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APPLICATION OF TWO-SIDED APPROXIMATIONS METHOD
TO SOLUTION OF FIRST BOUNDARY VALUE PROBLEM
FOR ONE-DIMENSIONAL NONLINEAR HEAT CONDUCTIVITY
EQUATION

N. GYBKINA, M. SIDOROYV, K. VASYLYSHYN

Abstract. The first boundary value problem for a one-dimensional nonlinear heat
equation is considered, where the heat conductivity coefficient and the power func-
tion of heat sources have a power-law dependence on temperature. For a numerical
analysis of this problem, it is proposed to use the method of two-sided approxima-
tions based on the method of Green’s functions. After replacing the unknown func-
tion, the boundary value problem is reduced to the Hammerstein integral equation,
which is considered as a nonlinear operator equation in a semi-ordered Banach
space. The conditions for the existence of a single positive solution of the problem
and the conditions for two-sided convergence of successive approximations to it are
obtained. The developed method is programmatically implemented and researched
in solving test problems. The results of the computational experiment are illustrated
by graphical and tabular information. The conducted experiments confirmed the ef-
ficiency and effectiveness of the developed method that allowed recommending its
practical use for solving problems of system analysis and mathematical modeling of
nonlinear processes.

Keywords: nonlinear thermal conductivity, positive solution, Green’s function, two-
sided iterative method, equation with isotonic operator.

INTRODUCTION

System studies of various objects and processes require the use of the method of
mathematical modeling and the apparatus of computational mathematics. In par-
ticular, the problem of mathematical modeling of nonlinear stationary heat con-
duction processes leads to the need of developing the effective numerical methods
for solving initial, boundary value and initial boundary value problems for qua-
silinear differential equations with a coefficient nonlinearly dependent on temperature
[1-4]. Today there are many methods of numerical analysis of these problems.
Among them are methods of similarity theory, methods of finite differences, finite
elements, boundary integral equations [1, 5—8] or successive approximations with
two-sided convergence [9, 10]. The methods of the last group allow to build two
sequences of functions, which, respectively, from the bottom and top approach
the desired solution of the problem. Due to this fact, in the implementation of
these methods, we have a convenient a posteriori estimation of the approxima-
tions error, and hence a convenient criterion for the end of iterations. This makes
the methods of two-sided approximations more attractive than other methods used
to solve boundary value problems for stationary equations.

The purpose of the work is to develop on the base of the Green’s function
method the method of two-sided approximations for solving the first boundary
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value problem for a nonlinear one-dimensional equation of thermal conductivity
and to study its work in solving test problems.

The construction of two-sided approximations methods for solving boundary
value problems for partial differential equations is based on the use of the theory
of nonlinear operators in semi-ordered spaces. The theory of linear semi-ordered
spaces was built by L.V. Kantorovich in the second half of the 30’s XX cen-
tury [11]. Further development of the methods of this theory is associated with the
work of M.A. Krasnoselsky [12], H. Amann [13], V.I. Opoytsev [14], N.S. Kur-
pel, B.A. Shuvar [15], A.L. Kolosov [16]. In [12] the question of the existence of
positive solutions of equations with monotone operators was investigated, and in
[14] the solvability of equations with operators that have a generalized property of
monotonicity (so-called heterotonic or mixed monotone operators) was investi-
gated. These works laid the theoretical foundations for the development of two-
sided iterative schemes, but the iterations themselves were considered by the au-
thors as an aid to prove the theorems of the existence of fixed points of operators
and did not lead to computational results.

Works [9, 10] are devoted to the development of two-sided iterative schemes
for solving boundary value problems for partial differential equations as means of
applied mathematics with bringing them to computational implementation. In this
case, only the first boundary value problem for a semilinear elliptic equation with
the Laplace operator and power or exponential nonlinearity was mainly considered.

This work continues the research started in [9, 10] and aims to generalize
them and extend them to ordinary nonlinear differential equations.

So, we will consider the problem of finding a solution to a nonlinear bound-
ary value problem, which is a mathematical model of thermal conductivity in a
rod of length /, when the thermal conductivity coefficient has a power-law de-
pendence on temperature and when there are heat sources in the rod distributed
according to the power law:

d dT
_Z(k(T)EJ_M(T)’ O<x<l, (1
T(x)>0, 0<x<l, 2)
r0)=1(/)=0, 3)

where k(T)=kyT° is heat conductivity coefficient, k, >0 is the value of the

thermal conductivity in a linear medium, f(7)=T" is heat source power func-
tion, >0, y>0 are parameters of nonlinearity of the medium, A >0 is con-
stant, which characterizes the power of heat sources.

To analyze the boundary value problem (1) — (3), we apply the methods of
the theory of nonlinear operators in semi-ordered spaces [12, 14].

MATERIALS AND METHODS

Let us present some definitions and facts from the theory of nonlinear operators in
semi-ordered spaces, which will be used below [12, 14].

Let U be a real Banach space, and 0 be a zero element of the space U/ . A
cone is a closed convex set X — U for which the following conditions hold:

a)if ue and u#0, then yu e C for any y>0;

b)if uek and u#0,then —ug k.
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An arbitrary cone K < U allows one to introduce semi-ordering in the space
U according to the rule: v<w, if w—ve K. Elements u>0 (i.e., ue k) are

called positive. The set of elements <v, w> of a semi-ordered space, which con-
sists of those u € U for which v<Lu<{w, is called a conical segment.

Normal cones are an important class of cones for applications of the theory
of semi-ordered spaces in computational mathematics. A cone K is called normal

if there exists a number N(K) >0 such that ||v|| <N (IC)”W” follows from O<y<w .
In this case, one says that the norm is semi-monotonous. If N(K)=1, then the

cone is called acute, and it is said that the norm is monotonic.
Let us present the definition of some classes of operators in spaces with a cone.
An operator 7:U — U is said to be positive if it leaves an invariant cone

K,ie., T(u)e K forany uek.

Let some non-zero element u, € K be fixed. Denote by K(u,) the set of
those elements u € X for which we can specify such a=o(u)>0, B=pu)>0
that oy <u < Pu.

An important subclass of positive operators is the so-called u-positive op-

erators. A positive operator T, which translates the nonzero elements of the cone
KC into K(ug), is called an u,-positive operator. Therefore, for an u-positive

operator T for any ue K, u=0 there are such a=a(u)>0, B=p(u)>0 that
aug <T'(u) < Pug .

The operator 7':U — U, which acts in U/, is called monotonic (isotonic), if
from u,veld, u>v follows T(u) > T(v).

An operator T:U - U is called concave if it is wu,-positive for any

ueK(uy) and t€(0,1)
T(twu) =T (u), “4)

and in (4) equality is impossible.

A concave operator T is called u,-concave if it is u,-positive and for any
ueK(uy) and t€(0,1) there is a n=n(u, 1) > 0 such that

T(tuw)Zt(1+mT(u).
Consider the equation
u="T(u) (5)

with a positive nonlinear operator 7 :U — U , and the Banach space U is semi-
ordered by a cone K. We are interested in the conditions under which this equa-
tion will have at least one nonzero solution u" in the cone /. This solution
u* >0, u" 20 is called the positive solution of equation (5). In the case when
T(0) =0, we are talking about another, different from 6, solution in the cone K.

Let us first consider the question of the existence of a fixed point in an iso-
tonic operator.

A conical segment <v,, w, > is said to be invariant for the isotonic operator
T if the inequalities hold

T(vg)Zvy, T(wy)<wy. (6)
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Therefore, the invariance of the conical segment <v,,w, > means that
T(<vy, Wy >) C<vy, Wy >.

Let the isotonic operator 7' have an invariant conic segment <v,, w, >.
Consider the iterative process

KD :T(u(k)), k=0,1,2,.... ™

The following statement takes place [12, 14].
Theorem 1 (about the existence of a fixed point in an isotonic operator). Let
the isotonic operator 7' have an invariant conic segment <v,, w, >, the cone K

is normal, and the operator 7" is completely continuous. Then successive ap-
proximations (7) coincide to v* at u'® = vy and to w" at u'® = w, . Points v*
and w" are fixed points of the operator T, and if u" e<v,, w, > is any other
fixed point of 7', then the inequalities v* <u" <w" hold. If it is known in ad-

vance that the fixed point u™ e<v,, w, > is unique, then the iterative process (7)
(0)

coincides with »” from any initial point u'” e<vy, wy >.
So, consider an iterative scheme
VED =70y WwED =1y [k =0,1,2, ..., (8)

v = Vo w® = Wy .

As we can see, scheme (8) is a set of two independent iterative processes,
and therefore, its computational implementation can be performed using parallel
calculations.

The condition that guarantees the existence of a single fixed point u" of the
isotonic operator 7" is its uy-concavity. Then for the u,-concave operator 7' the
iterative process (8) will coincide bilaterally to this fixed point, i.e.

vo =v 0 <V << <<t <L <P << <@ =y,

Thus, the application of the method of two-sided approximations to find a
solution to equation u =7(u) with an isotonic operator 7' is as follows:

1) construct a cone segment <v,, w, > invariant for the isotonic operator T
using conditions (6);

2) using the u(-concavity condition, draw a conclusion about the existence
of a unique on <v,, w, > solution u” of equation (5) and two-sided convergence
to it of successive approximations (8);

3) set the accuracy € >0 and, using the iterative scheme (8), construct the

sequences {v(k)} , {w(k)};

4) if “w(k ) —v(k)H < 2g, then write the approximate solution of equation (5)

W) _ MGG *

u , in this case Hu* —u(k)“ <g,ie u ~u ) with accuracy €.
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TWO-SIDED APPROXIMATIONS METHOD FOR SOLVING
ONE-DIMENSIONAL BOUNDARY VALUE PROBLEMS FOR NONLINEAR
EQUATION OF THERMAL CONDUCTIVITY BASED ON THE USE

OF GREEN FUNCTION

1

Making the substitution T’ ={G+lu}l+c in problem (1) — (3), where u(x) is a
new unknown function, we obtail(i for the function u the boundary value problem
—u"=puFu), xe€(0,0), 9)

u(x)>0, xe(0,7), (10)

u(0)=0, u()=0, (11)

Y

Y —
T !
where F(u)=u'*°, n= X(Gk—HJ +G.
0

The function F(u) is continuous and positive for « > 0.
For problem (9) — (11) the Green’s function G(x,s) has the form

M 0<x<s

! (12)
@, s<x<|.

As one can see, G(x,s)>0 for all 0<x,s</. Then the problem (9) — (11)
is equivalent to Hammerstein’s integral equation

G(x,s)=

I
u(x)= uJ‘ G(x,8)F (u(s))ds . (13)
0

Consider the equation (13) in the Banach space C[0,/] of functions continu-
ous on the segment [0,/]. The norm in C[0,/] is introduced by a rule

||u|| = max |u(x)| . Select in C[0,/] the cone K, ={ueC[0,/]:u(x)=0,x<[0,/]}
x€[0,/]

of nonnegative functions. Cone K in C[0, /] is normal (and even acute) [12]. In
the space C[0, /], using the cone K, one can introduce semi-ordering using the
rule:

for u,veC[0,]] u<v,ifv-uek,,
ie.

u<v,if u(x)<v(x) forall xe[0,/].

If there is a classical solution to problem (9) — (11), that is, a function

u*eC? (0, ) ([0, [] satisfying the conditions (10), (11) and equation (9), then
we can conclude that this function also satisfies the integral equation (13). If the

classical solution is absent, then the definition of the generalized solution of prob-
lem (9) — (11) can be based on the integral equation (13). Namely, we can intro-

Cucmemni docnioxcenna ma ingpopmayivini mexnonoeii, 2021, Ne 4 119



N. Gybkina, M. Sidorov, K. Vasylyshyn

duce the definition of the solution (generalized) of the boundary value problem
(9)~(11) as a function u" € K, , which is the solution to the integral equation (13).

Connect the equation (13) with the nonlinear integral operator 7 acting in
C[0,/] by the rule

I
T(u)x)= uj. G(x,s)F(u(s))ds . (14)
0

Let us investigate some properties of the operator 7' of the form (14).

Firstly, the operator 7 of the form (14) is positive, i.e., it leaves cone X, an
invariant: 7(K,)c K, . Indeed, the Green’s function is continuous and nonnega-
tive in the square 0<x,s </. Then, taking into account condition (10) for any
u e C[0,]], the integrand in (14) is continuous and nonnegative at 0<x,s</,
and therefore, the function 7'(x)(x) is continuous and nonnegative on the interval
[0,/], that is, from u € IC_ it follows that T'(u) € KC, .

Secondly, the operator 7 of the form (14) is an u,-positive operator with
l
uy(x) = [ G(x,s)ds =%x(l -X), (15)
0

because for the Green’s function of the form (12) there is an estimate

(g (x) G(x,s) Sy(s)uy(x), 0<x,s<1,
where o(s) = l%min{s, [—s}, w(s)= %
Then, if u e K, , u # 0, then there is an inequality

I
oy (x) < uj. G(x,8)F(u(s))ds < Bug(x), (16)
0

[ [
where o= [ @(s)F (u(s))ds >0, B=p[y(s)F(u(s))ds .
0 0

So,if uek,, u#0, then T(u)e K(u,), that is, T(u) € K, , and there are
such a=a(u)>0, B=B(u) >0, that auy <T(u) <Py .

Since >0, y>0, the function F(u) grows monotonically by u, from
which it follows that the operator 7'(#) of the form (14) will be isotonic.

Obviously, the operator 7' is completely continuous.
Find the conditions under which the isotonic operator 7' of the form (14)
will be u,-concave with the function u(x) of the form (15). As it is known [12],

the definition of u,-concavity will be fulfilled under the condition: for any posi-
tive number u for any 1€ (0,1)
F(tu)>tF(u). 17)
¥

For the function F(u)= u'*° the condition (17) takes the form
Y v

(Tu)1+6 >T.ylto ,
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wherefrom
y

AN | ,
that is,
y<l+o. (18)

Therefore, if condition (18) is satisfied, the operator 7' of the form (14) will
be u,-concave.

Thus, the following statement is held.

Lemma 1. The operator 7 of the form (14), where G(x,s) is the Green’s
function (12) of the problem (9) — (11), which acts in the space C[0,/], semi-
ordered by the cone K, of nonnegative functions, has the following properties:

a) it is a positive operator;

b) it is an u-positive operator, where the function uy(x) is defined by
equality (15);

c) it is an isotonic operator;

d) if inequality (18) holds, it is an u,-concave operator, where function
uy(x) has the form (15).

In cone K, we distinguish the invariant conical segment <v,, w, > by
conditions (6), which for the operator 7, determined by equation (14), take the form

/
1] G(x,5)F (vy(s))ds = vy (x) forall xe[0,1], (19)
0
/
u.[ G(x,8)F(wy(s))ds <wy(x) forall xe[0,/]. (20)
0
Let us form an iterative process according to the scheme:
l
y(h (%)= uj G(x,s)F(v(k) (s)ds, k=0,1,2,..., (21)
0
/
wk D (x)= uj G(x,s)F(w(k)(s))ds ,k=0,1,2,..., (22)
0
VO ) = vy (), W (x) =y (x) . (23)

Taking into account the invariance of the cone segment <v,, wy > and the
isotonicity of the operator 7', we can conclude that the sequence {v(k) (x)} does

not decrease along the cone K, and the sequence {w(k ) (x)} does not increase
along the cone K, . In addition, from the normality of the cone K, and the
complete continuity of the operator 7' follows the existence of the boundaries

v*(x) and w"(x) of these sequences. Thus, the chain of inequalities is true
vo =0V WP . ' < P V@ = wy.
There are two possible cases: v* <w" and v* =w". If the operator T is u,-

concave, then only the second case is possible, and then u* :=v" =w" is the only
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fixed point of the operator 7' on the conical segment <v,, w, >, and hence u" is
the unique on < vy, w, > positive solution of the boundary value problem (9)}—(11).

Thus, the following theorem holds.

Theorem 2. Let <v,, w, > be an invariant conic segment for an isotonic
operator 7' of the form (14) and condition (18) holds. Then the iterative process
(21) — (23) converges according to the norm of the space C[0, /] to the unique on
<y, W, > continuous positive solution u” of the boundary value problem (9) —
(11), and a chain of inequalities takes place

vo = V00V 9P < <P v PDan® = . (24)

For the approximate solution of the boundary value problem (9) — (11) on
the £ th iteration we take the function

wh (x)+ e (%)
5 .
The advantage of the constructed two-sided iterative process is that on each

k th iteration we have a convenient a posteriori error estimate for the approximate
solution (25):

u® (x)=

(25)

. |
u —u(k)H <— max (w® (x) = v® (x)) .
2 x€[0,1]

x€[0,
Therefore, if the accuracy € >0 is given, then the iterative process should be

carried out before the inequality max (w(k)(x)—v(k)(x))<28 is fulfilled and
x€[0,1]

with the accuracy & we can assume that u” (x) ~ u® (x).

Then the function

1
T () = {G_“u(k) (x)}““
ko
can be considered an approximate solution to the original problem.

Since there is an inequality (16), which means that 7'(u) € K(u,) for any
uek,, u#0, then the ends of the invariant conical segment <v,, w, > can be
found in the form vy(x)=oauy(x), wy(x)=Puy(x), where 0<a<f, and the
function u,(x) is determined by equality (14). Then inequalities (19), (20) take

the form

I

u[ G(x, $)F (qug(s))ds > aug(x) forall xe[0,1], (26)
0
]

pj G(x,8)F(Buy(s))ds < Puy(x) forall xe[0,1]. 27
0

Inequalities (25), (26) can be reduced to the form
l+o—y I+o—y
o o <um, B *° >uM, (28)
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where

3y
N P
2y+0+1 2 I+o \/Ef(l + 'Yj

m=1 o+ 3 I+s) (29)
2
2 l1+o
2y+o+l v 1
M=] ot 2 wopg 24 Y 14 ¥ | (30)
2 l1+o l+o

+00
Here TI'(z)= Itz_le_’dt is Euler’s gamma function, B(z,a,b)=
0

z
= I 1“7 (1-1)""'dr is Euler’s incomplete beta function.
0

Since the value of max (wy(x)—vy(x))=(B—a) max uy(x) should be as
xe[0,1] x€[0,7]

small as possible for faster convergence of iterations, in the practical implementa-
tion of the iterative process (21)—(23) one should take the largest a and the
smallest [, satisfying inequalities (27), i.e.

o+l o+l

o—y+ o—y+1

a=um” ", B 31)

EXPERIMENT, RESULTS AND DISCUSSIONS

The computational experiment in problem (1)—(3) was carried out for the values
of =1, ky=1, A=1 and o=2,5, which corresponds to the case of an experi-

ment with a source of energy from thermonuclear reactions in the study of the
thermal conductivity of hydrogen plasma [2]. The condition for the convergence
of the proposed method of two-sided approximations for finding a positive solu-

2/7
tion is the condition y <1+ o =3,5. Making the substitution 7 = (Euj , Where

u(x) is a new unknown function, for the function # we obtain a boundary value
problem of the form (9) — (11).

Consider the case where y =1,6 (condition y <1+ o, obviously, is satisfied).
By formulas (29), (30) we find m and M : m=0,30871, M =0,35218, and by
formulas (31) we obtain that o =0,32951, 3 =0,42000 . So, provided that u,(x)
has the form (15) at /=1, the invariant cone segment will have the form

<oy, Buy >. The iterative process (21) — (23) converged with accuracy € = 107
to the solution of the problem for the function u(x) in 9 iterations.

Fig. 1 shows the graphs of the upper w(k)(x) (dotted line) and lower v(k)(x)
approximations (dashed line), £=0,1,...,9, Fig. 2 shows a graph of the

approximate solution u® (x), and Fig. 3 shows a graph of the approximate
solution 7 (x). Tables 1 and 2 show the values of the approximate solutions

u® (x) and T (9)(x) on the grid with step 0,1, respectively.
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Fig. 1 clearly demonstrates the two-sided character of the convergence of the
constructed iterative sequences {v(k )(x)} and {w(k)(x)} in accordance with the
chain of inequalities (24): at each k th iteration, the unknown exact solution

u”(x) of problem (9)—(11) is above the approximation vk )(x) and below the ap-

proximation wh (x)

Table 1. The value of the approximate solution u® (x)

X 0,0 0,1 0,2 0,3 0,4 0,5
u(x) | 0,000000 | 0017262 | 0,031830 | 0,042761 | 0,049515 | 0,051798
x 0,6 0,7 0,8 0,9 1,0
u®(x) | 0,049515 | 0,042761 | 0,031830 | 0,017262 | 0,000000
Table 2. The value of the approximate solution 7 ©) (x)
x 0,0 0,1 0,2 0,3 0,4 0,5
T(x) | 0,000000 | 0,448497 | 0,534180 | 0,581191 | 0,606059 | 0,613914
x 0,6 0,7 0,8 0,9 1,0
T(x) | 0,606059 | 0,581191 | 0,534180 | 0,448497 | 0,000000
wh(x), WO(x),
0,04
0’03‘, :::/ \:\‘\‘
0,02 &
0,01
X
02 04 06 08
Fig. 1. Graphs of v (x) and w®(x), k=0,1,2,3,4,5,6,7,8,9
u(x) T x)
0,05
0,04 0,04
0,03 0303
0,02 0.02
0,01 0,01
02 04 06 08 x 02 04 06 08 «x

Fig. 2. Graph of 4 (x) Fig. 3. Graph of 7 (x)

The dependence of the norm of solutions u(x) and 7T(x) at c=2,5
depending on the value of the parameter y was also investigated numerically.
Iterations were carried out until four significant digits were clarified in the
norm of the approximate solution u® . The corresponding graphs of the
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dependence of the norms on the parameter y are shown in Fig. 4 and 5. As we
can see, with increasing parameter y, the norms of solutions u(x) and 7'(x) go
to zero.

[[uGo)ll TGO

0,10 0,06
0,08
0,06 0,04

4
0.0 0,02
0,02

05 1,0 1,5 2,0 2,5 30 v 05 1,0 1,5 2,0 2,5 3,0 vy

Fig. 4. Graph of the dependence of the Fig. 5. Graph of the dependence of the
norm of solution u#(x) on the parameter y norm of solution 7(x) on the parameter y

The rate of convergence of the iterative process was estimated by the value
Sitl | where g, = max (W® (x)=v®(x)), k=1,2,.... It is established that the
e x€[0,1]
process coincides with the speed of geometric progression. Estimation of the de-
nominator g of this progression depending on y is given in Table. 3. As one can
see, with increasing vy, the value of ¢ approaches unity, which indicates decel-
eration in the convergence of iterations.

Table 3. The value of the estimate of the rate of convergence ¢ for different

values of y
Y 0,1 0,2 0,3 0.4 0,5 0,6 0,7 0,8 0,9 1,0
q 1 0,029 | 0,058 | 0,086 | 0,116 | 0,145 | 0,172 | 0,200 | 0,229 | 0,258 | 0,286
v 1,1 1,2 1,3 1,4 1,5 | 1,6 | 1,7 | 18 1,9 | 2,0
91 0315 | 0,343 | 0,372 | 0,401 | 0,430 | 0,458 | 0,487 | 0,515 | 0,544 | 0,573
v 2,1 2,2 2,3 2.4 25 | 26 | 27 | 28 | 29 | 3,0
q 1 0,602 | 0,631 | 0,659 | 0,688 | 0,715 | 0,744 | 0,773 | 0,802 | 0,829 | 0,858
v | 3.1 32 | 33 | 34
q | 0,887 | 0,916 | 0,944 | 0,999
CONCLUSIONS

The problem of construction of two-sided approximations to the positive solution
of the first boundary value problem for a nonlinear one-dimensional equation of
thermal conductivity is solved in the work.

The scientific novelty of the results obtained lies in the fact that the method
of two-sided approximations for solving nonlinear operator equations with an iso-
tonic operator was further developed in terms of its application to boundary value
problems for the nonlinear one-dimensional heat equation. The developed method
has a few advantages, such as a convenient a posteriori estimation of the error of
the approximate solution and a simple computational algorithm. This distin-
guishes it from other numerical methods for solving boundary value problems for
nonlinear ordinary differential equations of the second order and makes it attrac-
tive for application in engineering practice.
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The practical significance of the results obtained lies in the fact that the pro-
posed method has shown itself well in solving test problems, allows fast software
implementation, which will allow carrying out highly invariant computational
experiments when solving practical problems of mathematical modeling of non-
linear processes.

The limited use of the method can be associated with the conditions imposed on
the behavior of nonlinearities included in the equations of the boundary value problem.

Prospects for further research are the extension of the method of two-sided
approximations developed in this work to boundary value problems for ordinary
differential equations with other types of nonlinearities, in particular, exponential
ones, as well as to initial boundary value problems for quasilinear parabolic equa-
tions, using semi-discrete methods (for example, the Rothe line method).
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3ACTOCYBAHHSI METOJY JABOBIYHUX HABJWXEHb [0
PO3B’SI3AHHSI MEPIIOI KPAHMOBOI 3AJAYI JJIsI OJAHOBUMIPHOI'O
HEJIIHIMHOI'O PIBHSIHHSI TEILIONPOBIJHOCTI / H.B. I'u6kina, M.B. Cuzo-

pos, K.B. Bacwmumma

AHoTanisi. Po3risHyTO mepiry kpaioBy 3ajady Ut OJHOBHMIPHOTO HENIHIHHOTO
PIBHSIHHS TEIIOMPOBIAHOCTI, e KOeil[ieHT TeIIONPOBIAHOCTI Ta (GyHKIISI HOTYX-
HOCTI TEIUIOBHX JDKEPENI CTCIMCHEBO 3aJieXaTh Bia Temmeparypu. s 4uciiOBOTO
aHaNizy i€l 3amadi 3alpOOHOBAHO BUKOPUCTATH METOJ ABOOIYHHX HAOIMKEHb Ha
ocHOBI Metony ¢yHkuiit ['pina. [licia 3aminn HeBimomoi (yHKLIT KpalioBa 3agada
3Be/IeHa 0 IHTerpaIbHOTrO PiBHAHHA ['aMMepIuTeiiHa, sike PO3IIISTHYTO K HelliHiliHe
olepaTopHE PIBHSHHS y HAIiBYIOPSIKOBaHOMY 0aHaxoBoMy mpoctopi. OTpumaHo
YMOBH iCHYBaHHS €IMHOTO JOAATHOTO PO3B’SA3Ky 3adadi Ta yMOBH ABOOIYHOI 301k-
HOCTI JI0 HhOT'O MOCIZIOBHUX HAOMIKEeHb. PO3po0iIeHHiI METOL IPOrpaMHO peatizo-
BaHO Ta JOCHIKEHO IIiJ] Yac po3B’si3aHHS TECTOBUX 3371a4. Pesynbratn obumciioBa-
JIBHOTO EKCTIEPUMEHTY IIPOLTIOCTPOBAHO Ipa)iqHOI0 Ta TAOIMYIHOIO iHPOPMALISIMA.
[IpoBeneHi eKCriepUMEHTH MiATBEPIMIN MPANe3JaTHICTh Ta eEeKTUBHICTH pO3po0-
JIGHOTO METO[y i 103BOJIAIOTH PEKOMEH/LyBaTH HOTO JUIsi BUKOPHCTAHHS HA IPAKTHLIL
JUISL pO3B’°SI3aHHS 3a/lad CUCTEMHOTO aHaNi3y Ta MaTeMaTHYHOTO MOJICTIOBAHHS He-
JHIHHUX TPOLECIB.

Kio4oBi ciioBa: HeniHifHA TEIIONPOBIAHICTD, JOAATHHI PO3B’sA30K, QyHKIis ['pi-
Ha, IBOOIYHMIT iTepaliifHIi METOX, PIBHSHHS 3 130TOHHHM OIIEPAaTOPOM.

INPUMEHEHUE METOJIA IBYCTOPOHHHUX HPPIB.JIPI)KEHHFIF PEIIEHUIO
MHNEPBOU KPAEBOU 3AJJAYM V1A OJHOMEPHOI'O HEJIMHEMHOI'O YPAB-

HEHUS TEIUIOIMPOBOAHOCTMU / H.B. 'mokuna, M.B. Cunopos, K.B. Bacummma

AnHoTanms. PaccMoTpeHa nepBas KpaeBas 3ajaua JUis OZHOMEPHOTO HETMHEHHOTO
YpaBHEHHUS TEIUIONPOBOAHOCTH, B KOTOPOil KO3((GHIMEHT TEIUIONPOBOAHOCTH H
(YHKIMST MOIIHOCTH TEIUIOBBIX HCTOYHHKOB SIBIISIFOTCSI CTENICHHBIMH (YHKIMSIMU
Temreparypsl. JlIsl YNCIEHHOTO aHalM3a 3TOM 3aJaudl MPEI0KEHO HCIONb30BaTh
METOJ] JBYCTOPOHHHX IpUOIMKEHHMI Ha ocHOBe Merona ¢yHkuumit I'puna. ITocie
3aMEHBI HCKOMOH (DYHKIMH KpaeBas 33/1aua CBeJeHa K HHTETPAILHOMY YPaBHEHHIO
lNammepiuTeiina, paccMaTpuBaeMoOMy Kak HEJTMHEHHOE ONEpaTOPHOE ypaBHEHHE B
MOy yTOpsIIOYeHHOM 0aHaxoBoM HpocTpaHcTBe. [lomydyeHs! ycnoBus CyIecTBOBa-
HHS €IVMHCTBEHHOTO ITOJIOXKUTEIBHOTO PEIICHUS] 33aa4yd YCIOBHS IBYCTOPOHHEH
CXOIUMOCTH K HEMY IMOCIIEAOBATENbHBIX NpHOMMmKeHNH. Pa3zpaboTaHHBIN MeToq
MPOrpaMMHO PEaIN30BaH M UCCIIEI0BaH MIPU PELIEHUH TECTOBBIX 3a/1a4. Pe3yabTarsl
BBIYHCIIUTEIIBHOTO SKCIIEPHUMEHTA MPOUILTIOCTPHPOBAHBI IPAMIECKOi M TAOIHMIHON
napopmarmsamu. [IpoBeneHHBIC YKCIIEPHIMEHTH! MOATBEPAMIN PabOTOCIOCOOHOCTH
1 3QPEeKTUBHOCTH pa3pabOTaHHOTO METO/a, YTO MO3BOJSET PEKOMEHIOBATh €TI0 IS
UCTIONB30BaHMs Ha MPAKTHKE MPH PEIICHUH 3a/au CUCTEMHOTO aHajliu3a U MaTeMa-
THUYECKOT0 MOJICIIMPOBAHNS HEJTMHEHHBIX ITPOLIECCOB.

KiioueBble c10Ba: HeIMHEIHHAS TEIUIONPOBOIHOCTD, MOJIOKUTENBHOE PELICHHE, (hyHKIHS
I'puna, ABYCTOpOHHMIA UTEPALIMOHHBII METO1, ypaBHEHHUE C M30TOHHBIM OIIEPaTOPOM.
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