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MODELING OF CONTACT INTERACTION OF A HEATED
PLANE RIGID ELLIPTICAL PUNCH WITH A TRANSVERSALLY
ISOTROPIC ELASTIC HALF-SPACE

V.S. KIRILYUK, O.I. LEVCHUK, V.V. GAVRILENKO, M.B. VITER

Abstact. On the base of a rigorous mathematical model, the problem of the contact
interaction of a heated flat punch of an elliptical section with a transversely isotropic
elastic half-space is investigated. It is assumed that the half-space surface is the
isotropy plane of a transversely isotropic material, and also that there is a smooth
(without friction) contact. Expressions of contact stresses and displacements of a
heated flat elliptical punch are found explicitly. In the form of a simple inequality, a
condition for separating the elastic material from the surface of a flat elliptical punch
is obtained. Numerical calculations are carried out. Contact interaction of a heated
flat punch is studied taking into account the separation of material from the punch.

Keywords: mathematical model, contact interaction, elastic half-space, transver-
sally-isotropic material, plane elliptical punch, heating, stress distribution, domain of
material separation.

INTRODUCTION

Currently, methods for solving spatial problems of contact interaction for iso-
tropic elastic bodies are quite well developed. Among the papers on this topic,
classical monographs [1-5], as well as articles [6—8], can be noted. However, the
solution of spatial contact problems for transversely isotropic bodies is associated
with significant mathematical difficulties, since the initial system of equations for
determining the stress state has a more complex structure. Contact problems of
thermoelasticity for a transversely isotropic half-space were studied in [8§—10]
and others. An approach was used in [9, 10] that allows one to investigate prob-
lems only for a circular contact region. In [8], the contact problem of thermoelas-
ticity is studied with a special distribution of the temperature field on the surface
of the punch, which is proportional to the contact pressure under the paraboloidal
punch. In the papers [11-15] and [16-21], spatial problems for transversely-
isotropic elastic and electroelastic bodies respectively were considered. At the
same time, analytical solutions of spatial contact problems for transversely
isotropic elastic bodies were not obtained when hard punch heated in an arbitrary
manner.

In this paper, the problem of thermoelasticity on the indentation of a heated
plane hard punch of elliptical cross-section into a transversely isotropic elastic
half-space is considered. Expressions of contact stresses and displacements of a
heated flat elliptical punch are found explicitly. In the form of inequality, the rela-
tionship between the values of the indentation force, the heating temperature, and
the thermoelastic properties of a transversely isotropic material is obtained, which
makes it possible to predict the appearance of a material separation zone under a
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flat elliptical punch (for given force and temperature influences). The influence of
material properties, heating temperature, and indentation force on the distribution
of contact pressure is investigated. It is shown that the appearance of separation
(peeling) of the material significantly affects the type of the distribution of contact
stresses under the punch.

Formulation of the problem. Let us consider a transversely isotropic half-
space that occupies a region z <0 and into which a heated flat hard punch of el-
liptical section is pressed without friction. We assume that the axis 0z coincides
with the axis of symmetry of the transversely isotropic material. The boundary
conditions on the surface of the half-space have the following form:

0,,=0,,=0,2=0;0,=0, (x,))¢Q;
T(x,,0) =Ty(x, ), (x,¥) € LTy (x, ¥) 00 = 0;
T(x,,0)=0,(x,y) € R*\Q;
u (x,5,0)=38, (x,y)€Q, (1)

where Q:x*/a” +y?/b*<1; T(x,y,0)>0 — punch heating temperature; & —
unknown displacement value. The indentation force applied in the center of the

punch is related to the contact pressure by the ratio P = ” p(x,y)dxdy , where
Q
p(x,y) is the unknown contact pressure.

Basic relations. The equations of stationary thermoelasticity for an elastic
transversely isotropic medium in the absence of body forces and heat sources in
the body according to [8] can be written as

*u, 1 o%u o%u
-t (011 )/ tCu—— +
ox? 6y2 oz

b

0 1( )au ( ) ﬁ
+—| = + + .
x| 2 1 tepp oy C13 T Cyy o

2 2 2
1 o“u o“u o“u

—(c) —Cpp)—-+c Ztc L4
B 11 12 6x2 11 6y2 44 822

0
+—[ (eny +C12) +(cp3 +C44)—} B—:
Oox oz Oy

L2
O*u, d%u %u o(ou, Ou, oT
c L4 —= |+¢ Zt(epytep)—| —+—|=B—; @
44[ PP J B2 (c13 44)82 x oy P o (2)
O°T | ox* + 02T | oy* +ny0°T 1 62° =0.
In the above expressions, c; are elastic constants; f, B;, ny — constants

depending on the thermophysical properties (thermal conductivity and thermal
linear expansion coefficients) of the material. The solution of the system of equa-
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tions (2) can be represented by means of four potential functions ®; (i=1, 2, 3, 4)
in according to [8] in this way:
u, =00, /0x+ 0D, /0x+0D5/0y+0D,/0x;
u, =0®, /0y +0P,/dy —0®3/0x+ 0D,/ 0y; 3)
u, =mod,/0z+m,00,/0z+myod,/ oz,
where @,,D,, D, are functions satisfying the equations
(0% /x> +0% /ay* +n;0° 1822)D ; =0,
also ny =2cyy /(c;; —¢13); m,n, are the roots of the quadratic equation

2 .2 2 :
criCagn” —[cqy + e3¢ = (€13 + C4q) "N+ C33¢44 =0 “

ey —cyy ni(c+ey)

(j=12).
€13+ Cay C33 =N ;Cay

The function @, simultaneously satisfies two equations

o> 0? o2 o0°d
—_t——4n,— O :O,—4:mT
[ 4azzj 4 5 3

ox? 8y2 22

We use the notation z; =Zl’l]_-l/2 (7=1,2,3,4). Functions @,(x,y,z),

D, (x,¥,25), O3(x,y,23), DP4(x,¥,z4) will be harmonic functions in the corre-
sponding coordinate system. The constants ms,m, included in relations (3) de-
pend on the elastic and thermophysical properties of a transversely isotropic me-
dium and are written as follows:
_ p . _ Bileaq —nycy) +Bny(e3 +cyy)
my = ; My = .
Caq (€13 +Cqq)my —cpyny Blesz —n4caq) = Pr(cy3 +ca4)

Solution method. We write the temperature field in the form of the har-

monic potential of the double layer

T(x,y,z4):i 1 To(ﬁaﬂ)dﬁdﬂ

| 2m0 (e ey 423

It follows from the properties of the derivative of the potential of a simple
layer [3] that

TO(X,y),(X,y) EQa

T(xayaz4) |z4=z=0:{0 (x y) %Q

Harmonic function is a solution to the Dirichlet problem for the stationary
heat conduction equation for a half-space (for a given distribution of the tempera-
ture field inside a flat region and zero temperature outside this region on the sur-
face of the half-space [3]). Note that contact problems of thermoelasticity with a
known temperature distribution in the contact area and the absence of a tempera-
ture field outside it (in the contact plane) were also considered in [8, 24].
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Next, we present the solution of problem in the form of a superposition of
states, for the first of which we take the function @, in the form of one of the

Boussinesq potentials [2]

O (x,,24) = F(x,9,24) =

1
= [T In[ (&= x)? + (=) +2] +2, |dedn.
2n .
For the first state, we also set
q)gl)(xayazi) = aiF(xayazi) (l = 172) 5 q)(31) = O 5

where o, o, are the unknown constants.

Constants a;, a,, we define by means of this way:

1/2 1/2
g == (my —my) | , =" (my —my)
; :
n};/z (my —my) n}‘/z (my —my)

As a result, for the first state we get

chlz):csg/lz)zoa z=0;

ugl) |Z:0:0 ) (x:y) EQ:

O T T(y) (xy) e
cszz |z:0_ 0 ( )QQ
s X,y .

We find the value y"™® in the form

T
Y =By —my(c33my —nyep3) +

Feqman | T gyl TR 2] )
(my —my (my —m;

ny =k /k;B=(c;; +epp)a+ezon; By =2c300+c330,,

where k;/k is the ratio of the coefficient of thermal conductivity in the direction
0z to the coefficient of thermal conductivity in the direction Ox (or 0y); o,a, are

the coefficients of linear thermal expansion of the material in the direction of Ox
(or 0y) and Oz. In the transition from a transversely isotropic material to the iso-

Trans

tropic material, we obtain y — uo(l+v)/(1-v) (vis the Poisson's ratio,

is the shear modulus), which fully corresponds to the result [5] for an isotropic

Trans

material. Note that expression (5) for vy it was also used in the papers

[22, 23] to find the thermo-stressed state of a transversely isotropic material with
an elliptical crack.

For the second state of superposition, we choose the functions O j
(j=1,2,3,4) as follows:
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1/2

1 -n
P (x,y,2)=— 1 p(E)In(p; +z)dédn;
1 Y om (I my)cgq(m'? = ny? J;! s
2 né/z ”
D57 (x, y,zz)— p(Em)In(p, +2,)dEdn,
21 (14 my)egy (> =0y ) g
where

=\/(x—§)2+(y—n)2+z,~2 (j=12).

In this case we obtain

(j=12).

aﬁq)l@)(x’y,zi)_ Il p(&,y)dEdn :
Z Q- (x-8) +(y-m)+z;
Take also (13512) = CDgz) =0.

As a result of superposition of states, we obtain

GECIZ)+G§)=O'E}Z)+G§,2Z) =0 for z=0;

@ +ulP) |, o= T L e ” \/(xp(z)ﬂld(id?n)z

(0 +62D)|_= —p(e,y) =7 S T (x, ), (x,0) € Q;
0, (x, ) & Q.

The value 4™ is determined as

ATrans _ 1 |: m, —m :| —

caq (n'? =032y | L+ my) (14 my)

/2, 1/2
_on (m T Hm

)(c13 +¢44) ‘ 6)
Caq (crpmy +ep3)(Cq g +¢43)
From the obtained expression (6) for a transversely isotropic material, one
can easily obtain the case of an isotropic material. Let's put
m=ny=l;cp=A+2p;c3=h; cyy=p.
Then from formula (6) it follows
Trans A+20 :l—v .
2p(h+p)  p

Thus, for an isotropic material we obtain a coincidence of the results with
the known data [5].

Note that expressions (6) can be converted to a more convenient
form. Using Vieta's theorem for the roots of the quadratic equation, from (6) we
obtain

ATrans

Trans __ ASH! 2
4 = [\/01 1633 — €13 = 2C44C13 + 2C444/€11C33 } :
(11633 = i3 W Cas
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The obtained expression allows to find the desired value by directly substi-
tuting the elastic constants of the material into it without first determining the
roots of the quadratic equation (4), as in the case of formulas (6).

Correspondence between solutions of contact problems for isotropic and
transversely isotropic elastic half-spaces (in contact with heated plane rigid
punch of elliptical section). According to the results of [5], the solution of the
contact problem of thermoelasticity for an isotropic elastic half-space with
boundary conditions (1) can lead to a search for an unknown potential density of a
simple layer. It remains to satisfy the boundary condition

”z(xay,0)=6= (I—V) p(aan)dédn

Il : (7)
27 5 (x-&) + (v -1)?
Stress distribution has such form under the plane punch
1+v
0 Lea=pe) (T anTy ). (1) €@, ®)

As a result of a superposition of states for a transversely isotropic half-space,
we obtain

[ pEmded
0 (-8 +(y-m)’

The normal stresses under the plane punch in this case have the form

6. o= —pP(x, ) =7 ™™ Ty (x,¥), (x,»)eQ. (10)

All other boundary conditions (1) are satisfied. Comparing expressions (7),
(8) and (9), (10), we conclude that such contact characteristics as contact pres-
sure and displacement under the plane punch for a transversely isotropic half-
space can be calculated from the corresponding expressions for an isotropic
ATrans

©)

(6, ,0) = 8 = AT
27

half-space by replacing the values (1-v)/p  with and

A+ v)op/(1—v) by y ™

Solutions of new contact problems. When pressing a flat elliptical punch
(in the absence of the rotations around the axes Ox and Oy) according to the found
correspondence of expressions (7), (8) and (9), (10) and results [4, 5] we obtain
the values of contact pressure and displacement under the plane punch:

P Q 2 D) -1/2
— X
p(x.) =—1[1——2—g—2] FT T ()

2nab a
5= L= ymans gy (11)
2na

where a is the semimajor axis of the ellipse, e is its eccentricity;
P> =" [[Ty(x, ) dxdy . (12)
3

When inequality (12) is fulfilled, the contact stress under the flat punch are
compressive and have a root singularity when approaching the punch boundary,
which is determined by the first term in formulas (11).
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Consider the distribution of the temperature field under the plane punch in
the form

Ty(x,y)= T,(-x"/a* = y*Ib*)?, ¢>0.

Then, for a heated plane hard elliptical punch, the values of stresses and dis-
placements under the punch we obtain in the form

—0.,(x,y)= Z;—ale(l—xz a* —y* 1672y TS T (-2 Ja® - y? b)Y

5= P_Ql BlPiezoK(e) :
2ma

0 =" [[T,0-x*/a* - y* /b*) dxdy ; P2Q,. (13)
Q

Note that formulas (13) have the following physical meaning. When the ine-
quality P > Q, is fulfilled, the plane punch is pressed to the material over the en-

tire contact area and under it there is no area of separation (delamination) of the
material. After integration, we obtain the inequality

P>Q = LTQ y TS b (14)
qg+1

If the opposite inequality holds

P< LT y S b
g+1 1
tensile stresses arise when apprsoaching the punch edge (due to the first term in
the stress components in formulas (13)), i.e. a material separation zone appears.

In [7], for the problem of the contact of a heated plane circular punch with
an elastic isotropic half-space, it was proposed to search for a new contact zone,
which is smaller than the size of the punch itself, from the problem for a non-
planar punch, directing R — . The two-dimensional contact problem of ther-
moelasticity was considered in a similar way in [24]. Using this approach, and
considering for this the problem of a heated paraboloidal punch of elliptical cross
section, which is pressed into an elastic transversely isotropic half-space without
friction, we obtain

3 1/3
a__ _ Transq1/3 3 K(e)—E(e)
=100 ™) {—h(—ez ﬂ ,

where e is the eccentricity of the elliptical base of the punch. Directing R; — o0, we get

1
P=0 =——y" T nab.,
qg+1
where a«,b: are the semi-axes of the new contact area under the punch. They are smaller
than the corresponding semi-axes of the plane punch. However, contact zone remains el-
liptical and the relation remains b« / a« = b/ a Using the expression (14) we find further

a*:\/ P(q+1) 'b*:a*\/1—€2.
Y

b
Tranqu n\/l —62
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Contact stress under a heated plane punch in the case of separation of mate-
rial near the edge of the punch takes the form

—0, () =y T, (1-x7 /ai - y? b)Y, (15)

since the singular term disappears in formulas (13) at P =, . Therefore, an in-
crease in punch heating when a certain threshold value is exceeded, which de-
pends on the strength P and thermoelastic properties of the transversely isotropic
material, leads to the appearance of separation zone of the material under the
plane punch.

Note that for a plane circular punch (e=0), the radius of the contact area
when the material is separated from the punch according to formulas (15) takes

the form
P(g+1
asx = % ,b*=a*.
Vy I,n

Analysis of the results of numerical investigations. Consider the case of
the distribution of the temperature field under a plane circular punch of radius «

in the form TO(I—xz/az—yz/az)lM, where T;>0. We investigate next

three cases of punch heating: 1) 7 =%; 2) T, =% and
Y ransna y I'al‘lSTEa
LSP . . . .
3) Ty = =, - First, we verify the fulfillment of inequality (14) to find out
na

whether the material is peeling off. As a result, we obtain that for the first case
inequality (14) is satisfied, i.e. material separation under the punch does not
occur. At the same time, with increasing heating (cases 2 and 3), such a separation
of the material takes place.

After simple calculations for the first case of heating, the pressure expression
under the punch takes the form

c 1 _
——Z_=—(1-r*/a®) P+ (-1 1)
TO ,Y rans 60
For the second and third cases, the contact pressure has the same expression
O 42, 241/4
—TO ,YTI'anS = (1 r /(l* ) .

However, the radii of the new contact area for these cases are different. For
the second case of heating a« =5a/+/26, at the same time for the third case we

find that a« =a+5/6 .

Fig. 1 shows the change in contact pressure under the punch, while the
pressure curve for case 1 (without separating the material under the punch) is
shown by line 1, and for the second and third cases — by means of the lines with
corresponding numbers. It is seen that with increasing heating of the flat punch,
the contact area with the half-space decreases.

Consider a flat elliptical punch with the distribution of the temperature

field under the punch in the form To(l—xz/az—yz/bz)l/4 of 7, >0. Put

Ty = P/[(nab)y ™ B"]. We study cases of punch heating, assuming that it "
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takes the following values: 1) [3* =1000; 2) ﬁ* =4;3) B* =2;4) B* = 1. Since the
value T is inversely proportional to the value B* , in the latter case we get the
highest punch heating. For the selected parameter values B* , the material does not
separate under the punch, and the stress expression under the punch takes the form:
C., o 1

- =—[a* —i}(l—xz la® =x*/b*) V2 1 (1=x2/a? = x* 1bP)A
[P/(mab)] 2 5

—G0,

Trans
Y Ty

1
%
0,8 \3\

0,4

0 072 074 076 038 r/a

Fig. 1. The stress distribution under a heated flat punch, taking into account the separation
of the material

In fig. 2 shows the distribution of the contact pressure under a flat punch
with an elliptical section at different values of the heating of the punch.

—O

P/(rab) /ﬂ
1,5

4 J)
1.3 =

—1,

0,5

0 0,25 0,5 0,75 x/a
Fig. 2. Stress distribution under a plane elliptical punch

Lines /-4 in Fig. 2 correspond to punch heating options noted above. It can
be seen an increase of the temperature heating of a plane punch lead to the
stresses increase in the center of the punch and decrease when approaching its
boundary.

Thus, in the paper expressions of contact stresses and displacements of
a heated flat elliptical punch are found explicitly. By means of the inequality, the
condition for the occurrence of material separation under a flat heated elliptical
punch is obtained, which is pressed without friction into the transversely isotropic
elastic half-space. This inequality includes the values of the indentation force,
temperature heating, and thermoelastic properties of a transversely isotropic
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material. It is shown that with increasing heating, the region of complete contact
(with separation of the material) decreases. The famous results for an elastic
isotropic material follow from the obtained data as a special case. The influence
of heating on the distribution of contact stresses, as well as the appearance of
aregion of separation (delamination) of a transversely isotropic material under a
punch, is investigated.
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MOJEJIIOBAHHSI KOHTAKTHOI B3AEMO/Ii HAIPITOIO KOPCTKOI'O
EJIIITUYHOI'O IMTAMIIA 3 TPAHCBEPCAJIBHO-I3OTPOITHUM IIPYKHUM
HIBITPOCTOPOM / B.C. Kupuimok, O.1. JleBuyk, B.B. I'apunenko, M.B. Bitep

AHoTanisi. Ha ocHOBI cTporoi MaTeMaTHYHOT MOJENi JOCHTIIPKEHO 3aJady KOHTAKT-
HOI B3a€MO/IiT HArPITOTO MJIOCKOIO MITaMIIa SIINTHYHOTO MEPEpPi3y 3 TPAaHCBEPCATb-
HO-I30TPOIHKUM IIPY’KHUM HiBIPOCTOPOM. IIpHITyCKaeThes, 0 MOBEPXHs MiBIIPOC-
TOPY € IUIOLIMHOIO i30TPOMil TpaHCBEPCaIbHO-130TPOIIHOIO MaTepiaiy, a TAKOK Mae
raaakuii (6e3 TepTst) KOHTAKT. Y ABHOMY BUIJISII 3HAMICHO BUPAa3U KOHTAKTHUX Ha-
MpyXeHb 1 MEPEeMIIEHHs] HArpiToro IUIOCKOTO ENNTUYHOrO InTamma. Y BHUIIIAAL
NpocTOl HEpIBHOCTI OTPHMAHO YMOBY BIIJUICHHS IPY)XHOrO MaTepiany BiX
HOBEPXHI IJIOCKOTO ETINTHYHOTO LITaMIia. BUKOHAHO YHCIIOBI pO3paxyHKH. BuBue-
HO KOHTaKTHY B3a€MOJIi0 HArpiTOro IUIOCKOTO LITAMIIa 3 YPaXyBaHHSIM BiIIiICHHS
Marepiaity BiJ IITamIa.

KnrodoBi cioBa: maremaTHyHa MoOJeNb, KOHTaKTHa B3a€MOJis, IPYKHHUH
MIBIPOCTIpP, TPAHCBEPCATbHO-130TPOMHUIM MaTepiai, IUIOCKUI eMiNTHYHUI [ITaMm,
HarpiBaHHsiI, PO3MOALT HAMPYKEHb, AUISHKA BIAIIICHHs MaTepiaiy.

MOJIEJIJMPOBAHUE KOHTAKTHOI'O B3AUMOJENCTBUS HATPETOI'O IIJIOCKOI'O
KECTKOI'O 3JVIMIITUYECKOI'O IITAMIIA C TPAHCBEPCAJIBHO-U30TPOITHBIM
YOPYI'UM HNOJYINPOCTPAHCTBOM / B.C. Kupmmok, O.W. Jleuyk, B.B. T'aBpunenxo,
M.b. Butep

AnHotamusi. Ha ocHOBe cTporoil MareMaTH4ecKod MOJENH HCCIeOBaHA 3ajada
KOHTaKTHOTO B3aMMOJCHCTBHS HArpeToro IUIOCKOTrO IITaMia 3JUIHITHYECKOro
CEUCHHS C TPAHCBEPCAIBHO-M30TPOIHBIM YIIPYTHM IOJIyNpocTpaHcTBOM. IIpearo-
JIaraeTcs, 4To MOBEPXHOCTh MOJYMPOCTPAHCTBA SIBISCTCS IIOCKOCTBIO M30TPONUH
TPaHCBEPCATLHO-U30TPOITHOTO MaTepualia, a Takke MMeeT Iimaikuid (0e3 TpeHws)
KOHTaKT. B sSBHOM BHZE HaillcHbl BBIPAXKCHHS KOHTAKTHBIX HANPSHKCHUH U Iepe-
MEIICHUS HarpeToro IIOCKOT0 3JUIMNTHYECKOro IITamia. B Buae mpoctoro Hepa-
BCHCTBA IIOJYYCHO YCJIOBHE OTACJICHHS YIPYroro MarepHaja OT II0OBEPXHOCTH
IUIOCKOTO 3JUIMNTHYECKOro IITaMIa. BBINONHEHbl 4UCIIOBBIE pacueTsl. V3yueHo
KOHTaKTHOE B3aMMOJICHCTBHE HAIPETOrO IUIOCKOTO IITAMIIA C YYETOM OTACNCHHS
Marepuaia OT ITaMIa.

KiioueBble cjioBa: MaTeMaTHueCKas MOJIENb, KOHTAKTHOE B3aHMOJICHCTBHE, YIIPY-
roe MOJYHPOCTPAHCTBO, TPAHCBEPCATbHO-U30TPOIHBIH MaTepHal, IJIOCKUHA 3J1-
JUITHYCCKUH IITaMII, HArpeB, paclpeleieHue HanpsDKeHHi, 00JacTh OTIENICHUs
MaTepHaa.
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