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SIMULATION OF A ROTATING STRONG GRAVITY
THAT REVERSES TIME

Y. MATSUKI, P.I. BIDYUK

Abstract. In this research we simulated how time can be reversed with a rotating
strong gravity. At first, we assumed that the time and the space can be distorted with
the presence of a strong gravity, and then we calculated the angular momentum den-
sity of the rotating gravitational field. For this simulation we used Einstein’s field
equation with spherical polar coordinates and the Euler’s transformation matrix to
simulate the rotation. We also assumed that the stress-energy tensor that is placed at
the end of the strong gravitational field reflects the intensities of the angular momen-
tum, which is the normal (perpendicular) vector to the rotating axis. The result of the
simulation shows that the angular momentum of the rotating strong gravity changes
its directions from plus (the future) to minus (the past) and from minus (the past) to
plus (the future), depending on the frequency of the rotation.

Keywords: gravitational field, distortion of time and space, angular momentum,
curvature tensor, stress-energy tensor.

INTRODUCTION - RESEARCH QUESTION

In our previous research [1] we simulated a rotating strong gravity, in which time
and space are distorted; and we found that the direction of the angular momentum
changes as the strong gravity changes its frequency of the rotation. However, the
scope of the previous research was limited to the space components. In this new
research we also simulate the component of the distorted time, and we examine if
time can be reversed.

In the previous research [1] we assumed that the component of the rotation
matrix of the spherical polar coordinates of phas anti-symmetric components,
Ry, sin @, and — R;;sin@; and then as the result we found that the angular
momentum of the spatial coordinates changed its turning direction. So now, we
assume that there are also anti-symmetric components in the distorted time
coordinate, T ; and, we assume that the direction of the angular momentum of the
T— vector must also change. Therefore, the research question now is whether or
not, the T— coordinate can reverse its direction backward (change to the vector
of time back to the past), because of the anti-symmetry.

© Y. Matsuki, P.1. Bidyuk, 2021

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2021, Ne 3 7



Y. Matsuki, P.I. Bidyuk

Curvature tensors

In this research we used the same curvature tensors that we derived and used in
our previous researches [1-3]:
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where p = (EMJ [2].

In this research we simulate the distorted time component t, and the
distorted distance component p, so that we can formulate the body vector of the

o {Roo}

rotating object: R = .
Ry

We take only orthogonal components of this gravitational field for
simulating its rotation. Then we calculate the angular momentum of this rotation
by anti-symmetric rotation operator, sing and -sin¢, to calculate the
projections of the vectors in the normal components (perpendicular to the curved
spherical surface), where ¢ is angle of the rotation.

Distortion of time and space in strong gravity

We used the same assumption of our previus researches [1-3] for simulating the
distortion of time and space, as shown in Fig. 1, 2.

Note: r is the distance from the center of the strong gravity, ¢ is the time to travel
on the distance, f and g are given functions, and t=¢+ f(r);and p=t+g(r).

In these figures 1 is a relative time in the coordinate system, which expands
and shrinks depending on the distance », where t=¢+ f(r); and p is the rela-
tive distance, which expands and shrinks depending on the time ¢, where
p=t+g(r); and f(r)andg(r) are functions of . For the simulation we as as-

sumed Case-1: f(r)=logr and g(r)=e¢" (non-linear); and Case-2: f(r) _1

r
and g(r) =r (linear).
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ALGORITHM

We use the same algorithm that we used for our previous research [1-3] to simu-
late the relative strengths (intensities) of the curvature tensors, which are reflected
by the stress-energy tensor that is placed at the end of the distance » in Fig. 1, 2.
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Fig. I. Time and distance from the center Fig. 2. Time and distance from the center
of the gravitational field, Case-1 (non-linear of the gravitational field, Case-2 (linear
distortion): f(r)=logrand g(r)=e" distortion): f(r)=(1/4)and g(r)=r

Einstein’s field equation [4] that rules the motion of particles in the gravita-

tional field is: (R"Y —%g“VR)N =0. Then, R, —%gszkT, where T'is the

stress-energy tensor and & is a constant [5]. By calculating ¢ and V' (c), as shown
below, we estimated the relative strength of each component of R, to the stress-
energy tensor in the system of spherical polar coordinates:
H=kT—R,, =kT —(cyXo+c,X}) and H?>={kT —(cyXy+c,X,}*, where ¢,
and ¢, are the coefficients, which make a column vector ¢. And X = [X 0 X 1],
then H =kT—Xc. Then we set the constraint X'H =0, and then
X'(kT — Xc)=0, where X' is transpose matrix of X .

Then XXc=XkT, ¢=(XX)'XkI', and £=V(c)=6%(X'X)"", where
V(c)=c" is the variance of the ¢, and &% =¢'e/(n—1), where e=M kT,
M =1-X(X'X)"'X', n is the number of rows of each column of X (in this

simulation n=23), / is the number of columns of X, / is a (23x23) unit ma-
trix that holds ones on all diagonal elements and O for the other elements,

(X'X)! is the inverse matrix of XX , and ¢ is the transpose vector of e .

Rotation of the object , which contains strong gravity that distorts time and
space

When an object rotates as shown in Fig. 3, its coordinate system will be trans-
formed by the transformation matrix D of the Euler’s angles [5]. For the rotation

Cucmemni docnioxcenna ma ingpopmayivini mexuonoeii, 2021, Ne 3 9



Y. Matsuki, P.I. Bidyuk

around one axis of ¢, the tensors of the object’s coordinate system will be multi-

cos sin
N
—sing cosQ
And then the curvature tensor R, will be transformed to:
cos sing || R 0
DR, =| < ¢ @ 1| foo _
—sing cos@|| 0 Ry
| cos@-Ryy sin@Ry;
| —sing-Ry, cos@Ry; |’

plied by:

Here the components sin@- Ry,
and —sin@- Ry, are antisym-metrical,
which are perpendicular to the rota-
tional axis z=x; for ¢ of Fig. 3.

Given the above transformed
curvature tensor after the rotation, at
first, we also calculate the anti-
symmetrical components of D-R,,,

which are as follows:
0 sin@- Ry,

{— sin Q- Ry, 0
Fig. 3. Rotation of an object dRy, — Ryyd<,
{del} z{ R dQ;

} to calculate

}, and to formu-

late
H=kT _(_CoRoon3 + ClRlldQB) =

=kT { c > sing+c [ 20 + ! jsin(p}
- RN 1 >
(p—1)° 3p-1° (p-0*”

then the same algorithm follows as explained above.

20 1

Note 1. As shown in the Introduction, R;; = 3 175> but
3(p—1)° 18m(p—1)
. . 20 1
in our calculation we use R;; = >+ VR
3p-1° (-1
0 dQ; 0
Note 2. Here | 40, 0 0 |=¢ is an infinitesimal rotation operator; while
0 0 0

0  dQ, -do,
in general g=| —4Q, 0 dQ, |» according to the Reference [5], but in this

dQ, -do, 0
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our simulation dQ; =dQ, =0 and dQ; =sin¢@. It calculates a rotated vector as

the cross-product of RHV ,and dQ,
dRy Ry, dQ, Ry, dQs — R33d(Q,
dR22 = RP«V X dQ = Rzz X sz = R33dQl - Rl 1dQ3

And then we also calculate the relative strength of the gravitational field’s
energy before and after the the rotation by the diagonal components of DR,

) cos®- Ry 0
which are to formulate
cosQ- Ry
H =kT - co%cosq)+cl[ 20 >+ ! 4/3jcoscp ,
(p-1) 3(p-1° (p-7)

then the algorithm follows as explained above.

SIMULATION
Input data

Time ¢ is set as shown in Fig. 1 for the Case-1, and in Fig. 2 for Case-2, with
which its slope to the distance » from the center of the gravitational field is
a constant. For simulating the spatial expansion of the gravitational field we as-
sume as if 0 becomes larger in far distance. For simulating the rotation of the

object we set two cases, assuming ¢, (the rotation 1) and ¢, (the rotation 2)
also as shown in Fig. 4. With these settings,sin0, cos6, cot® and cos¢ behave
like as shown in Fig. 5.

Degree
450
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0123468878 01011121214 151617 121922021 222224

Fig. 4. Angles, © and @, for the simulation

In addition, for this simulation we set the stress-energy tensor k7 =1; be-
cause the purpose of this simulation is to measure the order of magnitude of the
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relative strength of each component of R, and the gravitational waves to the

stress-energy tensor.
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Fig. 5. sin®, cosB, cot® and cos@ for the simulation

Result

21 22

Fig. 6 (Table 1) shows that the perpendicular vector (angular momentum) changes
its direction from minus to plus as the frequency of the rotation changes from the
rotation 1 to the rotation 2; and Fig. 7 (Table 2) and Fig. 8 (Table 3) also show
that the angular momentum changes its direction, while the directions are oppo-
site between the non-linear distortion (Case-1) and the linear-distortion (Case-2).

Rotation 1

No|rotation

-6,000E -4,000E -2,000E 0,000E+ 2,000E+ 4,000E+ 6,000E+
+02 +02 +02 00 02 02 02

@ On curved surface (Case-1)

m On the perpendicular vector
(Case-1)

Rotation 1

@ On curved surface (Case-2)

m On the perpendicular vector
(Case-2)

NO rotation

-2,000E+01 -1,000E+01 0,000E+00 1,000E+01 2,000E+01

Fig. 6. Gravitational field’s energy projected on the curved surface and the angular

momentum on the perpendicular direction from the surface
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Table 1. Strengths of gravitational field

Case-1 Case-2
Case On curved On perpendicular On curved | On perpendicular
surface vector surface vector
No rotation -21,91 — -10,81 —
Rotation 1 -21,63 4,561 x10? 2,989 13,82
Rotation 2 27,52 -4,046 x10° -2,854 -12,53

rotation 2

rotation 1 -

-6,000E+02 -4,000E+02 -2,000E+02 0,000E+00 2,000E+02 4,000E+02 6,000E+02

o tau
mro

Fig. 7. Rotation momentum of the gravitational field in two directions of T and p,
Case-1 (non-linear distortion)

Table 2. Strength of the perpendicular vector to the principal axis z of gravita-
tional field. Case-1

Components Cand V' (c) Cand /¥/(c)
(Rotation 1) (Rotation 2)
dRyy =—Rgg - dQ3 = =sin@ Ry 3,022-10? -2,796-10°
(Component of 1) (2,526-10%) (1,958-10%)
dRy| =R, -dQ; =sin@R; 1,540-102 -1,250-102
(Component of p) (1,158-10%) (90,88)

- rotation 2

rotation 1

o tau
mro

-1,600E+0 -1,000E+0 -5,000E+0 0,000E+0 5,000E+0 1,000E+0 1,500E+0 2,000E+0
1 1 0 0 0 1 1 1

Fig. 8. Rotation momentum of the gravitational field in two directions of T and p,
Case-2 (linear distortion)

Table 3. Strength of the perpendicular vector of the rotating gravitational field.
Case-2

Components Cand ¥ (c) Cand V(c)
(Rotation 1) (Rotation 2)
dRpg = —Rgg - dQ3 = —sin ¢ Ry, 7,997 -7,870
(Component of 7 ) (11,83E+01) (12,09)
dRy = Ry -dQ3 =sinQRy, 5,819 -4,662
(Component of p) (7,039) (7,405)
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The spherical surface components (the energy density) don’t show the clear
difference in these plus-minus signs in Case-1 (non-linear distortion) in Fig. 9
(Table 4); while the sign of the distance component ( p ) changes in Case-2 (linear
distortion) in Fig. 10 (Table 5) as the strong gravity rotates (Note 3: In our previ-
ous research [1] we had included two other spatial components of the vector, 0
and ¢; although we didn’t include these components in this research because the
aim of this research is to examine the effect of the rotation in the distorted time
coordinate (1)).

| rotation 2

rotation 1

otau
mro

no rotation

-8,000E+0 -6,000E+0 -4,000E+0 -2,000E+0 0,000E+00 2,000E+01 4,000E+01 6,000E+01
1 1 1 1

Fig. 9. Gravitational field energy in 2 directions on the spherical curved surface, Case-1
(non-linear distortion)

Table 4. Strength of gravitational field on principal axis z . Case-1

Diagonal Diagonal
Components Cand \[¥(c) of R, Components Cand \[V(c) | Cand ¥V (c)
of R, before the rotation | of rotated R, (Rotation 1) (Rotation 2)
Ry -53,61 (42,23) Cos Q- Ry -52,97 (47,82) | -66,89 (64,99)
Ry 31,70 (24,19) cosQ- Ry 31,34 (27,42) | 39,36 (37,34)
The values in the brackets are: /V(¢) .

no rotation

1 1 1

1

T T
-4,000E+0 -3,000E+0 -2,000E+0 -1,000E+0 0,000E+00 1,000E+01 2,000E+01 3,000E+01

mtau
mro

Fig. 10. Gravitational field energy in 2 directions on the spherical curved surface, Case-2
(linear distortion)

Table 5. Strength of gravitational field on principal axis z . Case-2

Diagonal Diagonal
Components|C and \/V'(c) of R, | Components K Cand yV(c) | Cand \¥(c)
of R before the rotation | of rotated R (Rotation 1) (Rotation 2)
Y Y
Ry -29,32 (5,205) cosQ- Ry, 7,011 (14,04) | -8.767 (12,84)
Ry 18,52 (3,201) CoOsQ®- Ry | -4,022(8,713) | 5,912 (7,934)
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PHYSICAL MEANING OF THE RESULT

Fig. 11 shows the projected vector on the spherical curved surface, which is tan-
gential to the sphere of the gravitational field. This component of the vector is the
energy density of the gravitational field, which our previous researches [1, 6] re-
ported. Fig. 12 shows the projected vector on the perpendicular directions of the
distorted time (7 ) and the distorted distance (p ). These components are the angu-

lar momentum density, which our previous researches [1, 6] reported.

Projectéd vectors on the perpendicular
direction of the distorted time, ©

Projected vectors on the
N @ spherical surface

Projected vectors on the perpendicula
direction of the distorted time, t

N

Fig. 11. The Vector projected on tangential Fig. /2. The Vector projected on the normal
(surface) component of the spherical (perpendicular) components of the spherical
curvature curvature

CONCLUSIONS AND RECOMMENDATIONS

We simulated how a rotating strong gravity can change the direction of time-
space, by assuming that the direction of the angular momentum of the rotation
indicates the direction of the time. At first, we thought that the time and space
could be distorted with the strong gravity, and made the input data upon two cases
(the non-linear distortion model and the linear distortion model). Then for simu-
lating the rotating strong gravity, we used the spherical polar coordinate system
with the Euler transformation matrix; and then we used Einstein’s field equation
for calculating the relative strength of the angular momentum to the stress-energy
tensor that is placed at the end of the gravitational field.

The result of the simulation shows that the direction of time changes
between the future and the past, with the distorted time and space at the presence
of a rotating strong gravity.

Further research is needed for verifying this result.
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IMITAIIAHE MOJEJIOBAHHSI CUJIbHOI OBEPTOBOI I'PABITALII, 11O
3MIHIOE HAITPSIM YACY / . Manyxi, I1.I. Bimok

AHoTanisi. 3MO/IeIbOBAHO, SIK MOYKHA 3MIHUTH HAIpsIM Yacy 3a JOIIOMOroio obep-
TOBOI CHJIBHOI rpaBitamii. 3po0IeHO MPUITYIEHHS, [0 9ac i MPOCTIp MOXYTb OyTH
BUKPHBJIICHI 32 HAsIBHOCTI CHJILHOT TpaBiTallii, 00YMCIEHO MOMEHT IMITyJIbCY 00ep-
TOBOTO IpaBiTalliifHOro MoJisl. Y MOZENTIOBaHHI BUKOPUCTAHO PiBHSAHHSA noust EWHII-
TeiHa 31 cepuuHIMH MOJSIPHUMH KOOPMHATAMU Ta MATPHULIO TepeTBopeHs Eiine-
pa s MozentoBaHHs obepranHs. KpiM Toro, mpumyckanocs, 1o TeH30p eHeprii-
IMIyJbCy, PO3MILIEHUH y KIHII CHJIBHOTO TPABITAlIMHOTO MOJIS, BiHOoOpakae BeH-
YHHY MOMEHTY IMITyJbCy, SIKUHA € BEKTOPOM HOpMali (TIepHEeHANKYIIPHUM BEKTO-
poM) 10 00epToBOi Oci. Pe3ynpraT iMITallifHOrO MOJEIIOBAHHS IOKAa3ye, IO MO-
MEHT iMIynscy o0eproBoi cHiIbHOI rpaBitamii 3MiHIOE i1 HampsM 3 IUTIOca
(maitbyTHe) Ha MiHYyC (MHHYJIE) Ta 3 MiHyca (MUHYJIE) Ha IUTIOC (MalOyTHE) 3aIe)KHO
BiJl 4aCTOTH OOCPTaHHS.

KawuoBi ciaoBa: rpasiraiiiiHe 1moJie, CTBOPEHHS 4Yacy 1 MPOCTOpPY, KyTOBHHA MO-
MEHT, TEH30p KPUBH3HU, TEH30p CHEePrii 30y KCHHS.

UMHUTAIIMOHHOE MOJIEJIMPOBAHUE CUJIBHOU BPAMAIQMEﬁCH
T'PABUTALINU, KOTOPASI MEHSIET HAITPABJIEHUE BPEMEHMU / 1. Manykw,
I1.1. bunarox

Annotamus. CMOJEIMPOBAaHO, KaK MOXKHO M3MEHHTH HaIlpaBJICHUE BPEMEHH C II0-
MOIIBIO BPAIIAIOIIEHCs CHIIBHOM rpaBUTalK. BHavale npenmnonaranock, 4To Bpems
U NIPOCTPAHCTBO MOTYT OBITh MCKAXXCHBI IIPH HAIWYUM CHJIBHOM I'paBHUTALlNH, a 3a-
TEM BBIYMCIMIN MOMEHT HMMITyJbCa BpALIAIOLIErocsi I'PaBUTAlMOHHOrO mois. B
3TOM MOJIEJIMPOBAHUU HCIIOIb30BAaHO ypaBHEHME Mo ODiHIITEelHa co cdepuye-
CKMMH IOJIIPHBIMHM KOOPJIMHATAMH W MaTpHILy IpeoOpa3oBaHuii Jitnepa a1 Moze-
JMpOBaHUs BpamieHus. Kpome TOro, mnpemonaragock, 4To TEH30pP OSHEPrUH-
UMITYJIbCa, Pa3MEIIEHHBIH B KOHIIE CHIIBHOTO TPaBUTAMOHHOTO TI0JIS, OTPAXKaeT Be-
JMYMHY MOMEHTA MUMITYJIbCa, KOTOPHII SIBIISICTCSI BEKTOPOM HOPMaiH (IIEpPIICH NKY-
JSIPHBIM BEKTOPOM) K Bpallarouieiics ocu. Pe3ynprat IMUTAIIMOHHOTO MOAEINPOBA-
HHS II0Ka3bIBaeT, YTO MOMEHT HMIIyJIbCA BpALIAIOIICHCS CHIBHOW I'paBHUTALMN
MEHsIeT ee HampaBieHHe ¢ Iumoca (Oyayiiee) Ha MHHYC (IIPOLUIOE) M C MHUHYcCa
(npouwutoe) Ha mmoc (Oyayiee) B 3aBUCUMOCTH OT YaCTOThI BPaLCHUSI.

KuroueBbie ciaoBa: TpaBUTallUOHHOEC I10JIC, UCKAKCHUE BPEMCHU U NIPOCTPAHCTBA,
yFJ'IOBOﬁ MOMCEHT, TCH30P KPUBU3HBbI, TCH30D SHEPI'UU BOS6y)K}:[€HPIH.

16 ISSN 1681-6048 System Research & Information Technologies, 2021, Ne 3



