6. Spike templates two and its portraits in phase space. The centers of the spikes are 
at 0.41 ms 
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ii. ∫ =
R

dtt 1)(αω ; 

iii. αω  has i continuous derivatives. 

The piece-wise polynomial kernel functions i
αω  were used (Fig. 9). 

The integral operator ( )txDi
α  acts also as a band-pass filter of the signal 

)(tx  and its low and high cutoff frequencies are functions of parameter α. Since 
the duration of neuronal spikes are in the range of several ms, we selected pa-
rameters α to have the low cutoff frequency of 1 kHz for both kernels. The same 
approach to select smoothing parameters was used in our previous study (1). 

2.2. Distance function for phase trajectories used for estimation of spike 
classes. Let )(tx , where ( )bat ;∈ , be an arbitrary spike, )(1 tx  and )(2 tx  be the 
evaluation of its first and second derivatives respectively. Then 

( ) ( )Ttxtxtx )(),( 21=
G

 describes the phase trajectory of that spike. In order to esti-
mate the deviation of trajectory ( )ty

G
 from ( )tx

G
 we define such vector ( )tn

G
, that 

( ) ( ) ( )( )tytntx ω
GGG

=+  for some ( )tω , and ( )tn
G

 is normal to ( )( )ty ω
G

 [1]. The norm 
of ( )tn
G

 can be calculated as 

 ( )( )
[ ] [ ]

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ′−+′−=⋅⋅

∩+−∈′

2
22

211
;;

2 )()()()(min)(),( tytxtytxtyxn
bactctt

G
. (12) 

Then we can introduce a difference function for phase trajectories of spikes 
)(tx  and )(ty  [1] as 
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Fig. 9. The kernel functions used to estimate the first and second derivative of the signal 
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is some weight function. In our implementation ms5,01 =a , ms12 =a  and 
ms22 =a . For N  detected spikes matrix of pair-wise distances between trajecto-

ries { }jidD ,= , Nji ..1, = , where ( ) ( )( )⋅⋅= jiji xxdd ,, , was calculated.  
2.3. Selection of the number of spike classes. On this step we formed 

classes of spikes using the set of spikes accumulated during few first minutes of 
recordings. Spikes generated by the same neuron must belong to one class. The 
difficult problem of this step is an absent of apriori information about the possi-
ble number of spike classes (neurons) that are recorded by the microelectrode. An 
iterative procedure for detection the number of spike classes was used [1]. 

In the beginning each spike was considered as a new class. Let iC  be the i-
th class of spikes, js  be the j -th accumulated spike, ic  be the central spike of 
class iC , R  be the radius of that class, i.e. the maximum allowed distance from 
the central spike to other spikes of iC . 

1. A new center ci of class iC  was found as 

 ( )∑
∈∈

=
ikij Cs

kj
Cs

i ssdc ,minarg . (16) 

2. Spikes js  with ( ) iii Rscd ≤,  were added to the class, and spikes with 
( ) Rscd ii >,  were deleted from each class i . 

3. Overlapped classes were determined. All pairs of classes iC , jC  and 
their intersection ji CCI ∩=  were determined. Each class jC  was deleted if 
more than 50% of its spikes belonged to the class jC . 

4. Steps 1, 2 and 3 were repeated. As it was shown in [1], such iterative 
process converges to stable centers of the classes. However, a larger training set is 
required for smaller values of R . 

5. The remaining classes were analyzed by a human expert who performed 
further elimination of classes with small number of spikes. The user also selected 
the parameter R . 

Notice, that up to this step both our previous and new method were exactly 
the same.  

2.4. Numerical representation of vector field. Vector fields were con-
structed for each spike class. The vector field that characterized the activity of a 
neuron was described by phase trajectories of the most typical representatives of 
its class. The center of the class and several of the most close to it spikes were 
selected. The whole vector field was represented as a set of its integral curves. 
Let iV  be a vector field that correspond to i -th neuron, and ( ) =tX ji,

G
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i.e. one of the integral curves of the field iV . In order to obtain the value of vector 
( )mVi  for an arbitrary point Dm∈  all curves from the vector field are analyzed. 

A minimum Euclidean norm ( )0, tXm ji
G

−  is detected for some 0t  and j  and 
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dt
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 is selected as an estimation of vec-

tor ( )mVi . 
2.5 Spike classification and probabilistic analysis of the deviation func-

tion. Consider phase portrait ( ) Σ∈⋅ϕ
G

 of an arbitrary spike, vector field iV  and 
some action of group G  on it: ( )( ) ( )( )τϕϕ ττ −=⋅ tgtg

GG
)( . We propose the follow-

ing iterative algorithm for calculation trajectory  

 ( ) ( )( ) )( τϕϕ τ −⋅=′ tgt
GG

. (17) 

Consider 3
0 RS ∈
G

. Let ( )τσ −= tS
GG

0 . Let us choose step of integration t∆ . 
During the k -th iteration we calculate  

 ( )kikk StVSS
GGG

∆+=+1 . (18) 

The iterations repeat until τ<∆tk . The last value of vector kS
G

 is the 
estimation of point ( )tσ

G
 of the transformed trajectory. 

Deviation function (9) was calculated for trajectory ( )tσ
G

. Let us consider the 
distribution of (9). Spike ( )tx , which is a solution of system (1), can be repre-
sented as ( ) ( ) ( )ttxtx ξ+= 0 , where ( )tx0  is some solution of (2) and ( )tξ  is the 

influence of perturbation ⎟
⎟
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dt
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dt
dxxtF . Assume that ( )tξ  is a random process 

with a zero mean and small correlation time. Taking into account that the signal 
was read at discrete time points spikes ( )tx , ( )tx0  and noise ( )tξ  can be repre-
sented as sequences jx , jx ,0  and jξ , where nj …1= . In our implementation we 
considered jξ  as a random sequence of independent normally distributed values. 

The estimation of the first and second derivatives 1
jx  and 2

jx  are obtained as a 
linear combination (10) of jx : 
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where 1
kA  and 2

kA  are the values at k -th time point of kernels 1
αω  and 2

αω  re-

spectively, 1
,0 jx  and 2

,0 jx  are the estimation of the first and second derivatives of 

spike ( )tx0 , 1
jξ  and 2

jξ  are normally distributed random quantities with zero mean. 
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Consider transformed portrait (17) of spike ( )tx . Assume than ( )tx  is close 
to ( )tx0 . Then during the iterative procedure (18) of transformation with vec-

tor field the values of kS
G

 will stay close to phase portrait ( ) =tx0
G
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0 ,,  of spike ( )tx0 . Assuming that t∆ is the sampling 

interval and taking into consideration the numeric representation of vector field 
we can suppose that 
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The iteration (18) becomes  
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Thus transformed with field iV  portrait ( )tx′  of spike ( )tx  is close to the tra-

jectory described by jjx ξ
GG
′+,0 , where ( )Tjjjj

21 ,, ξξξξ =′
G

. Then the deviation func-

tion (9) squared for the first and second derivatives of spike ( )tx  will equal to  

 ( ) ( ) ( )∑ ⎟
⎠
⎞⎜

⎝
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k
kkjx

22212 ξξατ
G

. (23) 

It has 2χ  distribution with known parameters. It makes possible to find a 
confidence interval δ  with given confidence probability p for the spike class ob-
served. If the value of ( )( )⋅σατ

G2  does not exceed threshold δ  then we consider 
spike ( )tx  to be generated by the corresponding neuron, the activity of which is 
described by (1) and vector field iV . 

3. NUMERICAL RESULTS ON SPIKES RECOGNITION 

Inverse Fourier transform was used to generate 50 seconds trial of an artificial 
noise with evenly distributed phases and magnitude that represented f/1  noise 
signature. The sampling frequency was 44 kHz. 3 different templates of spikes 
that were obtained in real experiment, in 10000 instances of every template, were 
imposed additively on the noise. Spikes did not overlap. The duration of every 
spike equaled to 2.43 ms, the duration of the whole experiment was 1097 s. 

Comparison of new and template matching method 

Symmetry group Template matching in phase space 
Template 

Unclassified Misclassified Error index Unclassified Misclassified Error index 

I 32 0 32 10 12 15.6 
Ii 103 120 158.1 122 165 205.2 
Iii 94 22 96.5 165 76 181.7 
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Unclassified — number of spikes of the given class that were not detected or 
were referred to another class. Misclassified – number of impulses that belong to 
another class or represent noise but were classified as spikes of the given class. 

 ( ) ( )22 iedmisclassifedunclassifiErrorIndex += . 

4. DISCUSSION 

The method described in the article is an elaboration of the method based on tem-
plate matching in phase space [1]. The stages of spike detection and forming 
spike classes are generally similar to the latter. The principal difference of the 
method presented from template matching is the implementation of spike classifi-
cation after spike classes are formed. The template matching method characterizes 
the whole class of spikes generated by the same neuron by the phase portrait of its 
typical spike. As contrasted to another methods [9], the method based on symme-
tries analyses uses computational modeling of vector field that conforms the dif-
ferential equation describing the activity of the chosen neuron and thus it is more 
stable against alterations of spike form. It showed better results than the former 
and can be useful in experiments, where spike tend to change their form. 
Acknowledgements. The research has been partially supported by INTAS Grant 
No.97-168. 
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