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NUMERICAL SIMULATION OF GRAVITATIONAL WAVES 

FROM A BLACK HOLE, USING CURVATURE TENSORS 

Y. MATSUKI, P.I. BIDYUK 

Abstract. In this research we formulated the curvature tensors with the system of 
spherical polar coordinates, which describe the gravitational field and gravitational 
waves of a black hole; and then we calculated eigenvalues of the curvature tensors to 
estimate the relative strengths of their components to the stress-energy tensor in Ein-
stein’s field equation.  For this simulation, we assumed that the time and the distance 
interact with each other if we travel from Earth to the inside of the black hole, and 
then the result of the simulation showed that the gravitational waves carry the same 
components of the gravitational field of the black hole. On the other hand, when we 
assumed that the time and the distance are independent, which resembles the situa-
tion outside of the boundary of the black hole toward Earth, the curvature tensors are 
different between those of the gravitational field and the gravitational waves. Upon 
the results of the simulation we conclude that the gravitational waves that come 
from the inside of the black hole carry the information of the gravitational field in-
side of the black hole, if we assume that time and space are dependent each other.   

Keywords: Gravitational field, gravitational waves, curvature tensor, black hole, 
spherical polar coordinates. 

INTRODUCTION (Theory) 

Curvature tensors of gravitational field and gravitational waves of a black hole 

According to Einstein and Dirac [1], the gravitational field of a black hole is de-
scribed by the curvature tensors: 
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  ggggg , and g  are the funda-

mental tensors that describe the curvature of the 4-dimensional space. 

Outside of black hole 

Gravitational field outside of a black hole. According to Dirac [1], the funda-

mental tensors, g , of gravitational field outside of a black hole in spherical po-
lar coordinates are as follows: 
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where m2 is a constant, and  m is assumed to be the mass of a black hole; and  
g are functions of a network of curvilinear coordinates, which provide a geo-

desic, 2332222112002  dgdgdrgdtgds , outside of the black hole. And 

then, the curvature tensors R  of gravitational field outside of a black hole in 

spherical polar coordinates are described as follows:  
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Gravitational waves outside of a black hole. The gravitational waves in cur-
vature tensors are described by the equations:  
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Note. In Dirac’s original article [1], only the first term , 


,g , is dis-
cussed, but here in our article we also consider those terms from the second to the 
12th, which were neglected in [1]. 
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gg . Therefore, 

many terms become zero, and only the following terms remain: 

 


















 






 



















 






 

 2

2
,

1

11,00
00 2

1
1

2
2

1
2

1
2

1
r

m

r
m

r

m

r

m

r

m
gg

rr

= 



Y. Matsuki, P.I. Bidyuk 

ISSN 1681–6048 System Research & Information Technologies, 2020, № 1 56

 
3

1

2

2
42

1
22

12
r

m

r

m

r

m

r

m








 














  ; 

 
)2(

42
1

2
1

2
,

1

11,11
11

mrr

m

r

m

r

m
gg

rr 

















 






 



; 

 
2

42
,

32
,

22
11,22

22 6
6)2())((

r
rrrrrrgg rrr   ;  

  
rrrrgg ,

2222
11,33

33 )sin)(sin(  

 
2

422
,

322 6
6sin)2(sin

r
rrrr r   ; 

  





,
3222

,
2222

22,33
33 )cossin2)(sin()sin)(sin( rrrrgg  

 )1cos3(sin2 2  ;  

 
22341,111,11

11
1,1,111,11

11
1,

44

4
)

2

1
()

2

1
(

mrmrr

m
gggggg




 ; 

 
3

2

1,111,1111
11

1,111,1111
11 8

2

1

2

1

r

m
gggggggg


 ;  

 
3

2

1,111,1111
11
1,1,111,1111

11
1,

42

2

1

2

1

r

mmr
gggggggg


 ; 

 
)2(

8

2

1

2

1
5

3

1,111,111,11
11

1,111,111,11
11

mrr

m
gggggggg


 ,  (2) 

where 
rr 




(*)
(*), and 

2

2

,
(*)

(*)
r

rr



 ; and, (*)  is any given function. 

Penetrating the boundary of a black hole 

As shown in the equation (1), there is a singularity at mr 2  in one of the curva-
ture tensors, 11R , which means the presence of the boundary of a black hole, and 

we cannot see the inside, where mr 2 , from the outside, where mr 2 . In order 
to look inside of the black hole, Dirac [1] invented different coordinate system, 
assuming that the time and space are dependent, by )(rft  ; and, 

)(rgt  , where t is time, and r  is distance. The steps given below show how 

Dirac [1] described the system of coordinates that extends to the inside of a black 
hole. 

At first, the geodesic in the spherical polar coordinates is defined as follows: 
2332222112002  dgdgdrgdtgds ; but, if t and r  are dependent on each 

other, the first two terms, about time and distance, change to the following: 
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The necessary conditions for satisfying 
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Therefore, the fundamental tensors g  of gravitational field, which pene-
trate the boundary of a black hole in spherical polar coordinates, are: 
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where g provide functions of a geodesic,  2222112002 dgdrgdtgds  
233  dg , which penetrates the boundary of the black hole. 

THE CURVATURE TENSORS FOR NUMERICAL SIMULATION 

Table 1 and Table 2 show the curvature tensors of gravitational field and gravita-
tional waves, which we made for our numerical simulation.  These tensors don’t 
have the mathematical singularity; therefore we can simulate the inside of the 
black hole. 

The curvature tensors of gravitational field are: 
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In our simulation, we included the component of, 
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Dirac [1] neglected. 
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T a b l e  1 .  Curvature tensors of gravitational field, which extends beyond the 
boundary of a black hole 
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Continued Tabl. 1
Para-
meter 00R  1001 RR  11R  22R  33R  
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The curvature tensors of gravitational waves, which penetrate the boundary 
of a black hole, are:  
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T a b l e  2 .  Curvature tensors of gravitational waves, which penetrates the
boundary of a black hole 
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Continued Tabl. 2
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Note. All other components are zero. 
Now, we summate all the components:  
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NUMERICAL SIMULATION 

Algorithm  

Einstein’s field equation [1] that rules the motion of particles in the gravitational 

field is: 0
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Now, we use the relation: kTRgR   2
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, where T  is the stress-energy 

tensor and k is a constant [2]. Then, we set the following algorithm to simulate 
the relative intensities of the components of curvature tensors.  

For example, when 0 , 00000000
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our simulation, we omit the factor of, 2/1 , because we only use the selected vec-
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tors of the coordinates, which are taken from the obtained curvature tensors in 
Table 1 for gravitational field and in Table 2 for gravitational waves.  

Then, from Table 1, for example when 1  and 0 , 
200
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0 ), and then, our algorithm is shown as follows: 
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0)( 1 HXE  and 0)( 2 HXE  are equivalent to solving the problem of 

0),( 1 HXC  and 0),( 2 HXC , where  ),( 1 HXC  is the covariance of 1X  and 
H ; and, ),( 2 HXC  is the covariance of 2X  and, H . 
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XXXXIM  1)( , n  is a number of rows of each column of X (in this 
simulation 23n ), l  is a number of columns of X , I is a 2323  unit matrix, 

1)( XX  is the inverse matrix of XX  , and 'e is the transpose vector of e .  
By calculating c  and, )(cV , we can estimate the strength of each compo-

nent of )( 2200 RR   to the stress-energy tensor, in the system of spherical polar 
coordinates.  

We can also expand the size of matrix not only, 2l , but also to 2l  such 
as ],,,[* 21 kcccc  , and ][ 21 kXXXX  , where *c is a transposed vector 

of c , so that we were able to calculate not only )( 2200 RR  , but more general 

R  in our numerical simulation. 

Input data 

At first, our time t  on Earth is set as shown in Fig. 1 and Fig. 2, with which its 
slope to the distance r  from the center of a black hole toward outside is a con-
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stant, which is consistent with Einstein’s theory that the speed of light is a con-
stant.  Then,   is a relative time in the coordinate system, which expands and 
shrinks depending on the distance r , where )(rft  ; and,   is the relative 

distance, which expands and shrinks depending on the time t , where )(rgt  , 

and )(rf , )(tg  are conjugate functions of  t  and r . (For the simulation, we as-

sumed case-1: rrf log)(   and retg )( ; and, case-2: rrf )(  and 

)4/1()( tg ). According to Dirac [1], the collapse of a star into a black hole 

would take an infinite time at our clocks on Earth, but it takes only a finite time 
relatively to the collapsing matter on the star itself.  From this Dirac’s statement, 
we assumed that   is larger when the relative distance,  , from the center of the 

black hole is smaller. Also, in this simulation we set the stress-energy tensor kT  
to be 1; because, the purpose of this simulation is to measure the order of magni-
tude of the relative strength of each component of R  to the stress-energy tensor. 

For the simulation of the gravitational waves we assumed the angles,  , as 
shown in Fig. 3, as if it becomes smaller in far distance from a black hole; on the 

τ

ρ 

t

r 
Fig. 1. Input data for simulation Case 1:

rrf log)(   and retg )(  

r

ρ

t

τ

Fig. 2. Input data for simulation Case 2: 
rrf )(  and 4/1)( tg  

Fig. 3. Angles   for simulating gravitational
field and gravitational waves 
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Fig. 4. sin , cos  and cot  for simulation 
of gravitational waves



Numerical simulation of gravitational waves from a black hole, using curvature tensors 

Системні дослідження та інформаційні технології, 2020, № 1 65

other hand, for the simulation of the spatial expansion of the gravitational field of 
a black hole, we assumed as if   becomes larger in far distance. With this as-
sumption, the gravitational waves of sign cosign and cotangent curves behave like 
as shown in Fig. 4.  

Results 
Table 3 shows the calculated eigenvalues c  of R  and )(cV  for the gravita-

tional field, and Fig. 5, 6 and Fig. 7 show selected functions that have the negative 
coefficients, which mean the gravity, and of which each element of )(cV  is 

smaller than each element of c . Table 3 also shows the calculated eigenvalues of 

the gravitational waves, and Fig. 8 shows the function of 
2sin

1
 that have the 

positive coefficients, and of which )(cV  is smaller than its value of c . We se-

lected only, 
2sin

1
, because it has the positive coefficient, assuming that the 

gravitational waves should give positive impact to the stress-energy tensor, kT . 

T a b l e  3 .  Results of the simulation of gravitational field and gravitational waves 

c  and )(cV  
of Gravitational field 

c  and )(cV  
of Gravitational waves Components 

Case-1 Case-2 Case-1 Case-2 

2)(

1


 -1,850 210  

 (6,298) 
4,406 410  
(0,0002776) 

5,950 810  
(-1,059 1610 )

-3,190 310  
(0,7698) 

3/4)(

1


 -5,750 210  

(2,060 )10 17  
5,118 810  

(3,211 810 ) 
-2,088 1210  

(0,03356) 
-5,308 810  
(1,511 510 ) 

4)(

1


 -24,58 

(6546,0) 
-6,932 310  
(0,002527) 

6,591 1210  
(2,672 1910 ) 

-6,957 210  
(33,92) 

2sin

1  
1,000 

(6,550 510 ) 
1,000 

(2,146 610 ) 
0,1870 

(-1,753 810 ) 
1,000 

(9,408 510 ) 

2cot  
-1,000 

(2,430 410 ) 
-1,000 

(6,034 710 ) 
-1,180

210  
(-1,373 910 )  

-1,000 
 (3,128 410 ) 

 24 sin)(

1  -0,4142 
(111,2) 

-1,714 410  
(4,359 510 ) 

6,311 1210  
(1,833 1910 ) 

5,784 210  
(26,55) 




23/10 sin)(

1  -0,2985 
(79,94) 

-2,705 410  
(8,060 510 ) 

8,995 1210  
(-1,442 1910 ) 

-2,258 210  
(9,089) 




2

2

sin

cot  9,974 810  
(4,800 510 ) 

1,732 810  
(1,324 810 ) 

- - 

3/10)(

1


  – – -1,630 1210  

(-1,618 1910 ) 
2,608 210  

(14,21) 

3/7)(

1


 – – -1,065 1010  

(-5,221 1610 )
6,675 310  

(1,866) 




4sin

cos  – – -3,160 410  
 (6,635 610 ) 

5,047 1010  
(1,469 710 ) 

Note. The numeric values in the brackets are, )(cV , the standard errors of c . 
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Note. (Left axis) means that the scale of the function is shown in the left 
axis; and, (Right axis) in the right axis. 

CONCLUSION AND RECOMMENDATION 

In this research, we investigated the structure of gravitational field inside of 
a black hole, assuming that time and space interact each other with )(rgt  , 

)(rft  , ( t  is the time, r  is the distance from the center of the black hole, 
and f  and, g , are functions of r ). And we also investigated the functions of 
gravitational waves that are emitted from the inside of the black hole. As the re-
sult we found that some of the functions of gravitational waves carry the compo-
nents of the curvature tensor of gravitational field. It means that we are able to 
investigate the structure of a black hole by the information carried by the gravita-
tional waves. 

Fig. 6. Components of gravitational
field, case 2 (1) 

2cos

 23/10 sin)(

1 (Left axis) 

4)(

1



 24 sin)(

1

r
Fig. 5. Components of gravitational field, 
case 1 

2cot  

r 

2)(

1


 

2cot

r 
Fig. 7. Components of gravitational field, 
case 2 (2) 

2sin

r

Fig. 8. Components of gravitational field, 
case 2 
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Inside of the black hole the functions shown in Table 1 for the gravitational 
field and in Table 2 for the gravitational waves, show the same functions: 

4)(  , 2cot  and 2sin . The function of 4)(   in Fig. 6 suggests the 

presence of a boundary of the black hole, where the gravitational waves are dis-
turbed once before they are moving toward the outside.  

On the other hand, if we don’t assume the dependence of time and space, the 
gravitational waves are to be made outside of the black hole, and they do not 
carry the same functions of the gravitational field. The equations (1) about the 

gravitational field are 1
00

 rR , 1
11

 rR , rR 22  and rR 33 ; while the 

equations (2) about the gravitational waves are 2r , 3r , 4r  and 6r . 
In this research, we used the spherical polar coordinate system to describe 

the curvature of gravitational field, and this system helped us to make numerical 
simulation possible. However, further mathematical investigations are needed 
about the curvature tensors.  
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