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Abstract. This article takes on solving the problem of multicriteria conditional op-
timization. This problem is one of the most key tasks of the current time and has its
application in many areas. Reuse of various existing algorithms for solving uncon-
strained optimization is proposed. Different methods of multicriteria unconditional
optimization are reviewed. The advantages and disadvantages of each algorithm are
analyzed. The algorithms modified to take into account the constraints. Additional
algorithms of transition from solving an unconditional optimization problem to a
conditional optimization problem are developed. A genetic algorithm SPEA2 was
used to test the developed algorithms. Examples of solving the problem at hand
using the aforementioned algorithms are presented. A comparative analysis of the
final results was conducted.

Keywords: multicriteria optimization, conditional optimization, genetic algorithms,
repairing algorithm, SPEA2, Pareto optimization.

INTRODUCTION

There are a lot of applications in existence that require solving a problem of mul-
ticriteria optimization (MCO). One of the fields used for this goal is artificial
intelligence (Al) studies. An example of this is a process of neural networks
“learning” [1].

At this point in time there are a lot of algorithms for solving multicriteria op-
timization problems. The majority of them are geared towards solving uncondi-
tional optimization problems. One of the most effective ways for this is the usage
of the genetic algorithms (GA). Those stochastic methods, with a condition of
alot of individuals and learning epochs, allow for reaching good solutions.
Because of modern computational methods it’s possible to effectively parallelize
the evolutionary algorithms. It allows for easy usage in solving a broad specter
of different problems: pattern discovery, signal processing, neural network
learning, etc.

The majority of GA are oriented towards solving unconditional problems of
MCO, but actual, real problems always have a plethora of constraints that need to
be considered, and that results in solving a problem of conditional optimization.
This consideration of constraints also requires a modification of the classic GA.
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This article is dedicated to development of GA modifications to allow for
consideration of constraints and solving problems of conditional MCO.

PROBLEM STATEMENT

A set of allowed vector values of X variables is a limited and an enclosed set (eq. 1).
Dy ={X:G(X)20}c {X} =R",

where G(X) is some limitative vector-function; R" is an n-dimensional arithmetic
space, where n equals the power of a set X — | X].
The target vector-function F(X) = (f;(X), f5(X),..., f x| (X)) with values in a

space of targets {F} is described in a rangeDy. A problem of minimizing
F(X)in this range, which means minimizing each of the individual target func-

tions f;(X), f5(X),..., fjx|(X) (optimality criteria) (eq. 2).

min F(X)=F(X )=F",
XEDX

where vector X~ is the solution for a problem at hand.

REVIEW

The solution to the problem of conditional optimization is based on the solution to
the problem of unconditional optimization, so it is worth considering methods of
unconditional optimization. At this point in time there are two main classes of
algorithms: genetic and swarm algorithms. The first class has an advantage in
computational difficulty and the amount of learning epochs [11], for this reason
genetic algorithms are used in this study.

There are different kinds of GA for solving multicriteria optimization prob-
lems. They can be divided in two following groups [5]: lexicographical selection,
alternating criterial functions algorithms and algorithms that use Pareto domi-
nance.

The first kind includes a lexicographic tournament selection algorithm and
its numerous modifications. This algorithm is also sometimes called “naive”

It is reasonably fast and simple, but it requires classification of criteria in re-
gards to their importance.

The second kind includes altering objective functions algorithms, which re-
alizes VEGA algorithm (Vector Evaluated Genetic Algorithm) [16]. It is similar
to “naive” algorithms in terms of evaluating of fitness being reliant on corre-
sponding values of various target functions.

This type of GA also includes predator-prey algorithm. It’s more compli-
cated in terms of computing than lexicographic selection, but the results are more
accurate. It’s empirically proven that with the number of generations rising, the
population of prey is moving towards the Pareto front [14]. A drawback of this
algorithm is a chance of losing optimal solutions. There is a number of modifica-
tions of this algorithm to remove the drawbacks [9].
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The third type includes agent ranging algorithms that is based of Pareto
dominance. One of the realizations is a well-known NGSA algorithm (Non-
dominated Sorting Genetic Algorithm) and its modification, NGSA-II [10].

The third kind also includes the Pareto-power algorithms, that utilize agent
power and it’s wimpiness.

Pareto-power algorithm realizes SPEA (Strength Pareto Evolutionary Algo-
rithm), which evolved into SPEA-2 [4].

The latest agent ranging algorithms based on Pareto-dominance allow for re-
ceiving decent approximation of the Pareto front, leaving the level covering and
rarefaction untouched, which gives more possible choices of the appropriate
solution.

SPEA-2 method is unique and advantageous in the following:

o it includes all of the listed approaches in one algorithm;

o fitness of each individual of the population in this method is decided only
in relation to the individuals of the outside set, with no correlation to dominance
of individuals in the population;

o despite “the best” individuals of the previous generations being stored in
an outside set, all of them are legible for the selection process;

e to prevent premature convergence, SPEA uses a special mechanism for
creating niches, where dividing on the basis of fitness is done not because of the
distance between individuals, but by Pareto-dominance.

Because of reasons stated above, this study utilizes SPEA2 algorithm.

The provided evolutionary algorithms are good at managing unconditional
problems of multicriteria optimization, but during solving problems with con-
straints, the results are not always decent enough [2, 3]:

e it is possible for them to not include the point of conditional maximum;

o the resulting points may be separated in the search area;

e a part of the solutions may lay beyond the margins of the allowed area.

Based on this, the conclusion would be that the evolutionary algorithms
aren’t fit enough for solving problems with constraints and require some modifi-
cations to be made, those modifications taking into account the specifics of the
conditional optimization problem.

Going forward to the problem of conditional optimization, it’s possible to
single out the following methods of solving it [12].

The first method is based on translating the problem of a conditional optimi-
zation to the problem of an unconditional optimization:

e penal functions algorithm [13]. For GA, special algorithms for this meth-
od, there is a method of “lethal” penalties, a method of statistical penalties and a
method of dynamic penalties;

e algorithm based on sliding admittance [12].

The second method includes algorithms that do not use reduction of the
problem down to a problem of the unconditional optimization:

e cach restriction is transformed into a separate target function [6-8];

o the procedure of “repairing” using the local search [17, 18, 20];

e Orvosh-Davis reduction method [15];

e modified complex algorithm [19].
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There are also hybrid methods. For example, method of the behavioral
memory, “repairing” + lethal penalties [12].

The quality of the chosen solutions is dependent on choosing the period of
multicriteria optimization algorithm, where the procedure of “repairing” is used.

PROBLEM SOLUTION

To solve the problem of a conditional MCO, the following algorithms were de-
veloped and researched:

1. Removal of unfit solutions after the algorithm completed.

2. Removal of unfit solutions after each generation of the population.

3. Taking into account the amount of violations by individuals in Pareto-
dominance.

4. Transforming the constraints into additional criteria and solving a multic-
riteria problem with additional criteria.

5. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after the algorithm com-
pleted.

6. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after the algorithm
completed.

7. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration.

8. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after each iteration.

For more extensive research and comparison between the aforementioned
algorithms, the following is a detailed description of each algorithm.

1. Removal of unfit solutions after the algorithm completed.

This method is the simplest and the easiest. After all the generations of
populations, the deletion of unfit individuals follows. But because of the simplic-
ity the amount of fit solutions is not high.

2. Removal of unfit solutions after each generation of the population.

This method is a modification of the former one. The deletion of unfit indi-
viduals after every generation is assumed, but, with the usage of the selection
operator, a new population is generated with the same size. This way a new popu-
lation is only generated using the feasible solutions. With large amount of
iterations, the amount of fit end-results will be close to the starting population
size.

3. Taking into account the amount of constraints violated by individuals in
Pareto-dominance.

After every iteration, before computing the fitness-function each individual
of the population is checked for fitting in the constraints. If the individual is unfit,
it’s marked not feasible, and the amount of constraints that it’s not fit for is saved.

Then, the modification of Pareto-comparison during the formation of fitness-
function follows. The change is, initially the comparison between two individuals
their fitness is checked. If one of them violates the constraints, and the other one
does not, the former is considered dominated by the latter, without taking into
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account it’s values of criteria vector. If both of them are unfit, the dominated one
is chosen on the basis of the amount of constraints it’s unfit for. If both are
feasible, Pareto-comparison between their criteria vectors follows.

In the process of generation of generations, the amount of individuals that
are unfit is reduced, and in large amounts of generations are geared towards 0.
But after the learning process, there may be unfit individuals left, so they are
marked as unfeasible and simply removed from the end solution.

4. Transforming the constraints into additional criteria and solving a
multicriteria problem with additional criteria.

In this method, the transformation of constraints into additional criteria is
used. This way, the problem of multicriteria optimization is transformed and takes
the following form:

The initial problem: Target functions — F(X)— opt, constraints —
G(X)<B.
The transformed problem: Target functions — F(X)— opt,

(G(X)~-B)* —opt.

Next, the basic SPEA2 algorithm is used.

5. Solving a multicriteria optimization problem without taking into account
constraints and “repairing” the unfit solutions after the algorithm completed

This method uses the unfit solution “repairing” algorithm. The “repairing” is
conducted using the Pareto local search method [17, 18, 20]. In this method of
solving the conditional multicriteria problem utilizes learning all of the popula-
tions without taking into account the constraints, and “repairing” all points that
are unfit after.

6. Transformation of constraints into criteria, solving the multicriteria prob-
lem with multiple additional criteria and “repairing” the unfit solutions after the
algorithm completed.

This method also utilizes “repairing” the points at the end, but the learning

functions not only for the target criteria, but also with the transforming the con-
straints into criteria, as it is described in method 4.

7. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration.

This method utilizes learning only on the target functions, but the “repairing” is
used after each generation.

8. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after each iteration.

The last method uses the “repairing” procedure after every iteration, the con-
straints are converted into additional criteria.

RESULTS

To analyze the results and to compare the a for ementioned methods, the fol-
lowing conditional multicriteria optimization problem was solved:

[ =2+(x-2)" +(y-1)%,
f(x,0)=9x—(y 1)

Minimize =
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g1 (x,») = x? +y2 < 225;

Constraints =
g(x,y)=x-3y+10<0.

. . -20<x;
Variables constraints =
y<20.
Real Pareto front looks as shown on Fig. 1.
®
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Fig. 1. Real Pareto front of the solved problem

Firstly, consider the detailed results and examples of SPEA2 algorithm
working using the 3" method, Taking into account the amount of constraints
violated by individuals in Pareto-dominance, to solve the current problem. The
amount of individuals in the population is 5, the amount of generations — 20. For
each variable memory allocated is 5 bits. Integer numbers are coded into bits, and
then into Grey code.

The following is the work of one iteration of the SPEA2 algorithm. For some
of the following generations there will be a table of values of some individuals.

Initially, the following random population was generated:

10100 11111 01110 11001

11101 00001 00010 01100

11111 00101

Firstly, each iteration is allocated a “parent” for new populations, using
a selection operator, that is presented in SPEA2 with a binary tournament.

Binary tournament #1.

Two individuals are consecutively, yet randomly chosen:

11111 00101 u 11111 00101. In this case, the individuals chosen are the
same, so there’s no better one among them. This individual will be the first “parent”.

Binary tournament #2.

The chosen individuals: 11111 00101 u 00010 01100.

The first individual is dominated by the second, so it is chosen as the second
“parent”.

Using the operator “crossover” we get two descendants: 01111 01100 and
10110 00101.

This way, repeating the aforementioned algorithm, 6 more descendants are
generated and, with a certain probability, mutated. Then, the values of the target
functions and constraints are calculated. The intermediary results are in Table 1.
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Table 1. Results of the 1™ generation offspring

Variables Objectives Constraints
10001 00111 102 54 125 35
10100 11101 127 -85 160 -22
01000 01110 51 -45 26 2
10101 11101 132 -76 169 -21
11011 00101 43 -43 20 20
00100 00101 252 -142 185 9

Those are added to the current population. The result is a sum of 11 indi-
viduals. Next step is to calculate the values of fitness-functions, which are lower
than 1. Going forward, if the size of the population is lower than the preassigned
value, the dominated elements with the best fitness-function are added, else — the
worst individuals are removed. The new population is shown in Table 2.

Table 2. Details of the 2™ population

Gray Gray
binary| x |binary| y | fi(x,») |2 (x,»)|RG)| D@G) | F(i) |g(x,y)|g,(x,y)|Passes
x y
10100 | 4 |11111]11 106 -64 0 0,013 |0,013| 137 -19 True
01110| -9 |11001| 7 159 -117 0 | 0,013 |0,013| 130 -10 True
11101| 2 |00001|-9| 102 -82 8 | 0,015 | 8,01 85 39 False
00010 |-17|01100| -2 | 372 -162 9 | 0,003 {9,003 293 -1 False
11111] 1 |00101| -4 28 -16 6 | 0,009 | 6,01 17 23 False

After the operations and generation of the new generations, as well as SPEA2 algo-
rithm usage are concluded, the resulting individuals are only non-dominated. The ex-
amples of populations on 5™ and on the last 20" generations are shown in Table 3 and
Table 4 respectively.

Table 3. Details of the 5™ population

Gray Gray
binary| x |binary| y |fi(x,»)|/2(x,¥)| RG) | DG) | FG) |g1(x,)|g2(x,y)|Passes
X Y
11110 0 | 11100} 13 | 150 -144 0 [0,026|0,026| 169 -29 True
10100 | 4 | 11111} 11 | 106 -64 0 0,5 | 0,5 137 -19 True
10100 | 4 |11110( 10 87 -45 0 [0,034]0,034| 116 -16 True
10100 | 4 |11101| 12 | 127 -86 0 [0,031]0,031| 160 -22 True
10100 | 4 | 11111} 11 | 106 -64 0 0,5 | 0,5 137 -19 True
Table 4. Details of the 20" population
Gray Gray
binary | x |binary|y |fi(x,»)|f2(x,») |RG)| DG) | F@i) |g1(x,»)|g,(x,y)|Passes
X y
11010 | -1 | 01011 | 3 15 -13 0 {0,081 | 0,081 10 0 True
11000 | -4 | 11001 | 7 74 =72 0 10,046 | 0,045 65 -15 True
11010 | -1 | 11001 | 7 47 -45 0 10,038 0,038 50 -12 True
11101 | 2 | 11101 (12| 123 -103 0 |0,015(0,014 | 148 -24 True
11000 | -4 | 11101 |12] 159 -157 0 10,008 | 0,008 | 160 -30 True
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It should be noted that, after using this method, every individual fits.
A graphical illustration of the real Pareto front and 5 points, the trained indi-
viduals, are on Fig. 2.

0 ' 2 Real Pareto front
8 ®  Result point
-50
< *s, o
100 ® .
T ‘ -
-150
. i !.
-200 =
0 50 100 150 200

f1{x)

Fig. 2. Real Pareto front and five result individuals

As it is shown, even a small amount of iterations allows for great resulting
solutions to a multicriteria optimization problem.

The following is an example of work and the results of each described
method on the problem. Each algorithm initially used 100 individuals.

1. Removal of unfit solutions after the algorithm completed.

After learning a population of 100 individuals, only 27 fitted. Fig. 3 shows
all of the individuals, and Fig. 4 shows only the fit ones.

0 Real Pareto front
Not feasible
-100
=200
———
X
w2300
-400
.
-500 L
L
0 200 400 600 800

Fig. 3. Unsatisfactory individuals for the 1¥ method

2. Removal of unfit solutions after every generation of the population.
In the end, 43 unique solutions are correct. Fig. 5 is visualization.
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Fig. 4. Resulting individuals satisfying constraints for the 1* method
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Fig. 5. Resulting individuals for the 2" method

3. Taking into account the amount of violations by individuals in Pareto-
dominance.

This method allows us to get a population with all points being fit, but only
42 of them are unique. The data is shown on Fig. 6.

4. Transforming the constraints into additional criteria and solving a multic-
riteria problem with additional criteria.

A simple transformation of constraints into criteria shows bad results. Only
19 non-dominated points under 4 criteria (2 real + 2 constraints) have passed.
Of them, only 7 are non-dominated by two target criteria. In the end, 93 results
were removed. Fig. 7 visualizes the full population, and Fig. 8 shows the end
results.

5. Solving a multicriteria optimization problem without taking the
constraints into account and “repairing” the unfit solutions after the algorithm
completed.
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In this case the “repairing” procedure allows us to get the fit points, but all of
them are not better than the original set of fit points 9 unique results were ac-
quired. Fig. 9 and Fig. 10 contains the visualization.
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Fig. 6. Resulting population for the 3™ method
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Fig. 7. Resulting population for the 4™ method

6. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after the algorithm com-
pleted.

In this case the “repairing” procedure allows us to get the fit points, but all of
them are not better than the original set of fit points. 9 unique results were
acquired. Fig. 9 and Fig. 10 contains the visualization.

7. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after the algorithm
completed.

In this case of an additional transformation into criteria the procedure of “re-
pairing” allows for better results: 34 cured solutions, 11 of them are unique,
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19 satisfactory solutions and overall result is 12 solutions. Fig. 11 shows the unfit
individuals, and Fig. 12 shows the end results.

® 3 Real Pareto froni
) o Nondominated feasible points
0 : ®  Feasible points
=50
=
WO 100 ®
»
-150
-200
8] 50 100 150 200
f1{x)
Fig. 8. Resulting non-dominated individuals for the 4™ method
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Fig. 9. Not feasible and repaired individuals for the 5™ method

In this case of an additional transformation into criteria the procedure of “re-
pairing” allows for better results: 34 cured solutions, 11 of them are unique, 19
satisfactory solutions and overall result is 12 solutions. Fig. 11 shows the unfit
individuals, and Fig. 12 shows the end results.

8. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration.

Learning without taking constraints into account and “repairing” after each
iteration allows for decent results: 42 unique end solution. Fig. 13 is a visuali-
zation.

9. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration.
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Fig. 10. Resulting individuals for the 5™ method
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Fig. 11. Not feasible and repaired individuals for the 6" method

Learning without taking constraints into account and “repairing” after
each iteration allows for decent results: 42 unique end solution. Fig. 13 is
a visualization.
10.Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration.
Learning without taking constraints into account and “repairing” after each
iteration allows for decent results: 42 unique end solution. Fig. 13 is a visualiza-
tion.
11.Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after each iteration.
This method allows to get the whole population non-dominated by 4 criteria,
but by the target criteria only 24 individuals are non-dominated. (Fig. 14)
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Fig. 12. Non-dominated resulting individuals for the 6™ method

These results suggest that of the methods used, the best one is also one of the
simplest: removal unfit individuals after each iteration. This method also does not
require major SPEA2 modifications.

50 x {3 Real Pareto front
»® #  Feasible points

f>(x)

50 100 150 200

f(x)

Fig. 13. Resulting non-dominated individuals for the 7" method

The same results were achieved using a method of saving the amount of vio-
lated constraints for further dominance checking during the computing of the fit-
ness-function. This method requires some modifications to SPEA2, but those are
minor and do not complicate the algorithm too much.

Another method got results, similar to the aforementioned ones. It’s
a method of “repairing” the individuals after each iteration. It requires much more
intermediary computations that complicate the algorithm quite a bit, but the re-
sults are better.
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Fig. 14. Resulting individuals for the 8" method

By the means of all gathered data, we are able to come to a conclusion that
transforming the constraints into criteria does not give an advantage, and the “re-
pairing” method requires more computational time that does not give high-quality
results.

CONCLUSION

The results showed that using the SPEA2 algorithm allows to accurately solve the
problem of multicriteria optimization. The methods considered above showed that
by modifying SPEA?2 it is possible to easily switch from solving the unconditional
optimization problem to solving the conditional optimization problem.

The result analysis allows for a following conclusion: the best method for
the problem at hand is a simple method of removing the unfit individuals after
each iteration as well as the algorithm with repairing after each iteration. Of 100
initial individuals, 43 of the resulting ones were unique and formed a resulting
Pareto front of solving the conditional multicriteria optimization problem.
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BAI'ATOKPUTEPIAJIBHA YMOBHA ONTUMI3ZAIISA HA OCHOBI TEHETHYHUX
AJITOPUTMIB / B.M. Cusnernasos, K./I. Pszanoscekuii, O.1. UymadeHko

AHoTanisi. PosrnsgHyTo mpobnemy OaraTokpuTepialbHOI yMOBHOI ONTHMI3arii,
PO3B’sI3aHHS SKOi HATENep € HaWBaXKJIMBILIMM 3aBIaHHSAM Ul 0araTboX rajyseil.
3anponoHOBaHO MOBTOPHE BUKOPUCTAHHS iCHYIOUHX aJTOPUTMIB pO3B’SI3aHHS 0e3-
yMOBHO{ ontuMizauii. PO3ristHyTO pi3Hi aJiropuT™MH GaraTokpuTepiabHOI 0e3yMOB-
HOT onTuMi3auii. [IpoaHanizoBaHo mepeBary Ta HEJONIKM KOXKHOTO AJITOPUTMY. AJ-
roputMu  MoAu(iKOBaHO Uil BpaxyBaHHS oOOMeXeHb. Po3po0ieHo 101aTKOBI
AITOPUTMH TIEPEeXOy BiJ pO3B’s3aHHs 3aadi Oe3yMOBHOI omTUMI3alii g0 3amadi
YMOBHOI ONTHMi3allii, Ul TECTyBaHHs SKUX BUKOPHCTAHO I'€HETUYHUH aJIrOpHTM
SPEA2. HaBeneHo mpuKiIagy BUPIIIEHHS MOCTABICHOTO 3aBJaHHSA 3 BUKOPHC-
TaHHSAM 3raJIaHUX aJrOPUTMiB. BUKOHAHO MOPIBHSIBHUIA aHAN3 OCTAaTOYHHX pe-
3yJIBTATIB.

KiouoBi cioBa: OaratokpurepianbHa ONTUMI3allisg, YMOBHA ONTHMIi3allisl, TEHETH-
YHHUI aNTOpUTM, alnroput™ JikyBanHs, SPEA2, [Tapeto ontumizamis.

MHOTI'OKPUTEPUAJIBHASI YCJIIOBHASI OINTHUMHU3ALIMSL HA OCHOBE
TEHETHUYECKUX AJITOPUTMOB / B.M. Cunernazos, K.JI. Ps3anoBckuii, E.1. Uymauenko

AHHoOTanus. PaccmoTtpena npobiemMa MHOTOKPUTEPHATIBHOM YCIIOBHOW ONTHMM3a-
LMY, PEeLIEHHE KOTOPOH SBISETCS OJHOM M3 Ba)XKHEHIIMX 3a/1a4 HACTOSILIEro BpeMe-
HHU A1 MHOTHX oOnactei. IIpeanoskeHo MOBTOPHOE HCIIONB30BAHHE CYIIECTBYIO-
KX AJTOPUTMOB peUIeHHs 0e3yCIOBHOH ONTMMH3anuK. PaccMOTpeHSB! pas3imdHbIe
QITOPUTMBI MHOTOKPHTEPHAIBHOH Oe3ycioBHOH ontumum3anuu. IIpoananusupoBa-
HBI JJOCTOMHCTBA U HEIOCTATKH KaXKAOTO ajJropuT™Ma. AJITOPUTMBI MOAU(DHIPOBA-
HBI JUIs y4eTa orpaHudeHuil. Pa3paboTaHbl JOMOIHUTENBHBIE aJrOPUTMBI IIEpexoa
OT pellIeHHs 3a1a4n 6e3yCIOBHON ONTUMH3ALHUK K 3a/[aue YCIOBHOH ONTUMM3AINY,
IS TECTUPOBAHUS KOTOPBIX UCIONIB30BaH renernyeckuii anroput™m SPEA2. Ilpuse-
JICHBI TIPUMEpPHI PEIICHUsS] MOCTABICHHOH 3a/auil C HCIIOIb30BAHHEM YIOMSIHYTBIX
anroputMoB. [IpoBesieH cpaBHUTENBHBIN aHATH3 OKOHYATEIbHBIX PE3yIbTATOB.

KiioueBble cj10Ba: MHOrOKpUTEpUAIbHAS ONTHMH3ALMs, YCIOBHAS ONTHMH3ALU,
TeHETHYECKUI alIropuT™, anroputm jgeuenus, SPEA2, [lapero ontumuszanusi.
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