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QUINTILE REGRESSION BASED APPROACH FOR
DYNAMICAL VAR AND CVAR FORECASTING USING
METALOG DISTRIBUTION

G.ZRAZHEVSKY, V. ZRAZHEVSKA

Abstract. The paper proposes a new method of dynamic VaR and CVaR (ES) risk
measures forecasting. Quantile linear GARCH model is chosen as the main forecast-
ing model for time series quantiles. To build a forecast, the values of quantiles are
approximated by the metalog distribution, which makes it possible to use analytical
formulas to evaluate risk measures. The method of VaR and CVaR forecasting is
formulated as a step-by-step algorithm. At the first stage, an initial model is built to
obtain variance estimates. The predicted variance values obtained from the con-
structed model are used at the second stage to find the QLGARCH model coeffi-
cients by solving the minimization problem. At the third stage, the QLGARCH
models are estimated on a non uniform quantile grid. The obtained predicted values
of quantiles are used to estimate the approximating metalog distribution. The inves-
tigated theory is applied to VaR and CVaR forecasting for time series of daily log
return of the DJI index.

Keywords: VaR, CVaR, Expected Shortfall, dynamic risk measures, forecast,
Quantile LGARCH model, metalog distribution.

INTRODUCTION

The purpose of this study is to develop the new method of dynamic VaR and
CVaR risk measures estimation and forecasting. VaR and CVaR are classic
measures that are used in financial risk assessment [1]. In the practice of VaR and
CVaR estimating for a random variable that describes the profitability of a finan-
cial instrument, two main approaches can be distinguished. The first approach is a
nonparametric estimation method that is based on an empirical distribution func-
tion. The disadvantage of this estimation method is the critical dependence of the
effectiveness of the method on the presence in the initial data of values that arise
with low probabilities [1]. The second approach is parametric, based on a priori
estimation of the distribution function, which is the main disadvantage of this ap-
proach [1].

In time series analysis, in particular, in time series forecasting, in addition to
static risks measures, in practice it becomes necessary to build more complex risk
models, which take into account the changes of the series over time. In this case,
to estimate risk measures, various time series models can be used, such as, for
example, ARMA, GARCH. With this approach, the problem of risk measures
modeling is reduced to the estimation of a model for variance and finding static
risk measures for its residuals using parametric or nonparametric methods.
Examples of this approach are described in [2—4].

The described above approaches of evaluation of risk measures are based on
the construction of a cumulative distribution function on the full space of events.
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At the same time, to estimate risk measures, it is sufficient to evaluate only the
quantile of a given level (for VaR) or the distribution of values exceeding a given
level (for CVaR). At the same time, from a practical point of view, the most sig-
nificant is the distribution for a relatively small subset of the event space leading
to extreme consequences. Accordingly, it is possible to simplify the forecasting
task by using the quantile regression model proposed in [5, 6] contains a detailed
description of the theory of quantile regression estimation applicable to standard
time series models. Since financial time series, as a rule, are characterized by ra-
ther strong volatility, quantile GARCH models are popular for risk analysis. The
problem of building quantile models of the GARCH class and their application in
VaR forecasting for the series of log returns of stock market indices is considered,
for example, in [7, 8].

One of the possible approaches for fitting of the GARCH model residuals
distribution is to use the metalog distribution proposed in [9]. This choice is based
on the simplicity of quantile formulas and the availability of a sufficient set of
parameters of this distribution for an adequate fitting of empirical data of various
nature. Thus, in [10], the metalog distribution is used in the development of the
extended FAIR-BN combined approach for cyber security risk assessment. In [11],
the five-term metalog distribution is used to forecast fertility rates in Canada. SPT
(symmetric-percentile triplet) metalog distribution is used in [12] to statistically
compare the forecasts of annual production in the oil and gas industry in Norway.
In [13], the metalog distribution is used for dynamic risk measures VaR and
CVaR estimating based on a heteroscedastic time series model, taking into ac-
count the strong dependence of the data series. The method of smoothing of the
autocorrelation function is used for variance modeling. A metalog distribution is
proposed to use for risk measures model residuals estimating. The paper proposes
two methods of metalog distribution estimating and explicit analytical formulas
for VaR and CVaR modeling and forecasting with different numbers of members
in the metalog distribution.

A large number of publications devoted to the risk measures estimation and
forecasting testifies to the applied significance of this problem. At the same time,
the task of developing the new methods and approaches for risk modeling, which
more fully reflect the nature of the modeled series, remains relevant. Most of the
forecasting methods are based on the estimation of the entire distribution func-
tion. On the one hand, this is an overstated requirement for the model, and on the
other hand, it often leads to an incorrect description of tails of distribution. There-
fore, in this paper, it is proposed to build volatile models only for the tail parts of
the distribution. In this case, the obtained point values of the quantiles can be
smoothed, for example, by metalog distribution.

MATERIALS AND METHODS

On the probability space (Q2,®,, P) a time series {u,, t €T} with a finite mean is
considered (@, is the information set containing all available at the time t infor-
mation about the time series).

For a fixed confidence level o risk measure VaR| is defined as the condi-

tional oo — quantile of the CDF of u,: VaR' =F '(a). The risk measure
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o
CVaR! is defined as the integral: CVaR!, = E,[uz|u; <-VaR.]= L j VaR; dy,
a
0

(a<0.5), where E,[-] denotes expectation with respect to @, . In this paper, the

continuity of the CDF is assumed.

As indicated in the introduction, most methods for dynamic VaR and CVaR
risk measures forecasting are based on time series modeling. The GARCH models
are among the models that describe volatility of financial time series. In this pa-
per, we consider the Linear GARCH model LGARCH (p,q). This model is fre-

quently used for fitting log return volatility time series and appropriate for quan-
tile regression because of its linear structure [7].

The time series {u,, t=0,1,2,...} follows LGARCH (p, q) process if:
q P
Uy =GC&, Gz=B0+Zyt‘|ul—i|+zﬁjcl—j’ (1
i=1 j=1

where {g,} are independent, identically distributed random variables with zero
mean and a conditional distribution function F,(-), By > 0; (v{,Y2,--»Y q)T eR?.

Using the heteroscedastic time series model, the dynamic risk measures can
be found under the following formulas [1]:

VaR! =VaR,(¢)c,, CVaR' =CVaR, (¢)o,, )

where the model for o, is defined in (1), VaR,(¢) and CVaR,(€) are static risk

measures at time ¢. Then the P step forecast for dynamic risk measures can be
found by model (2) extrapolation:

VaR'*" =VaR, (e)o,, p, CVaR'"" =CVaR, (e)o,, p. (3)
In this work, the following methods are used to evaluate static risk measures

VaR,(e), CVaR,(¢).

Historical simulation method. Let X be a random variable and its sample
values are X,X,, ..., X . In accordance with the historical simulation method,

an empirical distribution function is constructed on the sample values. Then ac-
cording to [14]:

VaR, = —Xyqop) » CVaR, = (Z X J/ ([Na]) 4)

where X ) S Xy <. <Xy

Using Student’s ¢-distribution. If the random variable has the local scale
Student’s #-distribution with the parameters p, ¢ and the degrees of freedom
L > 2, then the risk measures can be calculated as (see [14]):

-1 -1 2
po B @ ot W@?

where g, (-) is the standard PDF and t0_1(~) is the inverse standard CDF value
at a of ¢ -distribution.

VaR, =u+ot, (o), CVaR,
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Using metalog distribution. Suppose that X has a metalog distribution
Fy (x), that is defined by a quantile function M, (o,a(X,a)) [9]:

a, +a,In “ , n=2;
I+a
al+a21nlfa+a3(a—o,5)1nlfa , n=3
a a ‘
M, (a,a)= al+a21nl+a+a3(0t—0,5)ln1+a +ay(a—-03%), n=4
n-1
M, +a,(a-05) 2, for odd n>5;
n
M, +a,(a-0,5)? hllja, for even n> 5.

The coefficients @ = (a;,d5,..,a,)" can be found as a solution of the system
of equations:
a=[Y, Y,V X, (6)

where X =(X,X5,....X N)T , the matrix Y is defined through a set of quantiles

n

with levels @ = (at;,0p,....,05)" = (Fy (X)), Fy (Xy),es Fy (X )" [9].
Following the definitions, risk measures can be found under the formulas:

VaRy (X) = ~M, (@a(X)); )
CVaRy,(X) =~ [ M, (v.a(X))dy.
o

Explicit formulas for CVaRj ,(X) estimating with different number of

members of the metalog distribution were obtained in [13]:

CVaRa,n =
a1+a2(ln(l:a)+ln OLN), n=2;
a l-a
as ~ a
CVaRg ,(X)+—|1+(a-D)In——= |, n=73;
’ 2 I-a
CVaRg 5(X) + w n=4:
= 2 n-1 ntl ntl 8)
CVaRg , ,(X)+ N(l"" ) (~1) 2 (0,5 2 +(3—05) 2 | for odd n>5;
’ oll+n
2-n
22aq - -
CVaRy ,_(X)+ —" 220 —1)2arctg(2a — 1)+ nG +
n+2
+In(1-a)+ (1) 2 Inq, for even n>6.

where
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G=3 F[LL,1-7/;2,2; 2]+ (@ —1); F[1,1,1-

X 2,2; 2-2a]+

n/ .

2 H
W _

+ (=120, F[1L1-" ’E 2.2; 2a],

3 F5[cr,¢y,c05; dy,dy; 2] is generalized hypergeometric function.

For determining the parameters of the metalog distribution the Quantile
Metalog Method is proposed in [13]. This method uses the approximation of the

empirical distribution function by sample quantiles X =(t,, e Tay )T , where
X ((na;14+1)5 if na; is not integer;
=< 0 —0: 1 . . .
Fo a—ocl X(a) +?O;X(a), if no; is integer;
no;] o; +1
a:[ l]a a:[n : ],(1,'6(0,1).
- n

Thus, the classical approach to risk measures forecasting (3) involves building
a model for variance estimating, obtaining model residuals, and using methods for
static risk measures VaR, (¢), CVaR,(¢) estimating.

Another approach is based on estimating of quantile time series models,
which makes it possible to directly simulate the time series quantile of a given
level. In this paper, in accordance with (1), the QLGARCH model is considered
(see [6-8]):

0, (0, )=6,(1)"z,, ©)

where O, (r|(Dt_1) is a conditional t — quantile for {u}, z, =

= (1,61 O ottt g s 0, (DT = (BouBroveaB o1 1) F (2 = (B (1),

B1(T)sees By (D)5 11(T)s, 74 (D))

The paper proposes the following methodology for dynamic VaR and CVaR
forecasting. Model (9) is used to construct a set of quantiles. For a more detailed
description of the left tail of the CDF, the quantile levels can be found on a non
uniform grid. Assuming that the obtained set of quantiles can be fitted by the
metalog distribution, the quantile function M, (o, a(X,a)) is estimated using (6).

seeey

To obtain forecasts of risk measures, formulas (7), (8) are used. The practical im-
plementation of the method is formulated as a step-by-step algorithm.

AN ALGORITHM FOR CONSTRUCTING THE DYNAMIC RISK MEASURES
VAR AND CVAR FORECAST BASED ON THE METHOD QLGARCH -
METALOG

1. Building a variance model to get estimates. The model LGARCH (p,q)

(1) is written as ARCH(®): o, =a+ Zocj‘u,_j
j=1

, where the coefficients j
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satisfy summability conditions implied by the regularity conditions [6]. Due to the
assumption of regularity, the coefficients decrease geometrically, therefore, the
model can be reduced to ARCH (m). The appropriate lag for reducted ARCH
model is chosen on the base of significant values of ACF and PACF for squared
values of returns (values that is more than confidence bounds). Estimates of o

can be obtained in various ways. QMLE is used in this work. The fitted model is
used to obtain estimates &,,...,G,_ ),

i=0,p. (10)

ut]t

m
z a;
2. Building a set of quantiles predictive estimates. To obtain estimates of
the t-quantile for u, , the QLGARCH model (9) is used. The orders of the model
p, q can be estimated using Akaike Inform Criteria (AIC) and Hannan-Quinn
Inform Criteria (HQIC). It is also possible to use Bayes Inform Criteria (BIC) and
Shibata Inform Criteria (SIC). To estimate the vector of parameters O(T)T, the
minimization problem is solved using the quantile regression estimation in the

form (see [8]):
min 3. (u, -0(0)"2,), (11)

where p(u)=u(t—I(u<0)) is a check function, z,=(1,6,,...,6,_,,

. ut,q‘)T taking into account that the estimates &,_,,...,5,_ p were obtained at

step 1 (10). The solution of the unconstrained minimization problem (11) makes it
possible to estimate the 1 -quantile for #, in the form:

Qu, (1:|CDt71) = é(T)Tét .
At this step, a grid of 7,-quantiles, i=1,N, is constructed and the problem
(11) is solved N times. For every quantile regression with t,, i = LN the quan-
tile estimates are Qut (t;) = ét(r,-)T 2, i=1,N . In this case, the predicted values

of the conditional quantiles are calculated by  extrapolation

. AT . . .
0, (t)= 0(t;)" 2,41, where Z,,, = (Lct:---:cz—p+1=|uz

T A
g and &

PYRET)

i=0, p—1 are obtained at the first step of algorithm (10).
3. Risk measures forecasting. The predictive quantiles QAqu (ty)see-
..,QAut+l (ty) (from previous step) are fitted using the metalog distribution. Esti-
mates of the metalog distribution parameters a = (d,d,,....a,)" are found in ac-
cordance with (6), where X = (QAqu (1:1),...,QAqu (1:N))T , o= (11,12,...,1N)T.
Specifying the quantile function M, (d,a) for a given level d allows the use of

analytical expressions (7), (8) to find the predicted values VaRgrl and C VaR(t{rl .
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EXPERIMENT, RESULTS AND DISCUSSIONS

Proposed algorithm was applied for dynamic risk measures VaR,,, CVaR,,

forecasting for the time series of daily log returns of the Dow Jones Industrial
Average index (the DJI time series). The sample length was 3500 values from
2007/02/16 to 2021/01/11. The forecast model was based on 1500 historical val-
ues and was extrapolated one value forward. After that, the modeling window was
one step shifted, and the model was rebuilt. The procedure was repeated 2000
times (Rolling Forecast Method). The obtained one-step forecasts were compared
with real values for the corresponding period of time. To obtain variance esti-
mates (10), the model ARCH(30) was built. Based on the historical values of the
time series and the estimated variance values, quantile LGARCH (p,gq) models

were built for different levels of quantiles. The orders of the models were found
using the AIC and HQIC criteria: p =3, ¢ =3. For more detailed description of

the left tail of the distribution, the non uniform grid of quantiles was used: t; =ih,

h=0,01 for i =1,20, and 4 =0,05 for i =5,19. Estimates of the parameters were
obtained using QMLE. The estimated models were used to generate one-step
quantile predictions. The predicted quantile values were used to estimate the met-
alog distribution. Using (6), the estimates for the coefficients of the metalog dis-
tributions for n=4,5,6,7 were obtained. Risk measures estimates were calculated
using formulas (7) and (8). The results were obtained using R packages rugarch
[15] and quantreg [16].

The results of dynamic VaR and CVaR risk measures forecasting using the
QLGARCH - Metalog (rq_met) method are shown in Fig. 1 along with the
historical values (the first 1500) and the real values (1501-3500) of the DJI time
series. As can be seen from the graph, the obtained forecast estimates describe the
dynamic behavior of the time series quite well.

Dynamic VaR and CVaR
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Fig. 1. Historical data of the time series of daily log return of the DJI index (/ — TS re-
turns) from 2007/02/16 to 2021/01/11 and the forecast values for VaR)"' (2— VaR(0,1))

and C VaRéjrll (3 — CVaR(0,1)) obtained by the QLGARCH — Metalog method (n=35)
for the period 2013/02/01 —2021/01/11

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2021, Ne 1 145



G. Zrazhevsky, V. Zrazhevska

Historical data and the forecast values of dynamic risk measures over a short
period of time is shown in Fig. 2 for more convenient visual analysis.

Dynamic VaR and CVaR
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Fig. 2. Historical data of the time series of daily log return of the DJI index (I —
TS returns) and the forecast values for for VaR{"' (2 — VaR(0,1)) and CVaR{}!

(3 — CVaR(0,1)) obtained by the QLGARCH — Metalog method (7 =5) for the
period 2019/10/31 —2020/08/18

For a comparative analysis of the effectiveness of the proposed method, a
forecast of dynamic risk measures for a given time series was built with standard
approach on the basis of a heteroscedastic model (3). To estimate the variance, the
LGARCH(3,3) model was considered. The AIC and HQIC criteria were used to
determine the orders of the model. The QMLE was used to estimate the model
coefficients. To determine the risk measures for the residuals of the
LGARCH(3,3) model, the following methods were used: the Historical simulation
method (4) (hist method), explicit formulas (5) under the assumption that the
model residuals have the local scale t-distribution (tLS method), explicit formulas
(7), (8) based on Quantile Metalog Method for n=4,5,6,7 (metal method).

The analysis of the constructed forecast estimates was carried out using the
backtesting procedure. The following tests were used in the work:

o for VaR estimates: the Kupiec test (LRuc), Christoffersen’s independence
test (LRind), PoE statistics [17];

e for CVaR estimates: two tests proposed in [18]: one-sided simple condi-
tional calibration test (scc 1) and two-sided simple conditional calibration test
(scc_2); three regression based backtests proposed in [19]: the auxiliary ESR
backtest (Aux), the strict ESR backtest (Str), the intercept ESR backtest (Int).

The p-values of these tests are shown in Table 1. Table 2 shows the PoE sta-
tistic values for the forecast estimates of dynamic risk measure VaR.
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Table 1. The results of the qualitative analysis of the forecast estimates of
dynamic risk measures VaR and CVaR for DJI time series

Risk meashure

Method VaR CVaR
LRuc LRind scc_1 scc 2 Aux Str Int
hist 0,0677 0,0091 | 0,0866 | 0,0076 | 0,6453 | 0,6191 |0,5824
tLS 0,4582 0,3359 | 0,0657 | 0,1136 | 0,5364 | 0,5286 |0,4710

metal, n=4 0,1497 0,0802 | 0,2301 | 0,0625 | 0,6980 | 0,7289 |0,6267
metal, n =35 0,1726 0,1497 | 0,2411 | 0,0630 | 0,6883 | 0,7338 |0,6461
metal, n=6 0,0945 0,0393 | 0,1251 | 0,0115 | 0,5707 | 0,6047 |0,5355
metal, n="7 0,0945 0,0474 | 0,1245 | 0,0098 | 0,5261 | 0,5521 |0,5180
rq_met, n=4 | 0,4983 0,7643 | 0,1572 | 0,0869 | 0,8454 | 0,8914 |0,8072
rq met, n=5| 0,8810 0,5796 | 0,2741 | 0,1808 | 0,8842 | 09164 |0,8475
rq met, n=6 | 0,4272 0,4072 | 0,1863 | 0,1082 | 0,8566 | 0,8931 |0,8121
rq met, n=7 | 0,5476 0,3655 | 0,2688 | 0,1757 | 0,8671 | 0,8940 |0,8450

Table 2. PoE statistic values for the forecast estimates of dynamic risk measure
VaR for DJI time series

metal rq_met
n=4 | n=5|n=6|n=7|n=4|n=5|n=6|n=7
PoE ]0,0879 | 0,1051 0,09045(0,09095|0,0889| 0,0889 [ 0,0954 | 0,0989 | 0,0944 | 0,0959

Method | hist tLS

As follows from Table 1, the worst estimates were obtained using the
historical simulation method (hist). In particular, as a result of applying the
Christoffersen’s independence test (LRind) for VaR and the two-sided simple
conditional calibration test (scc_2) for CVaR, hypotheses with a significance level
of 0,05 were rejected. This indicates the inapplicability of the historical
simulation method for predicting the values of the DJI time series. At the same
time, all tests showed consistently good quality of forecasts obtained by the
QLGARCH — Metalog method (rq met) and maximum p-value statistics
compared to other methods (tLS and metal).

In the article the metalog distribution with the different number of
parameters (n=4,5,6,7) was considered (see Table 1). An increase in the
number of parameters potentially increases the accuracy of the estimates, but can
lead to the problem of overfitting. As a result of the backtesting for forecasted
dynamic risk measures VaR and CVaR obtained with the Quantile Metalog
Method (metal), the choose of large n probably leads to overfitting. The estimates
of VaR and CVaR obtained using the metalog distribution for n =4 and n=5 are
consistently better than the estimates obtained using the same sample for n=6
and n=7. At the same time, the QLGARCH — Metalog (rq_met) method shows
less dependence on the number of parameters of the metalog distribution. The
results of the qualitative analysis for VaR and CVaR forecasts obtained by this
method are relatively uniform for all n. Although it should be noted that
according to the results of all tests, the highest quality forecasts for risk measures
were obtained at n=5. The best results of VaR forecasting (see Table 2)
according to PoE statistics is obtained also by rq_met method for n =35 (has the
least deviation from the target value of 0,1).
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The paper proposes a method that is a natural continuation of existing re-
search and methods devoted to dynamic risk models developing. It combines pa-
rametric and nonparametric statistical approaches to time series modeling. Practi-
cal application of the method shows its effectiveness in the case of risk modeling
for highly volatile financial time series. The simplicity of the method and its
background make it possible to recommend it for using in various fields. How-
ever, the determination of the restrictions on applicability of this method, as well
as the automation of the procedure for estimation of its parameters, requires fur-
ther mathematical research, in particular, the construction of asymptotic estimates
of the convergence of the model.

CONCLUSIONS

The paper considers the problem of dynamic VaR and CVaR risk measures mod-
eling and forecasting for financial time series. Since the VaR measure is a condi-
tional quantile of the distribution function of a given level, and CVaR for continu-
ous distributions can be specified as the average of the quantile function it is
proposed to use QLGARCH as a model for risk measures forecasting. The advan-
tage of using of this model is the ability to estimate and predict not the full distri-
bution, but the values of the quantiles of the required levels. Since the risk meas-
ures are determined for the tail part of the distribution, an non uniform grid is
used in the work, which makes it possible to detail the quantiles with a low level.
To smooth point values, it is proposed to fit a set of quantiles with metalog distri-
bution. This approach is also convenient due to the presence of explicit analytical
expressions VaR and CVaR for the metalog distribution. The proposed method for
dynamic VaR and CVaR risk measures forecasting is formulated in the form of a
step-by-step algorithm.

The proposed methodology was tested on the time series of daily log return
of the Dow Jones Industrial Average (DJI) index for the period from 2007-02-16
to 2021-01-11. Using the formulated algorithm, a set of one-step forecasts of risk
measures was obtained. An analysis of the quality of the forecasts was carried out
using various standard backtesting techniques on real data. The results were com-
pared with the forecasts obtained by standard methods that are based on the
LGARCH model and various assumptions about distribution of the residuals. The
carried out qualitative analysis of the obtained predicted values showed the effec-
tiveness of using the method proposed in this work and its advantage in compari-
son with standard methods.

The results of the work can be directly applied in dynamic risk modeling for
highly volatile time series, in particular, financial time series, and also can serve
as the basis for the development of new methods and algorithms for random proc-
esses prediction.
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IIPOrHO3YBAHHSI JWHAMIYHUX VAR I CVAR HA OCHOBI
KBIHTUJIBHOI PETPECII 3 BUKOPUCTAHHSIM METAJIOI' PO3IIOALTTY /
I'"M. 3paxeBcokuii, B.®. 3paxkeBchka

AHoTauisi. 3anponoHoBaHO HOBUl METO TUHAMIYHOTO TIPOTHO3YBaHHS Mip PH3UKY
VaR i CVaR (ES). fIk ocHOBHa MOJ€JIb IPOrHO3YBAHHS ISl KBAHTUIIIB YaCOBHX Psi-
niB obpaHo kBaHTWIBHY JiHiMHY Moaens GARCH. [Ins moOynoBu mporHo3y 3Ha-
YEHHS KBaHTHJIIB allPOKCHUMYIOThCS PO3IIOJIIJIOM METAJIOT, 110 103BOJISE BUKOPUCTO-
ByBaTH aHANITHYHI (OPMYyIH [Uisl OLIHIOBaHHSI Mip pH3UKY. MeToauKy
nporHo3yBanHs VaR i CVaR cdopMynb0BaHO y BUIIISI TOKPOKOBOTO aJITOPHUTMY.
Ha nepmomy erari OyayeTbcsi BUXiJHA MOJENb IJIsl OTPUMAHHS OL[IHOK JHCIepcil.
OTtprMaHi 3a MOZAEIUIIO 3HAYCHHS AUCIEPCil BUKOPUCTOBYIOTHCS Ha JPyroMy erari
Ui 3Haxo/pkeHHs KoedimientiB moaemi QLGARCH nuisxoMm po3B’s3aHHsS 3amadi
Minimizamii. Ha tpetbomy etami moneni QLGARCH oriHOOTECS Ha HEOAHOPIAHII
KBAaHTWJIBHIN ciTiii. OTpuMaHi NPOTHO3HI 3HAYCHHsS KBAaHTUIIIB BUKOPHUCTOBYIOTHCS
JUISl OL[IHKM HapaMeTpiB PO3MOALTy MeTaior. Po3pobieHuii MeTo]| 3aCTOCOBYEThCS
1o nporHosyBanHa VaR 1 CVaR mis gacoBoro psimy JorapudMidHOi JOXITHOCTI iH-
nexcy DIJIL

Kurouosi caoBa: VaR, CVaR, Expected Shortfall, nunamidni Mipu pusuky, mpo-
rHo3, kBauTwiIbHa Mozens LGARCH, po3mnoaii merasor.

MPOTHO3UPOBAHUE JUHAMMYECKHX VAR M CVAR HA OCHOBE
KBUHTUJIIBHOU PEITPECCHUU C MHCHOJB30BAHUEM METAJIOI
PACHIPEJAEJIEHUSI / T'.M. 3paxeBckuii, B.®. 3paxeBckast

AnHotamus. [IpennoxeH HOBBIA MeTOX AWHAMHYECKOTO IIPOTHO3HPOBAHHS Mep
pucka VaR n CVaR (ES). Kautunbnas nuneitnas monens GARCH BreiOpana B ka-
YeCcTBE OCHOBHOI MOJIENH IPOTHO3HPOBAHUS JUIS KBAHTWICH BPEMEHHBIX PSIIOB.
JInst oCTpOeHUs IPOTHO3a 3HAYEHHsI KBAHTHIICH alNIpOKCUMUPYIOTCS paclpeserne-
HHEM METaJIor, YTO MO3BOJISET UCIIOIb30BATh AHATUTHIECKHE (POPMYIIBI IJIsI OLICHKH
Mep pucka. Meroanka mporHosupoBanusi VaR m CVaR chopmynupoBana B Buae
HoImaroBoro anroput™a. Ha mepBoM sTame cTpoHTCsS MCXOIHAS MOJENb ISl MOJy-
YEeHUs OIEHOK Aucrepcru. IlomydeHHsle 0 MOAETH 3HAYeHHS JUCIEPCHH HCIOINb-
3yI0TCS Ha BTOPOM 3Tame il HaxoxaeHus kodddumumentoB momenmn QLGARCH
MyTeM peIIeHus 3agadn MuHUMH3amun. Ha tpersem stame mozemn QLGARCH
OIICHUBAIOTCA HAa HEOJHOPOJHOW KBaHTHIIbHOW ceTke. [lomyueHHble MpOrHO3HbIE
3HAYCHUS] KBAHTWIICH HCIIONB3YIOTCS AT OLEHKM HMapaMeTPOB PACIpenelIeHHs Me-
tanor. Pa3paboranHelii MeTo] mpuUMeHEH K nporHozupoBanuto VaR u CVaR s
BPEMEHHOTO psizia JorapudmMuueckoil foxoaHoctu uaaexca DIL.

Kawuesspie cioBa: VaR, CVaR, Expected Shortfall, nnanamudeckue mepsr prcka,
IporyHo3, keantuibHas Mojeins LGARCH, pacnpenenenue Meraior.
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