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SIMULATING THE ROTATION OF A BLACK HOLE
AND ANTIGRAVITY
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Abstract. In this article we show that rotation of a black hole can create antigravity
and anti-gravitational waves, given that there is a strong gravity in the black hole,
which distorts time and space. At first, we derived the curvature tensors upon Ein-
stein’s field equation, using spherical polar coordinates, and then calculated the co-
efficients of the curvature tensors to simulate the strength of each component of the
tensors. It is assumed that the stress-energy tensor, which is located outside of the
black hole, can reflect the strength of the gravitational field and the gravitational
waves. As the result, we concluded that, if the time and space are distorted in the
black hole, the rotation can create antigravity and the anti-gravitational waves. In
addition, the result of the simulation shows that the antigravity positively contributes
to the stress-energy tensor, which may expand the size of the Universe.
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INTRODUCTION (RESEARCH QUESTION)

In our previous two researches [1, 2], we reported as follows: the negative flow of
gravitational waves (anti-gravitational waves) must be described by the expres-

sion: —g"g ., =0, while Dirac [3] predicted that, g"’ =0, describes

g po, UV
the gravitational waves. This means that the negative waves move backward from
the direction of the positive flow of the waves. Usually the positive flow and the
negative flow should be balanced; therefore, neither of the positive flow nor nega-
tive flow of gravitational waves is observable. However, when a star moves, the
movement of the mass of the star breaks the balance; and then gravitational waves
of both positive and negative flows appear [1]. Upon this conclusion, we investi-
gated the curvature tensors of gravitational waves that are emitted from a black hole
and found that the tensors of the gravitational waves from a black hole share the same
mathematical forms with the tensors of gravitational field of the black hole [2].

And then, we made the next research to investigate the effect of rotation of
the black hole, assuming that the rotation of the black hole breaks the balance of
positive and negative flows so that anti-gravitational waves would appear. We
also examined, whether or not, the antigravity appears when the black hole rotates
and this antigravity creates the energy that may expand size of the Universe to
larger scale. This article reports the results of these investigations.
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Simulating the rotation of a black hole and antigravity

CURVATURE TENSORS FOR SIMULATION

Gravitational field

According to Einstein and Dirac [3], the gravitational field is described by the
curvature tensors:

re —re —rerb yrerd

uv — Lo,y pv,o uv of pup* va 2

R

where

o 1
ruv =& 0tl—‘otuv =5

2gka(gap,v+gav,p_gpv,a)‘ (1)

Here, g}‘a , are the fundamental tensors that describe the curvature of the

4-dimensional space in spherical polar coordinates, which is diagonal and sym-
metric as shown below:
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And it makes the geodesic of the kind:

1
F;(lxv = gaar(xuv = Eg(xoc (gotu,v + gav,p - gpv,ot) :

Therefore, the equation (1) becomes like this: I =g*T ., =

puv ouv

1 8 . .
=—g% (Copy + Cavy — &uva) » Where go =—%% and x,, is the vector in

2
v -th coordinate.

v

Then, we derived all the components of, R ,,, and then according to Ein-

uv>
stein’s rule (R, = ZRuv ), summated them to obtain:
pv
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R33 =

Here,u and m are constants, where, 1= (3/2+/2m )2/ 3. All other, R, =0.

The non-diagonal components, Ry;and R,,, appear because tand pare not

independent. However, in this research only the space components of the curva-
ture tensors, R;;, R,,,and R;3, are considered.

Gravitational waves

The curvature tensors of gravitational waves, which penetrate the boundary of
a black hole [2], are:

1 1
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Distortion of time and space in strong gravity

Using the curvature tensors, Dirac [3] invented a coordinate system that describes
the gravitational field from the center of strong gravity in a black hole, in which
time and space are distorted by affecting each other. He suggested that if we
travel toward the center of the strong gravity, it takes infinite time to reach the
center. Upon this Dirac’s prescription, we assumed that the time and the dis-
tance between the center of the gravitational field and the edge of the Universe
are as shown in Fig. 1 and Fig. 2.
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Fig. 1. Time and distance from the center Fig. 2. Time and distance from the center
of the gravitational field, Case-1 (non-linear of the gravitational field, Case-2 (linear

distortion): f(r)=lograndg(r)=e" distortion): f(r)=(1/4)and g(r)=r

In these figures, T is a relative time in the coordinate system, which expands
and shrinks depending on the distance », where t=¢+ f(r); and p is the rela-

tive distance, which expands and shrinks depending on the time ¢, where
p=t+g(r);and f(r), and g(r) are functions of r. For the simulation, we as-

sumed Case 1: f(r)=logr, and, g(r)=¢"; and Case 2: f(r)= 1 ,andg(r)=r.
r

Note: r is the distance from the center of strong gravity, ¢ is the time to travel on the
distance, f and g are given functions, and =7+ f(»);and p=¢+g(7).

ALGORITHM

Einstein’s field equation [3] that rules the motion of particles in the gravitational

field is as follows: (R —%g“VR),V =0. Then, R, —%guvR:kT, where T is

the stress-energy tensor and & is a constant [4]. Then, we propose the following

algorithm to calculate the relative intensities of the components of curvature ten-
SOrs:

H:kT_RHV:kT_(ClX1+C2X2 +'+CIXZ),
and
H2 z{kT—(ClX1+CzX2 +“'+CIX1)}2,

where c¢;,...,c; are the coefficients, that create a column vector, c.
And, X =[X; X,---X;], then H =kT—Xc. Then we set the con-
straint, XH =0, then X'(kT — Xc)=0, where X' is transpose matrix of X .

Then, X'Xc=X'kT, c=(X'X)"'X'kT,and =V (c)=0*(X'X)"", where
Vc)= o is the variance of the ¢, and o” = eelln—1), where e=MKkT,

M=1-X(X'X)"X"; n is the number of rows of each column of X (in this
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simulation n =23); /is the number of columns of X ; /is a 23x23 unit matrix
that holds 1 on all diagonal elements and O for the other elements; (X' X )71 is the
inverse matrix of X'X ; and e'is the transpose vector of e . By calculating ¢ and

V(c) , we estimated the relative strength of each component of, R, , to the stress-

u >
energy tensor in the system of spherical polar coordinates.

Rotation of the object that contains strong gravity

When an object rotates as shown in Fig. 3, its coordinate system will be trans-
formed by the transformation matrix D of the Euler’s angles [4]. For the rotation
around one axis, the tensors of the object’s coordinate system will be multiplied

cosqp sing 0
by: D=|—-singp cosep O0].
0 0 1
And then the curvature tensor will be transformed to the following form:
cosp sing O||R; O 0
DR, =|—=sing cos¢ 0|/ 0 Ry 0 |=
0 0 1 0 0 Ry

COSQOR;; sinoR,, O
=|—-sin@R;; cos@R,, 0
0 0 R33

The components of R, before

and after the rotation are shown in
Tables 1 and 2.

For the simulation, we used the
components, cos@R;;, cos¢R,, and

Rs3, which correspond to the coordi-

nates that describe the space coordi-
nates,p, O and¢@. The components of

R;; doesn’t change by the rotation,

under the operation of DR, , because

Dy; =1. We selected these three diago-

nal components for calculating the co-
efficients of the curvature tensors with
the algorithm mentioned above, which
simulates the relative strength of each
components of the curvature tensor to
the stress-energy tensor. However, we
didn’t use the non-diagonal components, —sin@R,; and sin@R,,, because these

Fig. 3. Rotation of an object

are perpendicular to the diagonal components, therefore do not contribute to the
stress-energy tensor.
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SIMULATION
Input data

Time ¢ is set as shown in Fig. 1 for Case-1, and in Fig. 2 for Case-2, with which
its slope to the distance, r, from the center of the gravitational field is a constant.
For simulating the spatial expansion of the gravitational field, we assumed as if 6
becomes larger in far distance. On the other hand, for simulating the flow of grav-
itational waves, we assumed that © becomes smaller in far distance, as shown in
Fig. 4. For simulating the rotation of the object, we set two cases, assuming ¢,

(Rotationl) and ¢, (Rotation 2) also as shown in Fig.4. With these settings,sin0,

cos0,cotB, and cosq of the gravitational field behave like as shown in Fig. 5.
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Fig. 4. Angles 0 and ¢ for simulating gravitational field and gravitational waves

Note: 6,: for gravitational field, 6, : for gravitational waves, ¢,: for the rotation 1,

¢, : for the rotation 2
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Fig. 5. SinB, cosO, cotO, and cos¢ of the simulated gravitational field
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In addition, for this simulation, we set the stress-energy tensor k7 to be 1;
because, the purpose of this simulation is to measure the order of magnitude of

the relative strength of each component of, R

RESULTS

Gravitational field

pv o

to the stress-energy tensor.

The results of simulation for the gravitational filed are shown in Table 1 for
Case-1, and Table 2 for Case-2. The both Tables show the calculated coefficients
of the simulation with no rotation, with the rotation 1 and the rotation 2.

Table 1. Results of the simulation of gravitational field, Case-1

Components cand V' (c) Components cand /V(c) |cand [V (c)
of Ry, of Ry bef’ore of DR, (Rotation 1) | (Rotation 2)
the rotation
1 2,902-107> cos @ -4,255.10° | 1,783-10°
(p-1)° (1,875-10%) (p—1)° (5,078 -10%) | (7,302-10°)
I 3,496-107 _cosQ 1,390-10* | -6,495-10°
(p-1)"" (2.573-10%) (p-1*? 9.997-10%) | (2,272-10%)
1 -1,488-107 cosQ 2,768-107 | -2,996-10’
-0 | (1.064-107) (p—-1)'"" (1,608i -10%) | (1,004-10°)
1 -2,623-10° cos @ 2,676-10% | 1,351-10°%
(- (1,808 1 -10%) (p-v* (85771 -10%) | (4,202-10%)
1 1,000 cos P 0,7787 0,2913
sin” 0 (6,252:107%) sin® @ (0,3866) (0,4413)
, -1,000 5 -2,788 -0,7126
cot”8 (0,5245) cos-cot™ (0,7892) (1.432)
1 -55,86 1 « | -6454.10° | -6,129-10°
(p-7)*sin’0 [(3.877i-10°) | (p-1)*sin®® | (25941 -107) | (2,190-10°)
~ 1 3863 | 1 o -4436:10° | -1,686-10°
(P=0"""sin®0 | 2,6881-10%) | (p—1)'"sin*0 | (17361 .107) | (2.473-10°)
cot’ 0 2,773-1077 cot’ 0 N 2,057-1072 0,2367
sin2 0 (0,2009) sin 0 (0,2481 1) (0,1400)
The values in the brackets are W For example, 1,808 1 - 108=4-3.27-10"° .
* This component corresponds to the coordinate of the axis of the rotation, therefore
cos ¢ is not multiplied.

130

ISSN 1681-6048 System Research & Information Technologies, 2020, Ne 3




Simulating the rotation of a black hole and antigravity

In Case-1 (non-linear distortion of the time and space), the coefficient, ¢, of

cot’ 0

sin’ 0

changes its sign from minus to plus after the rotation of @, (the Rota-

tion 1) and of ¢, (the Rotation 2). The gravity must be negative, and it is so to

the stress-energy tensor when it doesn’t rotate, but it becomes positive to the
stress-energy tensor after the rotations. This result means that the antigravity ap-
pears after the rotation.

Table 2. Results of the simulation of gravitational field, Case-2

Components of cand V' (c) of Components of | . ,nd V(c) |cand /V(c)
R R, before the DR . .
v H ati uv (Rotation 1) | (Rotation 2)
rotation
1 -8,518-107° cosQ 1,278-10* | 5473-10°
2 2
(p-7) (1,896-1072) (p—1) (4,437-10%) | (3,900-10%)
1 1217-1073 cos 2,182-10° | -9,831-102
4/3 4/3
(p—1) (2,820-107%) (p-1) (7,573-10%) | (6,530-10%)
1 0,1086 cos @ 6,724-10* | -3,707-10%
10/3 10/3
(-1 (0,2162) (p—1) (2,833-10%) | (2,353-10%)
1 -0,2701 cos @ 9,317-10* | 4,968-10*
4 4
() (0.5121) (p—1) 4,145-10%) | (3,173-10%)
1 1,000 cos o 16,76 8,595
sin2 0 (1,864-107) sin2 0 (5.815) (4,914)
-1,000 -33,90 9,779
2 2 b 9
cot” 6 (2.679-1075) | Cos@-cot’® (9,405) (9,921)
1 2,229-107 1 « | -1,052-107° | -6,204-10°
4 .. 2 4 . 2
(P—1)7'sin"0 | (4083.10%) | (P—D'sin"0 | (5370.10%) | (4,183-10%)
1 -3 1 2 2
- 3371-107 |- 2,856-10% | -3,109-10
(5,829-107%) . (1,743-10%) | (2,104-10%)
cot’ 0 -1,707-1078 cot’ 0 . 0,1293 8,552-107°
sin2 0 (6,560-107%) sin2 0 (3.106-10%) | (4746-10%)
The values in the brackets are 4/} (¢) . For example, 1,808 i - 108=4/-3.27-10'° .
* This component corresponds to the coordinate of the axis of the rotation, therefore
cos @ is not multiplied.

In addition, the coefficients of

and

cot’ 0

(p-v*

sin’ 0

change these signs from

minus to plus, only for the rotation of ¢, in Case-1. And in Case-2 (linear distor-
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2
tion of time and space), only the coefficients of ! ! and cot 9

(p-0* (p-v*  sin’6
change these signs from minus to plus after the both rotations of, ¢;, and ¢, .

The summation of each of the positive coefficients and the negative coeffi-
cients are shown in Table 5, and in Fig. 6 for Case-1, and Fig. 7 for Case-2. In
case of non-linear distortion of time and space (Case-1), antigravity appears after
the Rotation 2 in Case-1; while in case of linear distortion of time and space
(Case-2), the antigravity appears after both of the Rotation 1 and 2.

M gravity

W antigravity RotatiorZ_ |

Mo rotation

-41.00E+08 -3.00E+08 -2.00E+08 -1,00E+08 O0.00E+00 1.00E+08 2.00E+08

Fig. 6. Gravity and antigravity (Case — 1: non-linear distortion of time and space)

M gravity
W antigravity

Mo rotation

-1,00E+05 -5.00E+04 0.00E+00 5. 00E+04 1,00E+05 1.50E+04

Fig. 7. Gravity and antigravity (Case — 2: linear distortion of time and space)

Gravitational waves

The results of simulation for the gravitational waves are shown in Table 3 for
Case-1 and Table 4 for Case-2. For the gravitational waves the coefficients of the
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curvature tensors are positive to the stress-energy tensor; while the negative coef-
ficients represent the anti-gravitational waves.

Table 3. Results of the simulation of gravitational waves, Case-1

Componentsof | V(c) | Components of

gravitational A cand /V/(c) |cand /V(c)
waves before of gravita- gravitational waves ] )
the rotation tional waves after the rotation Rotation 1 Rotation 2
1 1,200-10* cos 1,185-10% | -1,210-10°
2 2
(p-1) (6,038-107) (P-1) (3,619-10'%) |3,7721 -10%)
1 -84,48 cos 1723104 | 9.443-10°
(p-)*"” (5,520-10°%) (p-1*" (7.669) (8,600 -10°)
1 1,360-107 cos @ 1,450-10° | 9,839-107°
4 4
(P-1) (9,263i-10') (p—1) (6,839 -10"%)|(5,481i -10')
| 1,001 C0s @ 0,1496 | 2,997.107
sin? 0 (1,747-10%) sin? 0 (1,703-10%) | (1.422-10%)
) -1,001 ) 8,722-107% | g884.10">
—cot“ 0 —cot“0*
(1.877-1072) (6,337-107%) | (11,21)
1 -6,752-10° cos @ -7,830-107 | -8,148-107®
4 .. 2 4 . 2
(P—1)7'sin" 0 [4939i-10'")| (P—1)'sin"0 [4291i-10")4,387i -10')
B 1 1,476-107 | cos 1,293-10° | -3.424-107%
( —T)10/3Sin29 . 11 10/3 - 26 . 13 . 12
P (7,651 -10'| (P—7) " "7sin" 02,1331 -10"%)|(2,597 i -10'?)
1 -1,544-107 080 -1,335-10° | 4,209-107%
10/3
(p-1) 77831 -101h] (-0 (1,668 -10") (2,913 -10'?)
1 _ -4.509-10* cos @ -3,890-10° | 4.601.10°
(p—1) (1,953-10%) (p-7"" (1437-10'"y | (1,723
cos 0 2,996-10’ cos - cos0 2,889-107% | 1,859-10*
sin* 0 (0,1763) sin* 0 (11,36) (5,165)
1, 1,876-10* | 3,842-1072
- - 2
(P-7) 6.619-10%) | (5.644-10°)

The values in the brackets are /' (c) . For example, 1,808 i 108=4/-3.27-10' .

* This component corresponds to the coordinate of the axis of the rotation, therefore
COS ( is not multiplied.
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Table 4. Results of the simulation of gravitational waves, Case-2

¢ and
Compons et oy | Comentont et 70 < and 70
fore the rotation | gravitational | ~after the rotation Rotation 1 Rotation 2
waves
1 2.335.1072 cos @ -2,080-10* | 3,964-10°
(p-1)° (21,38) (p-1)° (7,251-10°) | (1,428-10%)
1 -1,708-1073 cos @ 1,220-10° | -5,052-102
(p-0*" (1,511) (P-0** | 4052-10%) | (9,136-10%)
1 1,217 cos ¢ -1,463-10° | 3,541-10°
(p-1)* (1,140-10%) (p-1)* (6,858-10°) | (2,.825-10%)
1 1,000 cos ¢ 0,8678 0,8594
sin% 0 (9,834-107) sin2 0 (0,3550) (0,7481)
s -1,000 o, 5,531:107 | 8384107
cot™0 (2,405-107) cot™0 (2318-107) | (6,984-107%)
1 -0,9864 cos @ 1,169-10° | -2,773-10°
(p-1)*sin?0 | (9,137-10%) | (p-1)*sin’O (5,448-10%) | (2,218-10°)
B 1 -0,1682 | cos @ 1,568-10° | -3,016-10°
(p—1)'"3sin? 0| (1,523-10%) | (p—1)'"’sin’ 0| (6,602-10%) | (2,612-10%)
B 1 0,2770 _ cosg -2,829.10° | 6,841-10°
(Pp-0'"7 | @517-10%) P-0" | (1292:10%) | (5,614.10)
1 -2.439.102 cosQ 2,115-10 | 2338.10*
p-v" (22,20) (p-1)" (8,154-10°) | (2391-10%)
cos0 8,679-1071° cosq-cosf 3,683:-107% | -1,286-1072
sin* 0 (1,092-107%) sin® 0 (6,707-107%) | (8,520-107%)
| 30,60 11,74
- a (p-1)* (8,602) (6,283)

cos ¢ is not multiplied.

The values in the brackets are /}V'(¢) . For example, 1,808 1 - 108=4/-3.27-10'° .

* This component corresponds to the coordinate of the axis of the rotation, therefore

In Case-1 (non-linear distortion of time and space), the coefficient, c, of,

cos0
sin 0
1

and, —>
(p—7)

and

1

C(p-1)

10/3 sin26

, changes its sign from plus to minus after the rotation of ¢, (the Rotation 1),

, change these signs from plus to minus

after the rotation of ¢, (the Rotation 2). And in Case-2 (linear distortion of time

134
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and space), the coefficients of and

5> ! 2 -5 change these
(P-1° (P-71) (p-1)

signs from plus to minus after the rotation of ¢; (the Rotation 1), while the
. cos0
coefficient of, ——

sin* 0

(the Rotation 2).

, changes its sing from plus to minus after the rotation of o,

Table 5. Strengths of gravity and antigravity

Case Case-1 Case-2
Gravity Antigravity Gravity Antigravity
No rotation -2,867- 10° 1,033 -1,282 1,110
Rotation 1 -3,066-10° 1,390-10* -7,079-10* 1,060-10°
Rotation 2 -3,060-10’ 1,353-10° -3,899.10* 5,516-10*

The summation of each of the positive coefficients and the negative coeffi-
cients are shown in Table 6, and in Fig. 8 for Case-1, and Fig. 9 for Case-2. In
both cases, gravity and antigravity are balanced without the rotation of the black
hole, but the balance is broken after the rotations, then antigravity appears with
the Rotation 2 in Case-1, and with both of the Rotation 1 and Rotation 2 in Case-2.
Also, gravitational waves and anti-gravitational waves are balanced without the

rotation, but they appear when the black hole rotates.

Table 6. Strengths of gravitational waves and anti-gravitational waves

Case -1 Case -2
Case Gravitational |Anti-gravitational| Gravitational |Anti-gravitational
waves waves waves waves
No rotation 2,838-107 -2,224.107 2,517 -2,181
Rotation 1 2,744-10° 2,122-10° 1,348-10° -1,766-10°
Rotation 2 1,409-10° -1,158-10° 4,252-10° -3,075-10°
o Grlavitatic:nal Iwaves
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Fig. 8. Gravitational waves and anti-gravitational waves (Case-1: non-linear distortion of

time and space)
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Fig. 9. Gravitational waves and anti-gravitational waves (Case-2: linear distortion of time
and space)

PHYSICAL MEANING OF THE RESULT

Here, R, —(1/2)g,,R+Ag=kT, is the equation of gravitational field of the
Universe [4], where R, are curvature tensors, named Ricci tensors, g, are fun-
damental tensors, Ruv =R, and, guw=8, where u=v, T is the stress-energy

tensor and k is a constant, and A <0 is the cosmological constant named “dark
energy”, which is a positive contribution to k7" . The above result of our simula-
tion shows that the rotation of the black hole makes positive contribution to the
stress-energy tensor, which may expand the size of the Universe, however it is
unknown if the antigravity is related to the dark energy.

Fig. 6 and Fig.7 show that the gravity and the antigravity are balanced with-
out the rotation, but balance is broken when the black hole rotates. Also, Fig. 8
and Fig. 9 show that the gravitational waves and the anti-gravitational waves are
balanced without the rotation, but the balance is broken when the black hole ro-
tates. This finding is consistent with our previous report [1].

CONCLUSIONS AND RECOMMENDATIONS

In this simulation, assuming that the coordinates of time and space can be dis-
torted in the strong gravity in a black hole, we investigated whether a rotation of a
black hole can produce antigravity and anti-gravitational waves, or not, by calcu-
lating the relative strengths of the components of the curvature tensors of the
black hole, which are measured by the stress-energy tensor that is placed outside
of the black hole, upon Einstein’s field equation. In order to simulate the curva-
ture in the strong gravity, we used the system of the spherical polar coordinates so
that we could simulate rotation of the black hole with Euler’s angles.

The results of the simulation show that the rotating black hole can produce
the antigravity and anti-gravitational waves, if time and space are distorted line-
arly and non-linearly. Also, the results suggest a possible explanation about the
expansion of the Universe.

Further investigations are needed about the process of the time-space distor-
tions and of the angular momentum of the rotation.
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IMITAL[IFIHE MOJIEJIIOBAHHSI OBEPTAHHSI YOPHOI TIPU TA AHTUTPABITAILI
/ U. Manyxi, [1.1. Bigtok

AnoTauisi. ITokazaHo, 110 00epTaHHs YOPHOI JipU MOKE CTBOPUTU aHTUTPABITALIIIO
Ta aHTHIPaBITalliiiHI XBWJII 32 YMOBH, 110 y YOPHIiH Jipi iCHye cuiibHa rpaBiTalis,
sIKa BUKPHUBITIOE 4ac i npocTip. OTpHUMaHO TEH30pH KPUBH3HU HA MiICTaBi PiBHIHHS
nouist EffHInTeiHA 3 BUKOPUCTAHHSIM CEpHYHUX IOJSPHUX KOOPAMHAT, PO3paxoBa-
HO KOoe(il[ieHTH TEeH30piB IS MOJIEIIOBAHHS CHIIM KOXKHOT'O KOMIIOHEHTa TEH30pIB.
3po0IIeHO MPHITYIIEHHS, 110 TeH30p €Heprii-iMITY/IbCy, PO3MIILEHHH 32 MEXaMH 4Op-
HOI AipH, MOXe BimoOpakaTH CHIIy TpaBiTallifHOrO MO i rpaBiTaliiHUX XBHIIb.
VY pesynbTaTi c(hOpMOBAHO TakKWil BUCHOBOK: SIKIIO Yac i HPOCTIP BHKPUBISIIOTHCS
Y YOpHiii aipi, TO 0OepTaHHS MOYKE CTBOPHTH aHTHIPABITALII0 Ta aHTHIPaBiTaliiHi
XBUIIi. Pe3ynbrar MonemoBaHHs NOKa3aB, 10 aHTHUTPaBiTalis pOOUTH MO3UTHBHUN
BHECOK y TEH30p €HEprii iMITyJIbCy, [0 MOXE PO3LIMPHTH po3Mip Beecsity.

KurouoBi cioBa: anTurpaBiTallis, TeH30p KPUBH3HH, TEH30p €HEpPril HaNpyKeHHs,
piBusiHHs EitHiurteiiHa asis mosst.

HMHUTAIIMOHHOE MOJEJIAPOBAHUE BPAIIEHHUSA 4YEPHOM JbIPBI U

AHTUTPABUTAIIUH / 1. Manyku, I1.H. Buiox
AHnHoTanus. Iloka3aHo, 4TO BpallleHHE YEPHOH ABIPBI MOXKET CO3JaTh aHTUIPABU-
TalUI0 U aHTUTPABUTALMOHHbBIE BOJIHBI IIPU YCJIOBHHM, YTO B YEPHOH JIbIpE CYILECT-
BYeT CUJIbHAsl TPAaBUTAIMs, KOTOpasl MCKaXkaeT BpeMs M mpocTpaHcTBo. [lomyuens
TEH30pbl KPUBHU3HBI HA OCHOBAHUM yPAaBHEHUs MOJI DHHINTEHHA C HCIONB30BaHUEM
cdepuyecKuX MONAPHBIX KOOPAMHAT, PACCUMTAHbI KOI(PQULUMEHTH TEH30POB s
MOZENNPOBAHMS CHIIBI KaXI0TO KOMIIOHEHTa TeH30poB. [Ipeamonaraercs, 4ro TeH-
30p SHEPIHU HMITyJIbCa, PACIIONOKEHHBIN 3a MpeaenaMy YepHOH ABIPHI, MOXKET OT-
paXkaTh CHJIy TPaBHTAlMOHHOTO IIOJII M TPAaBUTAalMOHHEIX BOJH. B pesynbrate
chOopMyIUpPOBaH BEIBOJ: €CIH BPEMsI M IPOCTPAHCTBO UCKPUBILSIIOTCSI B YSPHOU JIbI-
pe, BpallleHHe MOXET CO3JaTh aHTUIPaBUTALMIO U AHTUIPABUTALIOHHBIC BOJIHBL.
PesynbpTar MOIENUpPOBAHUS IOKA3aJ, YTO AHTUIPABUTALUS JejaeT I[O3UTUBHBII
BKJIaJ] B TEH30p SHEPTHM HMITyJIbCa, YTO MOXKET PAaCUIMPUTH pazmep BceneHHOI.

KiroueBble ¢10Ba: aHTUTpaBUTALUS, TEH30P KPUBU3HBL, TCH30p PHEPrUM HAIpsDKE-
HUsl, ypaBHEHHE DUHINTEHA IS 110,
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