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Abstract. This article takes on solving the problem of multicriteria conditional op-
timization. This problem is one of the most key tasks of the current time and has its 
application in many areas. Reuse of various existing algorithms for solving uncon-
strained optimization is proposed. Different methods of multicriteria unconditional 
optimization are reviewed. The advantages and disadvantages of each algorithm are 
analyzed. The algorithms modified to take into account the constraints. Additional 
algorithms of transition from solving an unconditional optimization problem to a 
conditional optimization problem are developed. A genetic algorithm SPEA2 was 
used to test the developed algorithms. Examples of solving the problem at hand 
using the aforementioned algorithms are presented. A comparative analysis of the 
final results was conducted. 

Keywords: multicriteria optimization, conditional optimization, genetic algorithms, 
repairing algorithm, SPEA2, Pareto optimization. 

INTRODUCTION 

There are a lot of applications in existence that require solving a problem of mul-
ticriteria optimization (MCO). One of the fields used for this goal is artificial 
intelligence (AI) studies. An example of this is a process of neural networks 
“learning” [1]. 

At this point in time there are a lot of algorithms for solving multicriteria op-
timization problems. The majority of them are geared towards solving uncondi-
tional optimization problems. One of the most effective ways for this is the usage 
of the genetic algorithms (GA). Those stochastic methods, with a condition of 
a lot of individuals and learning epochs, allow for reaching good solutions. 
Because of modern computational methods it’s possible to effectively parallelize 
the evolutionary algorithms. It allows for easy usage in solving a broad specter 
of different problems: pattern discovery, signal processing, neural network 
learning, etc. 

The majority of GA are oriented towards solving unconditional problems of 
MCO, but actual, real problems always have a plethora of constraints that need to 
be considered, and that results in solving a problem of conditional optimization. 
This consideration of constraints also requires a modification of the classic GA. 
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This article is dedicated to development of GA modifications to allow for 
consideration of constraints and solving problems of conditional MCO. 

PROBLEM STATEMENT 

A set of allowed vector values of X variables is a limited and an enclosed set (eq. 1). 

 n
X RXXGXD  }{}0)(:{ ,  

where )(XG is some limitative vector-function; nR is an n-dimensional arithmetic 
space, where n equals the power of a set X – |X|. 

The target vector-function ))(),...,(),(()( ||21 XfXfXfXF X with values in a 

space of targets {F} is described in a range XD . A problem of minimizing 

)(XF in this range, which means minimizing each of the individual target func-

tions )(),...,(),( ||21 XfXfXf X (optimality criteria) (eq. 2). 

 **)()(min FXFXF
XDX




,  

where vector X* is the solution for a problem at hand.  

REVIEW 

The solution to the problem of conditional optimization is based on the solution to 
the problem of unconditional optimization, so it is worth considering methods of 
unconditional optimization. At this point in time there are two main classes of 
algorithms: genetic and swarm algorithms. The first class has an advantage in 
computational difficulty and the amount of learning epochs [11], for this reason 
genetic algorithms are used in this study. 

There are different kinds of GA for solving multicriteria optimization prob-
lems. They can be divided in two following groups [5]: lexicographical selection, 
alternating criterial functions algorithms and algorithms that use Pareto domi-
nance. 

The first kind includes a lexicographic tournament selection algorithm and 
its numerous modifications. This algorithm is also sometimes called “naïve” 

It is reasonably fast and simple, but it requires classification of criteria in re-
gards to their importance.  

The second kind includes altering objective functions algorithms, which re-
alizes VEGA algorithm (Vector Evaluated Genetic Algorithm) [16]. It is similar 
to “naïve” algorithms in terms of evaluating of fitness being reliant on corre-
sponding values of various target functions. 

This type of GA also includes predator-prey algorithm. It’s more compli-
cated in terms of computing than lexicographic selection, but the results are more 
accurate. It’s empirically proven that with the number of generations rising, the 
population of prey is moving towards the Pareto front [14]. A drawback of this 
algorithm is a chance of losing optimal solutions. There is a number of modifica-
tions of this algorithm to remove the drawbacks [9]. 
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The third type includes agent ranging algorithms that is based of Pareto 
dominance. One of the realizations is a well-known NGSA algorithm (Non-
dominated Sorting Genetic Algorithm) and its modification, NGSA-II [10].  

The third kind also includes the Pareto-power algorithms, that utilize agent 
power and it’s wimpiness.  

Pareto-power algorithm realizes SPEA (Strength Pareto Evolutionary Algo-
rithm), which evolved into SPEA-2 [4].  

The latest agent ranging algorithms based on Pareto-dominance allow for re-
ceiving decent approximation of the Pareto front, leaving the level covering and 
rarefaction untouched, which gives more possible choices of the appropriate 
solution.  

SPEA-2 method is unique and advantageous in the following: 
 it includes all of the listed approaches in one algorithm; 
 fitness of each individual of the population in this method is decided only 

in relation to the individuals of the outside set, with no correlation to dominance 
of individuals in the population; 

 despite “the best” individuals of the previous generations being stored in 
an outside set, all of them are legible for the selection process; 

 to prevent premature convergence, SPEA uses a special mechanism for 
creating niches, where dividing on the basis of fitness is done not because of the 
distance between individuals, but by Pareto-dominance. 

Because of reasons stated above, this study utilizes SPEA2 algorithm. 
The provided evolutionary algorithms are good at managing unconditional 

problems of multicriteria optimization, but during solving problems with con-
straints, the results are not always decent enough [2, 3]: 

 it is possible for them to not include the point of conditional maximum; 
 the resulting points may be separated in the search area; 
 a part of the solutions may lay beyond the margins of the allowed area. 
Based on this, the conclusion would be that the evolutionary algorithms 

aren’t fit enough for solving problems with constraints and require some modifi-
cations to be made, those modifications taking into account the specifics of the 
conditional optimization problem. 

Going forward to the problem of conditional optimization, it’s possible to 
single out the following methods of solving it [12]. 

The first method is based on translating the problem of a conditional optimi-
zation to the problem of an unconditional optimization: 

 penal functions algorithm [13]. For GA, special algorithms for this meth-
od, there is a method of “lethal” penalties, a method of statistical penalties and a 
method of dynamic penalties; 

 algorithm based on sliding admittance [12]. 
The second method includes algorithms that do not use reduction of the 

problem down to a problem of the unconditional optimization: 
 each restriction is transformed into a separate target function [6–8]; 
 the procedure of “repairing” using the local search [17, 18, 20]; 
 Orvosh-Davis reduction method [15]; 
 modified complex algorithm [19]. 
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There are also hybrid methods. For example, method of the behavioral 
memory, “repairing” + lethal penalties [12]. 

The quality of the chosen solutions is dependent on choosing the period of 
multicriteria optimization algorithm, where the procedure of “repairing” is used. 

PROBLEM SOLUTION 

To solve the problem of a conditional MCO, the following algorithms were de-
veloped and researched: 

1. Removal of unfit solutions after the algorithm completed. 
2. Removal of unfit solutions after each generation of the population. 
3. Taking into account the amount of violations by individuals in Pareto-

dominance. 
4. Transforming the constraints into additional criteria and solving a multic-

riteria problem with additional criteria.  
5. Solving a multicriteria optimization problem without taking the con-

straints into account and “repairing” the unfit solutions after the algorithm com-
pleted. 

6. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after the algorithm 
completed. 

7. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration. 

8. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after each iteration. 

For more extensive research and comparison between the aforementioned 
algorithms, the following is a detailed description of each algorithm. 

1. Removal of unfit solutions after the algorithm completed.  
This method is the simplest and the easiest. After all the generations of 

populations, the deletion of unfit individuals follows. But because of the simplic-
ity the amount of fit solutions is not high.  

2. Removal of unfit solutions after each generation of the population.  
This method is a modification of the former one. The deletion of unfit indi-

viduals after every generation is assumed, but, with the usage of the selection 
operator, a new population is generated with the same size. This way a new popu-
lation is only generated using the feasible solutions. With large amount of 
iterations, the amount of fit end-results will be close to the starting population 
size.  

3. Taking into account the amount of constraints violated by individuals in 
Pareto-dominance. 

After every iteration, before computing the fitness-function each individual 
of the population is checked for fitting in the constraints. If the individual is unfit, 
it’s marked not feasible, and the amount of constraints that it’s not fit for is saved. 

Then, the modification of Pareto-comparison during the formation of fitness-
function follows. The change is, initially the comparison between two individuals 
their fitness is checked. If one of them violates the constraints, and the other one 
does not, the former is considered dominated by the latter, without taking into 
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account it’s values of criteria vector. If both of them are unfit, the dominated one 
is chosen on the basis of the amount of constraints it’s unfit for. If both are 
feasible, Pareto-comparison between their criteria vectors follows. 

In the process of generation of generations, the amount of individuals that 
are unfit is reduced, and in large amounts of generations are geared towards 0. 
But after the learning process, there may be unfit individuals left, so they are 
marked as unfeasible and simply removed from the end solution.  

4. Transforming the constraints into additional criteria and solving a 
multicriteria problem with additional criteria. 

In this method, the transformation of constraints into additional criteria is 
used. This way, the problem of multicriteria optimization is transformed and takes 
the following form: 

The initial problem: Target functions — opt)( XF , constraints — 

BXG )( . 

The transformed problem: Target functions — ,opt)( XF  

opt))(( 2  BXG . 

Next, the basic SPEA2 algorithm is used.  
5. Solving a multicriteria optimization problem without taking into account 

constraints and “repairing” the unfit solutions after the algorithm completed 
This method uses the unfit solution “repairing” algorithm. The “repairing” is 

conducted using the Pareto local search method [17, 18, 20]. In this method of 
solving the conditional multicriteria problem utilizes learning all of the popula-
tions without taking into account the constraints, and “repairing” all points that 
are unfit after. 

6. Transformation of constraints into criteria, solving the multicriteria prob-
lem with multiple additional criteria and “repairing” the unfit solutions after the 
algorithm completed. 

This method also utilizes “repairing” the points at the end, but the learning 
functions not only for the target criteria, but also with the transforming the con-
straints into criteria, as it is described in method 4. 

7. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration. 

This method utilizes learning only on the target functions, but the “repairing” is 
used after each generation.  

8. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after each iteration. 

The last method uses the “repairing” procedure after every iteration, the con-
straints are converted into additional criteria. 

RESULTS 

To analyze the results and to compare the a for ementioned methods, the fol-
lowing conditional multicriteria optimization problem was solved: 
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Real Pareto front looks as shown on Fig. 1. 

Firstly, consider the detailed results and examples of SPEA2 algorithm 
working using the 3rd method, Taking into account the amount of constraints 
violated by individuals in Pareto-dominance, to solve the current problem. The 
amount of individuals in the population is 5, the amount of generations – 20. For 
each variable memory allocated is 5 bits. Integer numbers are coded into bits, and 
then into Grey code. 

The following is the work of one iteration of the SPEA2 algorithm. For some 
of the following generations there will be a table of values of some individuals. 

Initially, the following random population was generated: 
10100 11111                 01110 11001 
11101 00001                 00010 01100 
11111 00101 
Firstly, each iteration is allocated a “parent” for new populations, using 

a selection operator, that is presented in SPEA2 with a binary tournament. 
Binary tournament #1. 
Two individuals are consecutively, yet randomly chosen: 
11111 00101 и 11111 00101. In this case, the individuals chosen are the 

same, so there’s no better one among them. This individual will be the first “parent”. 
Binary tournament #2.  
The chosen individuals: 11111 00101 и 00010 01100. 
The first individual is dominated by the second, so it is chosen as the second 

“parent”. 
Using the operator “crossover” we get two descendants: 01111 01100 and 

10110 00101. 
This way, repeating the aforementioned algorithm, 6 more descendants are 

generated and, with a certain probability, mutated. Then, the values of the target 
functions and constraints are calculated. The intermediary results are in Table 1. 

Fig. 1. Real Pareto front of the solved problem 
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T a b l e  1 .  Results of the 1st generation offspring 

Variables Objectives Constraints 
10001 00111 102 54 125 35 
10100 11101 127 -85 160 -22 
01000 01110 51 -45 26 2 
10101 11101 132 -76 169 -21 
11011 00101 43 -43 20 20 
00100 00101 252 -142 185 9 

 

Those are added to the current population. The result is a sum of 11 indi-
viduals. Next step is to calculate the values of fitness-functions, which are lower 
than 1. Going forward, if the size of the population is lower than the preassigned 
value, the dominated elements with the best fitness-function are added, else – the 
worst individuals are removed. The new population is shown in Table 2. 

T a b l e  2 .  Details of the 2nd population 

Gray 
binary 

x 
x 

Gray 
binary 

y 
y ),(1 yxf ),(2 yxf R(i) D(i) F(i) ),(1 yxg ),(2 yxg  Passes 

10100 4 11111 11 106 -64 0 0,013 0,013 137 -19 True 
01110 -9 11001 7 159 -117 0 0,013 0,013 130 -10 True 
11101 2 00001 -9 102 -82 8 0,015 8,01 85 39 False 
00010 -17 01100 -2 372 -162 9 0,003 9,003 293 -1 False 
11111 1 00101 -4 28 -16 6 0,009 6,01 17 23 False 

 

After the operations and generation of the new generations, as well as SPEA2 algo-
rithm usage are concluded, the resulting individuals are only non-dominated. The ex-
amples of populations on 5th and on the last 20th generations are shown in Table 3 and 
Table 4 respectively. 

T a b l e  3 .  Details of the 5th population 

Gray 
binary 

x 
x 

Gray 
binary 

y 
y ),(1 yxf ),(2 yxf R(i) D(i) F(i) ),(1 yxg ),(2 yxg  Passes 

11110 0 11100 13 150 -144 0 0,026 0,026 169 -29 True 
10100 4 11111 11 106 -64 0 0,5 0,5 137 -19 True 
10100 4 11110 10 87 -45 0 0,034 0,034 116 -16 True 
10100 4 11101 12 127 -86 0 0,031 0,031 160 -22 True 
10100 4 11111 11 106 -64 0 0,5 0,5 137 -19 True 

 

T a b l e  4 .  Details of the 20th population 

Gray 
binary 

x 
x 

Gray 
binary 

y 
y ),(1 yxf ),(2 yxf R(i) D(i) F(i) ),(1 yxg ),(2 yxg  Passes 

11010 -1 01011 3 15 -13 0 0,081 0,081 10 0 True 
11000 -4 11001 7 74 -72 0 0,046 0,045 65 -15 True 
11010 -1 11001 7 47 -45 0 0,038 0,038 50 -12 True 
11101 2 11101 12 123 -103 0 0,015 0,014 148 -24 True 
11000 -4 11101 12 159 -157 0 0,008 0,008 160 -30 True 
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It should be noted that, after using this method, every individual fits. 
A graphical illustration of the real Pareto front and 5 points, the trained indi-
viduals, are on Fig. 2. 

As it is shown, even a small amount of iterations allows for great resulting 
solutions to a multicriteria optimization problem. 

The following is an example of work and the results of each described 
method on the problem. Each algorithm initially used 100 individuals. 

1. Removal of unfit solutions after the algorithm completed. 
After learning a population of 100 individuals, only 27 fitted. Fig. 3 shows 

all of the individuals, and Fig. 4 shows only the fit ones. 

2. Removal of unfit solutions after every generation of the population. 
In the end, 43 unique solutions are correct. Fig. 5 is visualization. 

Fig. 3. Unsatisfactory individuals for the 1st method 

Real Pareto front 

Not feasible 

Fig. 2. Real Pareto front and five result individuals 

Real Pareto front 

Result point 
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3. Taking into account the amount of violations by individuals in Pareto-
dominance. 

This method allows us to get a population with all points being fit, but only 
42 of them are unique. The data is shown on Fig. 6. 

4. Transforming the constraints into additional criteria and solving a multic-
riteria problem with additional criteria. 

A simple transformation of constraints into criteria shows bad results. Only 
19 non-dominated points under 4 criteria (2 real + 2 constraints) have passed. 
Of them, only 7 are non-dominated by two target criteria. In the end, 93 results 
were removed. Fig. 7 visualizes the full population, and Fig. 8 shows the end 
results. 

5. Solving a multicriteria optimization problem without taking the 
constraints into account and “repairing” the unfit solutions after the algorithm 
completed. 

Fig. 4. Resulting individuals satisfying constraints for the 1st method 

Real Pareto front 

Feasible points 

Fig. 5. Resulting individuals for the 2nd method 

Real Pareto front 

Feasible points 
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In this case the “repairing” procedure allows us to get the fit points, but all of 
them are not better than the original set of fit points 9 unique results were ac-
quired. Fig. 9 and Fig. 10 contains the visualization.  

6. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after the algorithm com-
pleted. 

In this case the “repairing” procedure allows us to get the fit points, but all of 
them are not better than the original set of fit points. 9 unique results were 
acquired. Fig. 9 and Fig. 10 contains the visualization.  

7. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after the algorithm 
completed. 

In this case of an additional transformation into criteria the procedure of “re-
pairing” allows for better results: 34 cured solutions, 11 of them are unique, 

Fig. 6. Resulting population for the 3rd method 

Fig. 7. Resulting population for the 4th method 

Real Pareto front 

Feasible points 

Not feasible 
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19 satisfactory solutions and overall result is 12 solutions. Fig. 11 shows the unfit 
individuals, and Fig. 12 shows the end results. 

In this case of an additional transformation into criteria the procedure of “re-
pairing” allows for better results: 34 cured solutions, 11 of them are unique, 19 
satisfactory solutions and overall result is 12 solutions. Fig. 11 shows the unfit 
individuals, and Fig. 12 shows the end results. 

8. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration. 

Learning without taking constraints into account and “repairing” after each 
iteration allows for decent results: 42 unique end solution. Fig. 13 is a visuali-
zation. 

9. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration. 

Fig. 8. Resulting non-dominated individuals for the 4th method 

Fig. 9. Not feasible and repaired individuals for the 5th method 
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Learning without taking constraints into account and “repairing” after 
each iteration allows for decent results: 42 unique end solution. Fig. 13 is 
a visualization. 

10. Solving a multicriteria optimization problem without taking the con-
straints into account and “repairing” the unfit solutions after each iteration. 

Learning without taking constraints into account and “repairing” after each 
iteration allows for decent results: 42 unique end solution. Fig. 13 is a visualiza-
tion. 

11. Transforming the constraints into criteria, solving the multicriteria prob-
lem with additional criteria and “repairing” the unfit solutions after each iteration. 

This method allows to get the whole population non-dominated by 4 criteria, 
but by the target criteria only 24 individuals are non-dominated. (Fig. 14) 

Fig. 10. Resulting individuals for the 5th method 

Fig. 11. Not feasible and repaired individuals for the 6th method 
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These results suggest that of the methods used, the best one is also one of the 
simplest: removal unfit individuals after each iteration. This method also does not 
require major SPEA2 modifications. 

The same results were achieved using a method of saving the amount of vio-
lated constraints for further dominance checking during the computing of the fit-
ness-function. This method requires some modifications to SPEA2, but those are 
minor and do not complicate the algorithm too much. 

Another method got results, similar to the aforementioned ones. It’s 
a method of “repairing” the individuals after each iteration. It requires much more 
intermediary computations that complicate the algorithm quite a bit, but the re-
sults are better. 

Fig. 12. Non-dominated resulting individuals for the 6th method 

Fig. 13. Resulting non-dominated individuals for the 7th method 
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By the means of all gathered data, we are able to come to a conclusion that 
transforming the constraints into criteria does not give an advantage, and the “re-
pairing” method requires more computational time that does not give high-quality 
results. 

CONCLUSION 

The results showed that using the SPEA2 algorithm allows to accurately solve the 
problem of multicriteria optimization. The methods considered above showed that 
by modifying SPEA2 it is possible to easily switch from solving the unconditional 
optimization problem to solving the conditional optimization problem. 

The result analysis allows for a following conclusion: the best method for 
the problem at hand is a simple method of removing the unfit individuals after 
each iteration as well as the algorithm with repairing after each iteration. Of 100 
initial individuals, 43 of the resulting ones were unique and formed a resulting 
Pareto front of solving the conditional multicriteria optimization problem. 
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БАГАТОКРИТЕРІАЛЬНА УМОВНА ОПТИМІЗАЦІЯ НА ОСНОВІ ГЕНЕТИЧНИХ 
АЛГОРИТМІВ / В.М. Синєглазов, К.Д. Рязановський, О.І. Чумаченко 

Анотація. Розглянуто проблему багатокритеріальної умовної оптимізації, 
розв’язання якої натепер є найважливішим завданням для багатьох галузей. 
Запропоновано повторне використання існуючих алгоритмів розв’язання без-
умовної оптимізації. Розглянуто різні алгоритми багатокритеріальної безумов-
ної оптимізації. Проаналізовано переваги та недоліки кожного алгоритму. Ал-
горитми модифіковано для врахування обмежень. Розроблено додаткові 
алгоритми переходу від розв’язання задачі безумовної оптимізації до задачі 
умовної оптимізації, для тестування яких використано генетичний алгоритм 
SPEA2. Наведено приклади вирішення поставленого завдання з викорис-
танням згаданих алгоритмів. Виконано порівняльний аналіз остаточних ре-
зультатів. 

Ключові слова: багатокритеріальна оптимізація, умовна оптимізація, генети-
чний алгоритм, алгоритм лікування, SPEA2, Парето оптимізація. 

МНОГОКРИТЕРИАЛЬНАЯ УСЛОВНАЯ ОПТИМИЗАЦИЯ НА ОСНОВЕ 
ГЕНЕТИЧЕСКИХ АЛГОРИТМОВ / В.М. Синеглазов, К.Д. Рязановский, Е.И. Чумаченко 

Аннотация. Рассмотрена проблема многокритериальной условной оптимиза-
ции, решение которой является одной из важнейших задач настоящего време-
ни для многих областей. Предложено повторное использование существую-
щих алгоритмов решения безусловной оптимизации. Рассмотрены различные 
алгоритмы многокритериальной безусловной оптимизации. Проанализирова-
ны достоинства и недостатки каждого алгоритма. Алгоритмы модифицирова-
ны для учета ограничений. Разработаны дополнительные алгоритмы перехода 
от решения задачи безусловной оптимизации к задаче условной оптимизации, 
для тестирования которых использован генетический алгоритм SPEA2. Приве-
дены примеры решения поставленной задачи с использованием упомянутых 
алгоритмов. Проведен сравнительный анализ окончательных результатов. 

Ключевые слова: многокритериальная оптимизация, условная оптимизация, 
генетический алгоритм, алгоритм лечения, SPEA2, Парето оптимизация. 

 
 


