BUCOKOMNPOAOYKTUBHI KOMITIOTEPHI

MPOrPECUBHI IHOOPMALINHI TEXHOOCrTI,
@r
CUCTEMU

UDC 004.4
DOI: 10.20535/SRIT.2308-8893.2020.3.01

METHOD OF SEMANTIC APPLICATION VERIFICATION
IN GPGPU TECHNOLOGY

S.L. KRYVYIL, S.D. POGORILYY, M.S. SLYNKO, A.A. KRAMOV

Abstract. An application development and verification method for massively paral-
lel systems using NVIDIA GPUs is proposed. The method allows creating models at
different levels of abstraction using the apparatus of marked transition systems. The
compositions (product) of such systems are transformed into a Petri net, which are
then analyzed by appropriate means. The proposed method allows specifying model
properties by temporal logic formulas. This allows studying the properties of mas-
sively parallel systems which is almost impossible to analyze manually, since the
number of execution threads in the latest NVIDIA video adapter architectures (Pas-
cal, Volta, Turing, Ampere) is measured in hundreds of thousands or millions.

Keywords: CUDA, graphical processing units (GPU), General Purpose Graphics
Computing (GPGPU), transition system, Petri net, model design.

INTRODUCTION

The main feature of the latest graphical processing units (GPU) is the availability
of a set of streaming multiprocessors (SM) that were used previously in image
processing algorithms and tasks only. General Purpose Graphics Computing
(GPGPU) technology is based on the use of a combination of GPUs working in
parallel to process data using general-purpose algorithms (scientific or other, but
not necessarily related to image processing). The latest graphics architectures
from NVIDIA include Pascal, Volta, Amper, Thuring [1]. For this day, Volta is
one of the most powerful GPU architectures, which is an indicator of achieve-
ments in the field of high-performance artificial intelligence calculations (the
GTX TITAN Z graphics adapter, built on the top of two powerful GK110 cores,
can provide peak performance up to 8 teraflops, and each core can implement
2880 stream processors, which in total gives 5760 stream processors).

NVIDIA, in addition, develops a series of video adapters focused on scien-
tific applications and use in high-performance (cluster) computing. These GPUs
lack some graphic-specific features and are widely used in the scientific field.
This led to a significant increase in the number of supercomputers included in the
TOPS500 world most efficient computers [2] that utilize NVIDIA video adapters.

Nowadays high-performance computing (HPC) trends get shifted from using
clusters consisting of general-purpose modules to more specialized accelerated

© S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov, 2020

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 7

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

components (in other words, from universal CPUs to other units — GPU, FPGA,
etc.), that is, to less functional and less power consuming modules. Accelerators,
unlike universal CPUs, can not run an operating system, and rely on external sys-
tems for I/O operations or task scheduling. Their advantage in productivity lies
solely in the fact that these elements are used in large groups simultaneously. The
article proposes methods of modelling the properties of GPU accelerator architec-
tures at different abstraction levels.

In terms of programming, success of the most common GPGPU technologies
(CUDA in particular) lies in the fact that they encapsulate the SIMD nature of
GPU hardware. In most cases, the developer deals with individual streams that
work with scalar data instead of warps [1] working with vectors.

Development of the complicated, massively parallel systems that utilize
video adapters requires new scientific methods to justify both the architecture of
the system and applications for them. Since modern multi-threaded applications
have hundreds of thousands and millions of threads, solving parallelization tasks
for such systems makes impossible to use traditional engineering design ap-
proaches and requires the use of a mathematical apparatus and formalization
methods to substantiate the decisions made. Model justification is an effective
way of algorithmic study of the parallel algorithms properties. One of the options
for implementing such a justification is the use of the apparatus of algorithmic
algebras [3], which allow formulating schemes of algorithms in the form of
algebraic expressions that depend on various parameters, including software and
hardware platforms, paradigms of parallel programming, etc. This paper focuses
on using the transition systems (TS) [4] and their compositions as the main
mathematical model, which allow creating models at different abstraction levels.
Their properties can be investigated by translating in Petri networks (PN) [5] and
can be specified by temporal logic formulas [6].

MODERN NVIDIA GPU ARCHITECTURES

CUDA (Computational Unified Device Architecture) is a parallel computing ar-
chitecture developed by NVIDIA to facilitate the GPGPU programming by using
high-level APIs. Since the pilot CUDA platform had been introduced more than
10 years ago, each new generation of NVIDIA GPUs provided better application
performance (for example, in floating point operations), increased energy effi-
ciency, added important new computing capabilities, and streamlined graphics
processor programming. Today, NVIDIA GPUs are leading computing devices
that have, in some way, defined the artificial intelligence revolution (Al). Nowa-
days GPGPU technology accelerates deep learning; high-precision text, voice,
and other media data recognition systems; are used in the areas of molecular mo-
deming, modelling of medical products, medical diagnosis, financial modelling,
and others.

Application instructions that are executed in a GPU-based heterogeneous
environment can be logically decomposed into the following parts:

e “host” instructions — blocks which are executed on the CPU;

e “kernel” functions — instruction blocks which are executed on the GPUs.

Host blocks define the context of the kernel functions execution, transferring
data between the computer’s RAM and GPU memory.

8 ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

Method of semantic application verification in GPGPU technology

All NVIDIA GPU architectures execute instructions in groups of 32 thread
(known as warps) using the SIMT model (Single Instruction, Multiple Thread),
that is, one instruction is executed by many threads simultaneously, although be-
haviour of each individual thread is not limited by anything. However, architec-
tures prior to Pascal include, among others, a software counter and a mask com-
mon to all threads of the warp that determines which threads are active at any
given moment. This means that in the case of a execution ow branching, each
execution path uses only a subset of all threads, while the rest are deactivated.
Once execution paths are converged, threads of a warp start being executed simul-
taneously again.

Such an implementation model gets rid of the necessity to track each indi-
vidual thread state separately. However, tracing only a warp in general means re-
ducing the level of parallelism if branching is present, as described above. In turn,
this prevents the data exchange between the threads within a single warp, if those
threads are at different execution stages, or if they execute the instructions in dif-
ferent branches. That means that threads of different warps may execute instruc-
tions in parallel, but threads of a single warp sometimes have to execute instruc-
tions sequentially. Thus, algorithms that require data sharing at a high level of
detail or that utilize synchronization tools (such as mutexes) can suffer from dead-
locks. Therefore, developers have to rely on algorithms with minimal blocking
support while using the NVIDIA GPUs of Pascal architecture or earlier (that is,
more than 60% of devices, because Volta architecture was released only in 2017
and Turing — in 2018).

More modern architectures, starting from Volta, include independent flow
planning, which stores instruction counters and call stacks for each thread sepa-
rately, which can be utilized for optimal resource usage or to allow one thread to
wait for data from another. To increase the level of parallelism, Volta includes an
optimizer that defines how to group active threads within the warp within the
SIMT module. This maintains the high performance of the SIMT approach, as in
previous NVIDIA GPUs, but with much greater flexibility: the threads can now
perform various branching paths within a single warp. The verification methods
proposed are illustrated on a simple system model analysis example.

MODEL JUSTIFICATION AND VERIFICATION

Testing process has always been the main method of increasing the reliability of
programs, developed using traditional methods. Edsger Dijkstra once said: “Pro-
gram testing can be used to show the presence of bugs, but never to show their
absence!”. In addition, testing can not detect typical synchronization errors of
parallel programs. Parallel programs may for years retain errors that manifest
themselves after a long usage period as a reaction to a specific combination of
numerous factors that have arisen (for example, due to the unpredictable rates of
individual threads/processes execution in parallel programs). However, if any of
the system properties can be expressed formally, for example, in the form of a
mathematical logic formula, then analysis of this property can be performed by
verification methods. Normally process of the system verification consists of the
following parts:
1. Construction of a mathematical model of the system under analysis.

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 9

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

2. Definition of the properties to be checked in the form of a formal text (al-
so known as specification).

3. Building a formal proof of the presence or absence of the property being
verified.

Usually, mathematical model of a system is a graph whose vertices are
called states and represent situations (or situation classes), in which the system
may be present at different times; whose edges can have labels depicting the ac-
tions system can perform. The functioning of the system in this model is repre-
sented by transitions along the edges of the graph from one state to another. If the
passable edge has a label, then this label represents the action of the system,
executed when passing from the state at the beginning of the edge to the state
at its end.

The choice of the abstraction level for the system modelling depends on
many factors (algorithmic solvability, astronomical dimensions of the model, the
absence of effective methods of formal analysis of properties etc.). In this regard,
the informal rules of this choice are reduced to the following: system model
should not be over-specified, because the excessive model complexity may cause
significant computational problems during its formal analysis. On the other hand,
system model should not be oversimplified: it should reflect those aspects of the
system that are relevant to the properties being verified, and preserve all the
properties of the simulated system which are of interest for analysis.

Model checking (MC, [7]) approach is used to find a formal proof that the
model does not meet its specification. In this paper we propose a new method of
justifying that the model satisfies the specification. This paper focuses on the
method of checking the conformity of a model an its specification, which uses the
apparatus of TS and PN. Definition of a simple and labeled TS is given below,
while definition of PN is well known and can be found in [7] if necessary.

Definition 1. A simple transition system is 4 = (S, R, o,), where

S — finite or infinite set of states;

R — finite or infinite set of transitions;

o, B — two mappings from S to R, which make a correspondence between
a transition ¢ € R and two states a(¢) and B(¢) , which are called respectively the
beginning and end of the transition ¢.

The transition ¢ with beginning s and end s'is written as follows: s — s'.
Sometimes transitions may have a common beginning or end or both. This means
that the pair o, 3: R —> S is not necessarily an injective function. TS A is called
finite if sets S, R are finite. If the set of states defines an initial state, such TS is
labeled as 4 =(S,R,a,B,s,) and is called initial TS. Such model as a simple TS
may be enough to study properties of a model at a certain level of abstraction, but
when it is necessary to carry out a more detailed analysis, labeled TS is more ap-
propriate.

Definition 2. Let X be an alphabet. The labeled transition system (LTS) is
an ordered six 4=(S,T,a,B,sy,7) where (S,7T,a,B,s,) represent a TS, and % is
a mapping from 7 to X, which makes a correspondence between each transition
¢t and its label A(¢) € X. LTS is finite if sets S, 7, X are finite. Transition label

h(t) may also be called an action, and the transition itself is written as follows:

10 ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

Method of semantic application verification in GPGPU technology

(s,h(t),s") ors—" 5 ¢ Transition label set is often accompanied by a special

label T, which represents an internal action of the system that is not visible at
a given level of modelling.

Using LTS as a model of a real system allows analysing properties of actions
associated with transitions, which is impossible by using a simple TS. Analysis
and verification of the applications for graphic video adapters (NVIDIA in par-
ticular) was chosen as a subject of the study, because this area perfectly illustrates
the impossibility of manual verification, as the number of threads allocated for
solving the problem is measured by hundreds of thousands (in Pascal/Volta archi-
tectures). The use of LTS to construct a high-level model for substantiating the
properties of a CUDA application was described in [8].

CUDA APPLICATION EXECUTION MODEL

A generalized execution model in the NVIDIA CUDA architecture, based on LTS
and Petri nets was presented in [9]. The main emphasis was put on obtaining a
high-level model without a detailed examination of the labels semantics of each
transition system. The following briefly recalls the main details: three LTS were
emerged as a result of CUDA application decomposition:

LTS A4=(S,={ay,a;,a5,a3},R;,0,,B,ay,/) — represents the warp that
contains a set of instructions and sequentially executes them, where
Xy ={n.rp.13,143;

LTS B=(S, =1{by,b,,b,,b3,b4,b5},R,y,0,85,by,h,) — represents a
generalized information instruction, where X, ={p,, p,, D3, Ps> Ps> Ds)

LTS C=(S;={cy,c,cy,c3},R3,04,B5,¢9,h3) — represents a thread block
execution process (warp scheduling) on the SM, where X5 =1{q,,9,.93,94}-

Transition label functions Ay, h,, h; are shown below in the charts (Fig. 1, 2, 3).
The main activities modelled at this level of abstractions include planning, choos-
ing warp and instruction for it and providing exclusive access to computational
resources for the execution time of each warp-instruction tuple. This paper shows
creation of a model of the lower level of abstraction, which will allow us to ana-
lyze the properties of actions associated with transitions, and the properties of the
model in particular states.

Fig. 1. LTS B of the information instruction

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 11

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

Definition 1. General TS (GTS)isa TS 4=(S,X,R,s,,AP,L), where
S — set of states;

X — set of actions associated with transitions;
R < S x X xS — transition relation;

s, — initial state from S';
AP — set of propositional formulas associated with states;
L:S — B(AP) — state label function, where B(AP) is the power set

of AP.

We introduce a set of Boolean variables:

| = {instrAr,instrMem, instrArExec, instrMemEXxec,instrArFin, instrMemFin} ,

where

hy(t) = {instrdr = 0,instrArExec = 0,instrArFin = 0,instrMem = 0,
instrMemExec = 0, instrMemFin = 0} ;

h(p,) = {instrAr =1} — arithmetical instruction selection;

h(py) = {instrMem =1} — global memory access selection;

hi(p,) = {instrArExec =1} — arithmetical instruction execution;

h(ps) = {instrMemExec =1} — memory access execution;

hi(p3) = {instrArFin =1} — retrieving results of an arithmetical operation;

h(pg) = {instrMemFin = 1} — retrieving results of memory access operation.

We define the state label function Z; :

Li(by) = {instrdr v instrMem = 0};

L (b)) ={instrAr =1};

L, (b)) = {instrArExec =1};

Li(by) = {instrMem =1};

Li(by) = {instrMemExec =1};

L,(bs) = {instrMemFin v instrArFin =1}.

We introduce a set of Boolean variables V, ={warpActive,warpBusy,

warpFin} that are set by the following transition labels (Fig. 2):

Fig. 2. LTS A of the instruction execution within a warp

h, () = {warpActive = 1} — warp activation — given warp gains access to

SM resources to execute a single instruction;

12

hy(ry) = {warpBusy =1} — instruction is being executed by a warp;

hy(r3) = {warpFin =1} — instruction execution is finished,

ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

Method of semantic application verification in GPGPU technology

hy(ry) = {warpActive = 0, warpBusy = 0,warpFin = 0} — warp deactivation.

State label function L, is defined as following:

Ly(ay) = {warpActivev warpBusy v warpFin=0};

L,(a)) ={warpActive=1};

Ly(ay) = {warpBusy =1}

L,(a3) = {warpFin =1}.

We introduce a set of Boolean variables V; = {warplnstrSel, warpInstrExec,
warplnstrFin} that are set by the following transition labels (Fig. 3):

44

Fig. 3. LTS C of the warp scheduler

hy(q,) = {warplnstrSel =1} — warp and instruction selection;

hy(q,) = {warplnstrExec =1} — execution of the selected instruction by a
selected warp;

hy(q3) = {warplnstrFin =1} — confirmation of instruction execution finish;

hy(q4) = {warpInstrSel = 0,warpInstrExec = 1,warpInstrFin =1} — transi-
tion to the next iteration.

State label function L; is defined as following:

Ly(cy) = {warplnstrSel v warpInstrExec v warpInstrFin = 0}

Ly(¢;) = {warplnstrSel =1}

Ly(cy) = {warplnstrExec =1};

Ly(c3) = {warplnstrFin =1}.

Integration of multiple TS into a holistic system that orchestrates the joint
work of all subsystems is performed depending on the requirements of the com-
ponent interaction model (synchronous, asynchronous, parallel, sequential). These
interaction methods are introduced using different TS composition types and the
general notion of TS. To analyze the model properties, we consider the concept of
parallel composition of the TS.

There are several options of TS composition that model parallel functioning
of multiple TS. The simplest one is the composition in which TSs work in paral-
lel, but do not interact with each other. Such a composition is based on the con-
cept of alternating actions (interleaving), which are performed by different sub-
systems of the composition. In this case, the order of actions performed by each
TS is preserved. This is a common way of modelling parallel interactions, which
is based on the assumption that the result of a parallel execution of operations
coincides with the result of their sequential execution. The formal definition of
this composition is as follows.

Let 4, = (Si,Xi,Ri,siO,AB,Ll.) — transition systems, where i=1,2,...,n.
Parallel composition of TS 4,4,,...,4

, with interleaving is TS

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 13

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

A= 4|4

A =(S,X,R,s,,AP,L), where S=8x8,x..x8,, s5=

=(slo,s20,...,s"o), X=X,uX,uU..uX,, and transitions from R are defined
as follows: transition ((s,...,S,),%,(s,...,s,,)) € R if and only if state (s,,...,s))
differs from (s,,...,s,) by the value of not more than one component, that is there
exists i € {l,2,...,n} such that (s;,x,s;) € R;, where x € X; U {1}.

Note that in this composition TS can be repeated, that is, a given 4; may be
included in TS A4 more than once. In addition, some of the TS 4; may be compo-
sitions of other TS: 4; = A,-1||A,-2||...||A,-n. Therefore one can describe the whole sys-

tem in a structured from by using a parallel composition. However, there may be
achievable states in the resulting TS which are not desirable. Therefore a parallel
composition with alternating actions does not always reflect the real situation
when the TSs should interact with each other. Handshaking composition concept
is a more adequate approach to describe parallel interaction. Such option describes a
situation when different TS are synchronized by the actions in which multiple TSs
participate simultaneously (data exchange etc.). Those actions are indicated by the
same symbol in alphabets of all TS which take part in the interaction.

Definition 2. Let 4, =(S,, X, i,Ri,siO, AP, L;) — transition systems, where
i=12. Parallel composition of TS 4,4, with handshaking is a TS
A=A4||4,=(S,X,R,s5,,AP,L), where S=8xS,, 5,=(s,5%),
X =X, U X,. Transitions that belong to 7 are defined as following:

if xeX, NnX, and (s,,x,8)) €R, (8,,X,8,)€R,, then
((5,,8,),%,(s,8,)) ER;

if xe X;\ X, and (s,,x,s;) € R, then ((s,,5,),x,(s,5,)) €R;

if xe X, \ X, and (s,,x,s,) € R,, then ((s,,5,),x,(s,,5,)) €R.

The following composition summarizes both previous concepts and is called
a synchronized parallel composition or a synchronous product of TS (Fig. 4).
So

G
o N fs

Fig. 4. GTS A of synchronous product of LTS ,x LTSz x LTS,

14 ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

Method of semantic application verification in GPGPU technology

Definition 3. A4=(S,,X,R,,50,A4P,,L;)= A4 x..x 4,, where S;=5]x...
xS, 8, =(s"y,...,s",) is called a synchronous product of TS 4, 4,,...,4,
where 4, =(S,,4,,R,,s',, AP, L,). Set of transitions is divided into two classes:

asynchronous and synchronous. When synchronous transition from state s,...,s,

occurs, some of its components change simultaneously while the rest remains un-
changed. To describe this the symbol ¢ is added to labels of each transition set

R; (i.e. X, U{¢g}) along with a corresponding transition (s;,&,s,). Such a sym-
bol shows that state does not change during a particular transition. Subset R of
Ry x...x R, is called the synchronization constraints set. If TS is labeled, then the
set of global transitions R corresponds to the set of transition labels X. In other
words, X < X, x...x X,,, where X, is an alphabet of LTS 4;, i=1,...,n. An arbi-

1
trary element 4 =(4,,...,4 ,R) of the set X is called the LTS synchronization
vector.
We build a model of application execution in the CUDA architecture in the
form of synchronous product with the following global transitions (initial and fi-
nal states of the transitions are omitted, since they are present in the model):

R={t; =(&,n,q1),t, =(P1,12,92): 13 = (P2,8,€), 14 = (P3,8,€) ;

Is :(p4’r2’q2)9t6 =(p5,8,8),t7 :(p6a898)’t8 =(‘C,I"3,Q3),f9 2(8,7’4,(]4)}.

DETERMINATION OF SEMANTIC CORRECTNESS OF THE MODEL ACTIONS

Definition function of L; allow to find the context of correct system functioning
at each transition in each state. For example, if L7Sy is in state b,, values of
both instrAr and instrMem should be 0. If system was moved to a state b after

a number of allowed transitions and instrMem flag is set, this will mean that sys-
tem is not semantically correct, even if the corresponding PN meets all reliability
criteria.

To analyze the semantic correctness of a model, it is necessary to determine
the context of each global state and consider its conformity to the system under
analysis. As shown above, transition system state context is specified by the state
label function L;, and the global state context can be retrieved by combining lo-

cal state contexts of the components of the synchronous products. Each of the
global states can be described as follows:

L(s1) = Ly (b) A Ly (ag) A Ly (co) =
= {instrAr v instrMem = 0} A {warpActive = 0} A {warpinstrSel =0} —
instruction is absent, warp is not active, scheduler is ready for planning;
L(sy) = Li(by) A Ly (a) A Ls(cp) =
= {instrAr v instrMem = 0} A {warpActive =1} A {warplnstrSel =1}, —
warp and instruction are selected, but instruction type is not yet determined;
L(s3)=Li(b) A Ly(ay) A Lsy(cy) =

= {instrdAr =1} A {warpBusy =1} A {warplnstrExec =1} —

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 15

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

arithmetic instruction is selected for a given warp;
L(s4) = Li(by) ALy (ay) A Ly (cy) =
= {instrArExec =1} A {warpBusy =1} A {warplnstrExec =1} —
given warp executes arithmetic operation;
L(ss)=Li(b3) A Ly(ay) A Ls(cy) =
= {instrMem =1} A {warpBusy =1} A {warplnstrExec =1} —
memory access instruction is selected for a given warp;
L(sg) = Li(by) A Ly(ay) ALz (cy) =
= {instrMemExec =1} A {warpBusy =1} A {warplnstrExec =1} —
given warp executes memory access instruction;
L(s7) =L (bs) A Ly(ay) A Ls(cy) =
={instrArFin v instrMemFin =1} A {warpBusy =1} A {warpInstrFin =1} —
current instruction is executed regardless of its type;
L(sg) = Ly (bo) A Ly(a3) A Ly(c3) =
= {instrAr v instrMem = 0} A {warpFin =1} A {warpIlnstrFin =1} —
instruction is absent, warp and scheduler finished their work.
All received contexts are semantically correct in accordance with the materials
[1], thus, the set of global transitions of synchronous products is defined correctly.
In addition to the above, the semantic correctness of the model is provided

by the following properties:

o mutual exclusion: a single instruction can be of one type only — either
arithmetic or memory access;

e fairness: if the warp is active, scheduler must provide an instruction to be
executed;

e liveliness: if the warp is active, one of the available types of instruction
should be executed;

o deactivation: warp scheduler does not activate the warp if there are no in-
structions for execution.

Sequence o =sy05,0,,...0,,5, 1s called a finite execution in GTS, where
(s,,a;,8,,) €T for i=0,1,.,n-1.
The following finite execution paths exist in the received LTS:

Path, = (s,t,5,t,8,t,5,t,5,1:SstyS,) *;
Path, = (s5,1,5,1,55t,St;S:t.SteS, ¥,

where denotes the iterative operation of regular language. The language that cor-
responds to the paths above is:

L(Path) = (L(Path))~ L(Path,))* = (t,(,t,¢, v t.t4)tty) *.

And this language must correspond to the formula:
L(s,)L(,)L(s3)L(sy) v L(85)L(s5)L(s;) L)

16 ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

Method of semantic application verification in GPGPU technology

Let's check the semantic correctness properties of the model:
o mutual exclusion: the following expression is always true:

L(sy)v Lis;) = Ly(ay) Ly (e, XL, (b) v L, (b))
e fairness: always L,(a,) = L,(c;);
e liveliness: always L,(a,) > L,(b))L,(a,)L,(c,)Vv L,(b;)L,(a,)L,(c,);
e deactivation: L,(c,) = L,(b,)L,(a,).

FORMALIZATION OF THE GTS ANALYSIS PROCESS

Analysis process presented in the previous section can be generalized and reused
for any GTS.

Definition 1. The subset of a set B(AP)*, where B(AP) is the power set
of the set AP, is called the linear-temporal property P over the set of atomic
propositional formulas 4P. Consequently, P < (B(AP))*.

In our case set (B(AP))* is a set of words of finite length constructed from
concatenated formulas of B(AP). Assume there is 4=(S,X,R,I, AP,L) and
T =SyS,...5, 1S a sequence of states. Such sequence is called a path fragment
if s,,, € Post(s;) where Post(s;)=UPost(s,,x), and Post(s;,x)={s"eS:
(s;,x,5")e R}, xeX. Sequence T =ss,...s, for which Post(s,)=O is called
the maximal path fragment.

Definition 2. Word L(s,)L(s,)...L(s,) is called a trace (trace(n)) of a fi-
nite sequence m. Consequently, the set of traces is a set of finite words over the
alphabet of the propositional formulas B(AP) which are executed in states of this
sequence. Denote trace(IT) = {trace(n)|n eIl}, trace(s)=trace(Path(s)) and
Traces(A) =
begins in state s.

In our case, the set of AP propositional formulas includes the following items:

trace(s) where Path(s) is maximal fragment of path n that

sel

AP = {instrAr,instrMem, instrArExec,instrMemExec,instrArFin, instrMemFin,
warpActive, warplnstrSel, warpBusy, warplnstrExec, warpFin,warpInstrFin} .

The following words are traces of GTS 4:
D =L(s,)L(S3)L(s,)L(S7)L(Sg)L(s,);
P> =L(s,)L(s5)L(sg)L(s;)L(s5)L(s,).

Let's define bad prefixes in these words as prefixes that violate the truth of
L(s;), which mean the following words:

P = L(sy)L(s3)...L(s)) ;
Py = L(s5)L(s3) ... L(sy) ;
Py = L(sy)L(ss)...L(s)) ;

Pi = L(sy)L(sy) .

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 17

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

Therefore language BadPref(A)=(p, Vv py)*(p| V...V p;) is regular and
is accepted by a finite automaton B =(Q, AP, f,Q,,F) where Q) N F =& that
is shown at Fig. 5.

* *
P15 P

90

Fig. 5. Automaton B that accepts bad prefixes, gy €y, qo &, q*eF

We will connect the GTS from Fig. 4 and automaton B with such a product
Ax B that produces GTS 4 as result so that:

S'=8x%0,
R’ — the smallest relation defined by the rule
s X N q L(s") | qr

(5,9)——(5".9")
I"={(s0,90)s0 €I A3qg € Oy : qo &)q},
AP' =0,
LS xQ — B(Q) where L'(s,q)={q}.
Then the correctness of GTS A functioning is expressed as a condition
Traces(A) N BadPref (A) = Traces(A) N L(B) =4,
where L(B) is the language accepted by the automaton B. Consequently, if P is
a property whose execution guarantees the correct functioning of GTS A4, then

Traces(A) N BadPref(P) = . Thus, GTS A will look as shown on F ig. 6. There

is a transition from each vertex, except for (s,,q,), to the state (s,,g*). Such

transitions represent one of the bad prefix traces. For the sake of clarity only 4
examples of bad prefixes are left in Fig. 6.

not(L(s))

Fig. 6. GTS of Ax B product, where g*e F

18 ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

Method of semantic application verification in GPGPU technology

DETERMINATION OF MODEL CORRECTNESS ON THE HIGH LEVEL OF
ABSTRACTION

In addition to semantic verification, it is important to check the redundancy of the
system, deadlock/trap balance etc. To do this, we use verification at the highest
level of abstraction, without need of transition label semantics analysis.

The translation of the received synchronous product into the PN gives the
network shown in Fig. 7. It is described in [10], [11] that the TS product seman-
tics and the semantics of the corresponding PN are consistent in the sense that a
sequence of global transitions represents the global history of the TS product A4 if
and only if it is an admissible sequence of transitions in the PN. Accordingly, el-
ements of the set R become transitions of the PN, and the global states of the TS
product (the set of states of each TS involved in the synchronous product before
or after the global transition) become the places of the received network. We
build a PN by using the synchronization constraints set, and such a network simu-
lates the interoperability of all subsystems. Recall that NVIDIA video adapters
operate with multiple warps at the same time, so there is a situation of synchro-
nous and asynchronous execution, since different instructions may have different
execution times and will not reach synchronization location at the same time.
Therefore using the Petri net apparatus is expedient.

to fg | * .

Fig. 7. PN that represents synchronous product LTS , x LTSz x LTS -

Let's analyze the presence and number of dead transitions in PN for
one warp case. To do this, we form a state equation A-x+M,—M; =

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 19

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

=A-x+d=0 where M,=(1,1,0,0,0,0,0,0,0), M, =(0,1,0,0,0,0,0,0,0),
d=—(M;—-M,) (see Table 1).

Table 1. Petrinet state equation matrix

t
* h | |3ty |t | g | b | Iy | Dy (M, =M,)
so | -1 o 0ol o] o 1
s; | -1 o 0] o o |1 0
s, | 1] 4 a0 o0 o 0
83 0 1 -1 0 0 0 0 0 0 0
Sy 0 0 1 -1 0 0 0 0 0 0
S5 0 0 0 0 1 -1 0 0 0 0
S 0 0 0 0 0 1 -1 0 0 0
S5 0 0 0 1 0 1 -1 0 0
Sg 0 0 0 0 0 0 1 -1 0

Applying the TSS-algorithm [9] to solve the state equation with the above
matrix, we obtain the following solutions (Table 2).

Table 2. Petrinet state equation solutions

4 ty ty ty ts tg t; tg ty
1 1 1 1 0 0 0 1 1
1 0 0 0 1 1 1 1 1

As can be seen from the set of solutions, all transitions in the PN with the
initial and final markings given above are alive (the value corresponding to each
transition is positive at least in one of the solutions). In addition, the property of
mutual exclusion has been verified: transitions that correspond only to one of the
possible types of instructions are performed at each point of time.

The analysis of the properties of the received PN also showed the absence of
deadlocks, verified limitation and controllability [10]. As described above, this
analysis did not take into account the properties of actions in transitions and
properties associated with the states of the model.

CONCLUSION

This paper proposes the use of the TS mathematical apparatus to obtain a for-
malized system specification in the GPGPU technology. The advantages of the
existing model include the ability to reduce synchronous product to a PN, which
allows for further verification by automated means. The ability to study the char-
acteristics of the model created by the combination of LTS and PN apparatuses is
shown. The model was analyzed to verify there are no dead transitions and places
(without taking into account the semantics of the transition labels), and a separate
analysis was performed to verify the semantic correctness of the model actions.

20 ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

Method of semantic application verification in GPGPU technology

As aresult of these actions, the proof of the correct construction of the model was
obtained. The developed approach allows to simplify and reduce the processes of
verification and testing of multi-threaded applications in computer systems that
utilize video adapters.

REFERENCES

1. Nvidia Data Center — Nvidia, 2018. [Online]. Available: https://www.nvidia.com/
en-us/data-center/. Accessed on: 2019, March 14.

2. TOP500 Lists - TOP500 Supercomputer Sites, 2018. [Online]. Available:
https://www.top500.org/lists. Accessed on: 2019, March 14.

3. A.V. Anisimov, S.D. Pogorilyy, and D.Yu. Vitel, “About the Issue of Algorithms
formalized Design for Parallel Computer Architectures”, Applied and Computational
Mathematics, vol. 12, no. 2, pp.140-151, 2013.

4. A. Amold, Finite Transition Systems: Semantics of Communicating Systems. Paris,
France: Prentice Hall, 1994, 177 p.

5. T. Murata, “Petri nets: properties, analysis and applications”, in Proc. of the IEEE,
77:541.80, 1989.

6. M. Ben-Ari, Mathematical Logic for Computer Science. UK: Prentice Hall Interna-
tional Ltd, 1993, 305 p.

7. E.M. Clarke, Jr., O. Grumberg, and D.A. Peled, Model Checking. USA: MIT Press,
1999.

8. S.D. Pogorilyy, S.L. Kryvyi, and M.S. Slynko, “Model justification of GPU-based
applications”, Control Systems and Computers, vol. 4, pp. 4656, 2018.

9. S.L. Kryvyi, Linear Diophantine constraints and their applications. Chernivtsi: Buk-
rek Publishing House, 2015.

10. S.L. Kryvyi, S.D. Pogorilyy, and M.S. Slynko, “Transition systems as method of de-
signing applications in GPGPU technology”, in Proc. 11-th international scientific
and practical conference on programming UkrPROG’2018.

11. S.L. Kryvyi et al., “Design of Grid Structures on the Basis of Transition Systems
with the Substantiation of the Correctness of Their Operation”, Cybernetics and Sys-
tems Analysis, vol. 53, no. 1, pp.105-114, New York, USA: Springer Science +
Business Media, January 2017.

Received 15.10.2020

INFORMATION ON THE ARTICLE

Serhii L. Kryvyi, ORCID: 0000-0003-4231-0691, Taras Shevchenko National University
of Kyiv, Ukraine, e-mail: sl.krivoi@gmail.com

Sergiy D. Pogorilyy, ORCID: 0000-0002-6497-5056, Taras Shevchenko National Uni-
versity of Kyiv, Ukraine, e-mail: sdp77@i.ua, sdp@univ.net.ua

Maksym S. Slynko, ORCID: 0000-0001-9667-8729, Taras Shevchenko National Univer-
sity of Kyiv, Ukraine, e-mail: maxim.slinko@gmail.com

Artem A. Kramov, ORCID: 0000-0003-3631-1268, Taras Shevchenko National Univer-
sity of Kyiv, Ukraine, e-mail: artemkramov(@gmail.com

METOJI CEMAHTUYHOI BEPU®IKAIII 3ACTOCYBAHb Y TEXHOJIOI'TI GPGPU /
C.JI. Kpuswii, C.JI. [Toropinuii, M.C. Cinunbko, A.A. Kpamos

AHoTamisi. 3anpONOHOBAHO METOJ PO3poOieHHs Ta BepHdikalii 3acTocyBaHb IS
CHCTEM 3 MacOBHM Iapajeii3MOM Ha OCHOBI Bifeoanantepis Bix komnaHii NVIDIA,

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2020, Ne 3 21

S.L. Kryvyi, S.D. Pogorilyy, M.S. Slynko, A.A. Kramov

SIKMI JTO3BOJIIE CTBOPIOBATU aOCTPaKIii pi3HUX PiBHIB 3a JOIOMOTOIO amapara po3-
MI4eHUX TpaH3HLIAHUX cucTeM. KOMMO3WIii Takux cHCTeM TpaHC()OPMYIOTHCS B
Mepexi [letpi, siki mami aHami3ylOTHCS BiOMOBIAHUMH 3ac00aMu. MeToxI TakoX Jae
3MOTY CTBOPIOBATH MOJEJI Ha Pi3HUX PIiBHAX aOCTpaKiii, a IX BIACTHBOCTI MOXYTb
cnenugikyBatucs GopMylIaMH TEMIIOPANBHOI JIoTiku. Lle 1o3Bosie NOCIimKyBaTH
BJIACTUBOCTI CHCTEM 3 MAaCOBHM IapajeNnizMoM, sIKi Mai)ke HEMOXKJIMBO aHAi3yBaTH
BpY4YHYy, OCKIIbKHM KUIBKICTh HOTOKIB Yy HOBITHIX apXiTEKTypax BiJeoamantepiB
(Pascal, Volta, Amper, Tiopinr), BUAIICHUX A5 BUKOHAHHS KOJY, BUMIPIOETHCS
COTHSIMHU THCSY 200 MiIbiIOHAMH.

Karwuosi cnosa: CUDA, rpadiuni npouecopu (GPU), rpadiuni oGuncnenns
3aranpHoro npusHadeHus (GPGPU), tpan3uniiina cucrema, mepexa Ilerpi, mo0y-
JI0Ba MOJIEI.

METOJ CEMAHTUYECKON BEPU®HUKAIIMA MPUJIOXEHUA B TEXHOJIOIHMH
GPGPU / CJI. Kpsssrid, C.[. IToropemnsriii, M.C. Cnnabko, A.A. Kpamos

Annoramus. [IpemnoxeH MerTon pa3pabOTKM W BepUPHKAUNU HPHIOKEHUIN s
CHCTEM C MAacCOBBIM Iapaijeln3MOM Ha OCHOBE BHJEOAJANTEPOB OT KOMIAHHU
NVIDIA, xoTopslii M03BOISIET CO3AaBaTh aOCTPAaKLUUKM PA3IMYHBIX YPOBHEH C IO-
MOIIBIO anmapara pa3sMEYeHHBIX TPAH3UIMOHHBIX cucTeM. KoMmmosuimy Takux cuc-
TeM TpaHC(HOPMHUPYIOTCS B ceTH [IeTpH, KOTOphIE fallee aHATN3UPYIOTCS COOTBETCT-
BYIOIIUMH CpEACTBaMH. MeTox IO3BOJISIET CO37aBaTh MOJEIM Ha Pa3INIHBIX
YPOBHSX aOCTPAKIMH, a UX CBOMCTBA MOTYT CIIEHU(HIINPOBATECS (GOopMyIaMu TeM-
HOPaJbHOM JIOTMKH. DTO MO3BOJISET MCCIIEI0BATh CBOMCTBA CUCTEM C MAaCCOBBIM I1a-
paJuIeTM3MOM, KOTOpPBIE MPAKTHYECKH HEBO3MOXKHO aHAJIM3MPOBATh BPYUHYIO, TaKk
KaKk KOJMYECTBO MOTOKOB B HOBEHINIMX apXUTeKTypax Buieoamantepos (Pascal,
Volta, Amper, TelOpHHT), BBIICICHHBIX IS BBIIOJHEHUS KOAA, U3MEPAETCS COTHSA-
MH THICSY I MAJUTHOHAMH.

KnroueBbie cioBa: CUDA, rpaduueckue npoueccopsr (GPU), rpadudeckue BbI-
yucnenus obmero HasHadeHus (GPGPU), tpansunmonHas cuctema, ceth Ilerpw,
HOCTPOCHUE MOJEIIH.

22 ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3

