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Abstract. The article presents a comparative analysis of the effectiveness of using 
parallelism of varying granularity degrees in modern multicore computer systems 
using the most popular programming languages and libraries (such as C#, Java, 
C++, and OpenMP). Based on the performed comparison, the possibilities of in-
creasing the efficiency of computations in multicore computer systems by using 
combinations of medium- and fine-grained parallelism were also investigated. The 
results demonstrate the high potential efficiency of fine-grained parallelism when 
organizing intensive parallel computations. Based on these results, it can be argued 
that, in comparison with more traditional parallelization methods that use medium-
grain parallelism, the use of separately fine-grained parallelism can reduce the com-
putation time of a large mathematical problem by an average of 4%. The use of 
combined parallelism can reduce the computation time of such a problem to 5,5%. 
This reduction in execution time can be significant when performing very large 
computations. 

Keywords: multicore computer system, core, thread, tasks, parallelism, granularity, 
fork-join, speedup coefficient, fine-grained parallelism, nested parallelism, com-
bined parallelism. 

INTRODUCTION 

Classical von Neumann architecture is not designed for parallel computing; all 
commands execute in one sequence strictly one after another. Each such individ-
ual sequence that operates on the machine at the current time is a process. ISO 
9000:2000 [1] defines a process as a set of interconnected and interacting actions 
that convert input data into output. A computer program in itself is only a passive 
sequence of instructions, while a process is the direct execution of those instruc-
tions. 

The concept of process is inextricably linked with the concept of thread. The 
execution thread is the smallest unit of processing, the execution of which can be 
assigned by the operating system kernel [2]. Implementation of execution threads 
and processes in different operating systems differs from each other, but in most 
cases, the execution thread is within the process. Multiple threads can exist within 
the same process and share resources such as memory, while processes do not 
share these resources. In particular, the execution thread hare process instructions 
(its code) and its context (the values of the variables they have at any given time). 

Thus, in the framework of von Neumann or single-core architecture, paral-
lelism is usually realized by time multiplexing: the processor switches between 
different threads. This context switching is called pseudo-parallelism and usually 
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occurs often for the user to perceive the execution of threads or tasks as simulta-
neous [3]. In such systems, there are effective time schedulers in standby mode 
(blocked) [4]. Scheduling is based on the principle of priorities, for example, in 
most cases, some user input has a higher priority than some computations, so if 
the central processor unit (CPU) receives an input signal, a priority interrupt oc-
curs and the CPU processes its, which allows the user to control most of process, 
such as urgently terminate some of them. 

However, in the present stage, this approach no longer ensures compliance 
with the requirements for computer systems. And with the emergence of multi-
core and multiprocessor architecture, the question arose of the organization of real 
parallelism, when at the point of time each individual core or processor performs 
its own thread. In multiprocessor and multi-core systems, threads or tasks can run 
simultaneously, with each processor or core processing a separate thread at the 
same time. The operating systems of such computers are much more complex and 
voluminous because, for such architectures to function effectively, their compo-
nents must also exchange data (communicate and synchronize), and do so in a 
timely, fast, and with minimal computational downtime. Planners of such operat-
ing systems plan the distribution of captures by the thread of cores both in time 
and space [4]. So, even parallel threads are not all the same. In addition to the 
level of their priority, you can enter another measure for them – quantitative, one 
that is based on the volume of the basic unit in the program. 

PROBLEM ANALYSIS AND TASK STATEMENT 

Each individual elementary parallel computation in modern multi-core computer 
systems (MCS) can be represented as a granule. Depending on how many such 
elementary calculations (parallel within the system, but consecutive within one 
thread) each thread contains, and how many communications (i.e. interruptions of 
parallelism) were conducted between such threads, we can introduce the concept 
of “granularity”. 

Granularity is a measure of the ratio of the number of calculations performed 
in a parallel problem to the number of communications [5]. The degree of granu-
larity varies from fine-grained to coarse-grained. 

It should be noted that the granularity classifications available in different 
sources differ slightly, especially for coarse- and medium-grained parallelism, so 
the following classification will be taken as a basis in this article: 

1. Coarse-grained parallelism: each parallel calculation is quite independent 
of the others, and requires a relatively rare exchange of information with other 
calculations. The units of parallelism are large and independent programs that 
include thousands of commands [6]. 

2. Medium-grained parallelism: units of parallelization are individual proce-
dures that are called in separate threads and include hundreds of commands. It is 
usually organized by both the programmer and the optimizing compiler. Most 
general-purpose parallel computers are primarily focused on this category of par-
allelism [7]. 

3. Fine-grained parallelism: each parallel calculation is quite small and ele-
mentary, consists of dozens of commands. Usually, the units that are parallelized 
are elements of expressions or individual iterations of a loop. They usually have 
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little or no relationship between the data. The amount of work associated with a 
parallel task is low and the work is evenly distributed among the processors. 
Hence, fine-grained parallelism facilitates load balancing [8]. 

The very term “fine-grained parallelism” refers to the simplicity and speed 
of any computational action. A characteristic feature of fine-grained parallelism is 
the approximate equality of computational intensity and data exchange. This level 
of parallelism is often used by the parallelizing (vectorizing) compiler [9], as well 
as recently in asynchronous programming. This work focuses on medium- and 
fine-grained parallelism. 

Fine-grained parallelism has a long history: it is the most “ancient” kind of 
parallelism. The development of his theory took place simultaneously with the 
development of the theory of successive calculations and is associated with the 
name of the already mentioned John von Neumann. His theoretical model of a 
calculator with fine-grained parallelism is widely known – “cellular automaton” 
[10]. But, when in the process of development of computer technology there were 
opportunities and capacities for the organization of full-fledged threads of me-
dium-grained and coarse-grained parallelism, there was some decline in interest in 
fine-grained parallelism. However, the decline in interest changed when techno-
logical advances, on the one hand, led to the fact that medium- and coarse-grained 
parallels somewhat exhausted their significant development, and on the other 
hand allowed to create a unified architecture within which at different stages of 
program implementation could move on parallelism of various degree of granu-
larity, i.e. on some parts of programs to use the classical mechanism of threads, 
and on others fine-grained parallelisms, like tasks or parallel loops. 

Against the background of renewed interest in fine-grained parallelism in 
modern programming languages and libraries, along with the tools for organizing 
parallel computations by creating a set of classic full-fledged medium-grain 
threads, there are tools for computing within fine-grained parallelism. Most often, 
these are tools for parallelizing loops or small sets of similar commands. 

However, it also led to conflicts in the design stages of modern parallel 
software. Currently, there are two opposing approaches to creating the architec-
ture of such software: on the one hand, you can represent the parallel part of the 
program in the format of medium-grained structures (classical threads), on the 
other hand, all calculations can be represented in the form of small tasks. At the 
same time, if we can say that the classical concept of threads is not very suitable 
for modern back-end problems, in contrast to the concept of tasks, then in the 
field of high-load and intensive scientific calculations, solving classical problems 
can be presented using both threads and tasks.  

At the same time, given the above-described nature of parallelism in modern 
MCS, as well as modern flexible tools for organizing different levels of 
parallelism in languages and libraries of parallel programming, we can assume 
that there is space and opportunities for effective solving of computational 
problems with simultaneous use of both mechanisms. This combination is called 
“Nested parallelism”. 

Therefore, the purpose of this work is to research the possibilities of improv-
ing the execution time of parallel programs in MCS through the use of fine-
grained parallelism, the optimal combination of medium and fine-grained paral-
lelism (nested parallelism), as well as the use of modern software instruments of 
their implementation. 
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FINE-GRAINED PARALLELISM IMPLEMENTATIONS OVERVIEW 

Among the most popular languages and libraries currently used in high-load com-
puting, fine-grained parallelism tools are implemented in the OpenMP library 
(which is usually used in combination with C++), Java and C# languages [11–14]. 

OpenMP 

Fine-grained parallelism is represented by a special preprocessor directive 
#pragma omp parallel for, which refers to the work-sharing directives. Such 
directives are not used only for parallel code execution; they are used for the logi-
cal distribution of a group of threads to implement these control logic constructs. 
The #pragma omp for directive informs that when running a loop in parallel 
mode, loop iterations must be distributed between a group of threads. Execution 
of the following program code:  

1. int size=100; //the number of calculation iterations 
2. #pragma omp parallel for 
3. for(int i = 0; i < size; i++) 
4. Calculations(); 
5. ShowResults(); 

in the four-processor system would happen as shown in Fig. 1. This distribution is 
used by default and is called static scheduling. 
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Fig. 1. The scheme of distribution loop iterations in parallel threads using OpenMP 

OpenMP also provides another, more flexible types of scheduling, such as 
dynamic scheduling, runtime scheduling, and guided scheduling. The special sec-
tion is used to set up one of these modes. The following code scheme shows the 
format of this section: schedule (algorithm name) num_threads (number of 
iterations). This mechanism is used when different iterations perform different 
amounts of work and determine whether a thread that has already completed its 
iteration will be able to take over part of the work of another thread. 
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When writing more complex parallel programs, one of the key tasks to solve 
is the problem of thread synchronization. In OpenMP, implicit barrier synchroni-
zation is at the end of each #pragma omp parallel and parallel for block. There are 
also manual synchronization tools, such as barriers that can be created using the 
#pragma omp barrier directive.  

With writing the parallel program, the second main task that needs to be 
figured out is the mutual exclusion problem, which avoids the situation so-called 
“race condition”, when a large number of threads will behave unpredictable or be 
blocked due to access to the same area of memory, which, for example, contains 
some variable (shared resource), which used in all threads. With the large number 
of threads created with the application of fine-grained parallelism, this problem is 
particularly acute. OpenMP provides the ability to use special nonblocking tools 
to solve the problem of mutual exclusion, such as the directive #pragma omp 
atomic, as well as modifiers of the directive #pragma omp parallel for: shared, 
private, firstprivate, lastprivate or reduction. Manual means of solving the 
problem of mutual exclusion are represented by such constructions as locks and 
critical sections. 

Java 

Developers are offered extremely flexible and powerful tools for implementing 
fine-grained parallelism based on the Fork-Join model, realized in built-in package 
java.util.concurent. 

A recursive algorithm is used to implement this model in Java, which 
described in the following paragraph:  

1. The check on the possibility of dividing the actions of this thread into two 
smaller tasks.   

2. If the check is successful, the distribution is performed (Fork), by creating 
new threads for each new task. In each new thread, the algorithm begins anew. 
The thread that performed the distribution is blocked until both created threads 
have finished their work, and then it performs the final collection of the result. 

3. If the check is not successful (the limit of the so-called “grain of parallel-
ism” is reached), then the calculations are performed in this thread, after which 
the connection with the generated thread occurs (Join).  

This implementation contains two classes: RecursiveAction and Recur-
siveTask. When it is necessary to calculate a specific numeric value of a large 
function (such as the sum of vector elements), it is better to use Recursive Task. 
In the case of general operations, the results of which are not a specific number, 
RecursiveAction works better. By inheriting these classes and describing the 
computer’s own overload, the developer can customize the work to solve a spe-
cific problem, which is extremely effective. 

An example of using the RecursiveAction class to implement fine-grained 
parallelism in Java organizing a parallel loop as an example is shown in the listing 
below: 

1 class ParallelFor extends RecursiveAction { 
2      private int from, to; 
3      volatile final int GRAIN = 25; 
4      public ParallelFor(int from, int to) { 
5           this.from = from; 
6           this.to = to; 
7      } 
8      protected void compute() { 
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9           int len = to ‐ from; 
10           // Stop condition of main recursion  
11           if (len < GRAIN)  
12                work(from, to);  
13           else { 
14                int mid = (from + to) >>> 1; 
15                ForkJoinTask<Void> parallelFor1 =  
16                     = new ParallelFor(from, mid).fork(); 
17                ForkJoinTask<Void> parallelFor2 =  
18                     = new ParallelFor(mid, to).fork(); 
19                parallelFor1.join(); 
20                parallelFor2.join(); 
21           } 
22     } 
23 } 
24 // Parallel loop startup is performed using the invoke()  
25 // method called on the instance of the ForkJoinPool class  
26 ForkJoinPool pool = new ForkJoinPool();  
27 pool.invoke(new ParallelFor(from, to)); 
The variable GRAIN determines the depth of the partition, in other words, 

the amount of work, after achieving which, the thread will start to perform it, 
rather than making further parallelization. The work() method may contain certain 
basic parameterized calculations, which performance is expected from each Fork-
Join task after reaching the maximum depth of parallelization. For example, after 
setting the initial values of the variables GRAIN = 25, from = 0, to = 100, we ob-
tain a parallel execution of the loop of 100 iterations discussed in the previous 
subsection, in which each of the Fork-Join tasks will receive 25 iterations for 
processing. However, unlike OpenMP, the structure of the generated threads and 
their control hierarchy will be treelike, as shown in Fig. 2. 
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Fig. 2. The scheme of distribution loop iterations in Fork-Join parallelization using Java 
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The resulting structure is more complex than the one in OpenMP. Neverthe-
less, according to the results provided in the next chapter, such an approach to 
fine-grained parallelism proved to be no less effective. 

C# 

C# also provides the ability to implement fine-grained parallelism.  All the neces-
sary functionality for this is contained by a static class Sys-
tem.Threading.Tasks.Parallel, namely by its three main methods Paral-
lel.For(), Parallel.ForEach(), Parallel.Invoke() and their various overloads. 
Parallel.For and Parallel.ForEach provide parallel execution of for and foreach 
loops, respectively. The override methods presented in this class are aimed to 
maximize the parameterization of parallelism, depending on the specific task be-
ing implemented. 

Each method described above is based on a mechanism similar to the one 
used in Java. Nonetheless, it has also been simplified with a mechanism for dele-
gating and anonymous methods. Developers are not required to manually write 
the entire recursive part and the regulation of grain parallelism, this is the respon-
sibility of the execution environment. Therefore, in practice, the implementation 
of fine-grained parallelism becomes extremely simple and has almost no different 
from the classical single-threaded approach. 

The following piece of code provides a similar parallelization to the previous 
loop of a hundred iterations: 

1 Parallel.For(0, 100, i => { 

2      Calculation();       

3 }); 

Although parallelization in C# occurs by the very same mechanism as in 
OpenMP, through the simplifying, that assures the virtual environment of the 
CLR execution, the resulting threads’ structure and their hierarchy of manage-
ment will be similar to that in the OpenMP library.  

Also in C# are realized the tools for the organization of fine-grained parallel-
ism manually, similar to corresponding tools in Java. The Task class (Sys-
tem.Threading.Tasks) is responsible for this. The formed tasks can be performed 
in one or more threads. The official documentation of this programming language 
recommends using them primarily for asynchronous programming. In fact, the 
tools for organization parallel loops in C# discussed above are high-level abstrac-
tions constructed using Tasks. 

NESTED (COMBINED) PARALLELISM 

This approach is based on the use of two types of parallelism in the parallel pro-
gram: medium-grained and fine-grained. The program includes a set of traditional 
threads for the number of MCS cores. Each of these threads additionally imple-
ments internal (fine-grained) parallelism by creating subthreads using appropriate 
Fork-Join tools. The initial number of traditional threads can be reduced in order 
to provide fine-grained parallelism with free processor resources. A parallel 
thread interaction scheme for such a program for the test system and the task (dis-
cussed in the next section) implemented by OpenMP tools as an example, can be 
represented as shown in Fig. 3. 
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Support for nested parallelism in OpenMP is enabled manually. There are 
two ways to do this: 

1. By calling omp_nested true command before compiling the program. 

2. By calling omp_set_nested(1) procedure in the program code. 

Both methods set the environment variable omp_nested to the value of true. 
However, the second method is more preferable because it provides better port-
ability of the code, because there is no guarantee that on computers where the 
code will run in the future, will be manually set the appropriate value of the vari-
able omp_nested. 

Unlike OpenMP, Java and C# do not require any additional operations to ac-
tivate compiler support for nested parallelism. 

EXPERIMENTAL TESTING 

Selection a problem for testing 

For the most transparent comparative testing, the problem of multiplying two 
square matrices of large dimension ( NN *  elements of 64-bit type double) was 
chosen as an example of a typical problem from the field of high-load computing: 

 MCMBMA  .  (1) 

Due to the large number of elementary mathematical operations, which can 
be differently and in different quantities distributed between threads or tasks, the 
program to solve this problem can be properly implemented using all types of 
parallelism, while always maintaining high-intensity computations, with minimal 
downtime for synchronization and data exchange, which is important for more 
transparent comparative performance testing. 

In addition, the choice of this problem for comparative testing of different 
types of parallelism is also ideal in terms of its coverage of all models of data ex-
change and interaction between threads or tasks. In medium-grained parallelism, 
it contains the required fragment of the copy of the shared resource (matrix MC) 
between the threads. In fine-grained parallelism, there is an interaction of tasks 
without copying shared resources (a direct reference to matrices elements), which 
is just more typical for applied implementations of this type of parallelism. And in 
nested parallelism, these two approaches of parallel interaction with shared re-
sources are combined. Therefore, it can be argued that this problem contains all 
the characteristic cases that occur in solving other common mathematical prob-
lems in parallel programs. 

Description of the mathematical model of the test problem 

The mathematical algorithm for performing this problem (1) is reduced to N-fold 
repetition of the calculation: 

 



N

k
jkkiij cba

1
,, ,  (2) 

where ijijij cba ,,  are the corresponding elements of the ith row and jth column of 

the matrices MA, MB, MC; i  and j  lie in the range from 1 to N . 

Therefore, the total number of elementary operations that must be performed 

to obtain solution (1) is equal to 3N . 



V. Martell, A. Korochkin, O. Rusanova 

ISSN 1681–6048 System Research & Information Technologies, 2022, № 2 54

With this in mind, the following parallel mathematical algorithm was chosen [15]: 

 MCMBMA HH  ,  (3) 

where H is a rounded up number equal to the quotient of the division PN /  and 
MAH, HMB  are the corresponding rectangular matrices of dimensions H by N 
elements of the matrices MA and MB [15]. 

It is worth noting that in this case, the variable P can be either equal to the 
number of cores available in the system (medium-grained parallelism), or be less 
than this number (no parallelism, some variants of nested parallelism), or signifi-
cantly larger than it (fine-grained parallelism). 

Each thread implements H repetitions of the algorithm (2), while calculating 
the Hth part (3) of the total program’s result.  

Since this algorithm provides for frequent access to all elements of the MC 
matrix from each thread, an important point is that when creating threads, each of 
them gets its own instance of this matrix, which eliminates conflicts between 
threads for capturing and owning shared resources. However, such copying is 
valid only for medium-grained parallelism; for fine-grained and nested 
parallelism, such copying does not occur. 

Description of the test software and hardware complex 

Testing of programs was carried out in two identical MCSs. Their main character-
istics are shown in Table 1. 

T a b l e  1 . The main characteristics of the test MCSs 

Hardware 

Processor AMD Phenom II 
Processor architecture K10 

Number of cores 6 
RAM capacity 8 Gb 

RAM type DDR3 

Sofrware 

Operation system Windows 7 
OpenMP version 3.1 

C++ compiler MC++ (MSVC) 
JVM version 1.8 

.NET Framework version 4.7 
 

The software structure is aligned 
with the hardware structure (primarily 
for medium-grained part of comput-
ing), and it includes both manual and 
automatic scalability. The schemati-
cally formed structure of the hardware 
and software test complex is shown in 
Fig. 4. 

The following symbols are in-
troduced into this diagram: 

1. )(PE i  — the processing ele-
Fig. 4. The test hardware and software 
complex schematic structure 
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ment (processor or core). Its index corresponds to the number of this element, and 
lies in the range from 1 to P inclusive, where P is the number of all processing 
elements in the test system. At the software level, each physical processor ele-
ment corresponds to a software-generated thread. 

2. CM — the common (shared) memory (RAM for example), to which each 
processor element is connected, and with the help of which they communicate 
with each other. 

3. I/O - an I/O device that is connected to one of the processor elements (or 
to one of the cores, since in fact the processing of I/O signals will ultimately be 
processed by one of the physical cores of the system), and which provides input 
of initial data and output of results. 

4. MA, MB, and MC are matrices that make up the multiplication operation 
(1). Moreover, the MA and MB matrices are multipliers and are entered from the 
I/O device (for large dimensions, random input is used, the execution time of 
which is not taken into account in the overall test result), and the MC matrix is the 
result that is output by this device at the end of all calculations (the execution time 
measurement is stopped just before the output). 

Tests results 

Table 2 shows the results of testing parallel programs for the operation of matrix 
multiplication for different values of N (dimension of matrices). Presented the 
execution time of programs that were built with: 

 using medium-grained parallelism through the thread mechanism; 
 using fine-grained parallelism through the parallel loops and/or fork-join 

mechanisms described in the previous section; 
 using nested (combined) parallelism, when each thread additionally uses 

parallel processing through the parallel loops and/or fork-join constructs.  
Based on the actual time indicators obtained, the acceleration coefficients 

(speedup coefficients) of the considered programs are calculated. The speedup 
coefficient of a parallel program is the ratio of the execution time of a program 
without parallelism on one computing core to the execution time of a similar pro-
gram with parallelism on P computing cores and shows how much the program 
execution time is reduced in a parallel system [15]. Calculated using the 
formula 

 
pT

T
SC 1 , 

where 1T  is the actual running time of the program without applying parallelism, 

and pT  is the actual running time of a similar program using parallelism in P 

computing cores. Ideally, this coefficient is equal to the number of cores, but in 
practice, this coefficient is always several tenths less than the number of cores. 
This is due to the presence of other background processes in the system, which 
also occupy a certain place in the kernel operation plan. 

Below are graphs (Fig. 5) showing the dependence of the speedup coeffi-
cients for all three types of parallelism on the values of N.  
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Fig. 5. The dependence of the average speedup coefficients of test parallel programs on 
the type of parallelism used in them, and on the software tools for its implementation: 
OpenMP (via C ++) (a), Java (b) and C# (c) in solving the problem of two square matrices 
multiplication 

Additionally, more detailed testing of fine-grained parallelism was con-
ducted in order to identify ways to increase its efficiency. At this stage, those test 
programs from the developed package were tested, which were written using only 
fine-grained parallelism. Multiple measurements of the time of the multiplication 
operation of two matrices with a dimension of 1500*1500 elements were per-
formed. The dependence of execution time on the number of software imple-
mented threads was checked. Fig. 6 demonstrate the detected time dependence on 
the number of created tasks. More detailed results are provided in Table 2 and 3. 

 
Fig. 6. The dependence of fine-grained parallelism execution time on the number 
of created threads 
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T a b l e  2 . The results of testing the performance of test parallel programs de-
veloped using different types of parallelism (or without using parallelism – as a 
control sample) and various software tools for its implementation in solving the 
problem of two square matrices multiplication 

Computing time (sec) 

Medium-grained Fine-grained N 

OpenMP Java C# OpenMP Java C# 

516 1,7 0,2 1,2 1,6 0,2 1,1 
1032 13,3 3,3 9,8 12,8 2,9 9,8 
1548 46,7 14,0 35,6 45,9 12,1 34,1 
2064 111,7 38,5 79,8 110,8 33,5 78,1 

Computing time (sec) 

Nested Non-parallel N 

OpenMP Java C# OpenMP Java C# 

516 1,5 0,2 1,1 7,7 8,0 5,2 
1032 12,4 3,1 9,5 66,1 66,9 45,5 
1548 44,9 13,0 33,8 240,6 250,2 171,4 
2064 108,1 35,5 74,8 586,5 640,1 387,1 

 

T a b l e  3 .  The results of fine-grained parallelism testing in solving the problem 
of two square matrices multiplication using various software tools for its im-
plementation 

Computing time (sec) 
Number of threads 

C# Java OpenMP 

2 71,309 133,944 190,618 
3 55,1 101,41 125,12 
4 42,099 77,393 79,894 
5 37,202 60,942 68,167 
6 34,222 47,532 46,157 

10 34,113 45,551 47,202 
12 32,841 45,117 46,011 
15 31,405 44,37 45,7 
20 30,404 44,33 47,196 
25 30,511 43,101 46,21 
30 28,329 41,9 43,15 
50 27,683 40,88 43,01 

 

CONCLUSIONS AND FUTURE WORK 

The results obtained during testing showed the effectiveness of MCS in the im-
plementation of the considered mathematical problem solution by using Java and 
C# languages and OpenMP library. Additionally, reduction of the programs exe-
cution time with the application of the parallelism of any degree of grain is possi-
ble (speedup coefficient values are in the range of 4,0–5,5). The best result in 
terms of program execution time was obtained for the C#. 



V. Martell, A. Korochkin, O. Rusanova 

ISSN 1681–6048 System Research & Information Technologies, 2022, № 2 58

Medium-grained parallelism showed sufficient efficiency, but had the worst 
result. At the same time, the speedup achieved by OpenMP tools is constantly 
increasing with the amount of data processed. While using the C# and the Java 
tools, speedup remains at approximately the same level. 

Using fine-grained parallelism was also effective, in which case the speedup 
coefficient increases steadily with increasing data volume. This type of parallel-
ism was most effective in C#. 

Furthermore, additional testing of fine-grained parallelism revealed a declin-
ing exponential dependence between the number of threads, which is allowed to 
create by the program, and the time of its operation. As mentioned in Section 3, 
the main reason for this is a larger number of fine-grained tasks (threads) that ac-
cess physical processing elements (cores) and shared resources, which leads to 
significant downtime due to the problem of mutual exclusion. The optimal num-
ber of fine-grained tasks is in the range of 5 to 20, regardless of how it was 
organized.  

Nested (combined) parallelism showed its effectiveness and allowed to in-
crease speedup coefficient when it is used in C# language and OpenMP library. 
Moreover, there is an increase of speedup coefficient with increasing amount of 
processed data, which is one of the most important arguments for the feasibility of 
this approach in the MCS. 

It could be assumed that the efficiency of using nested parallelism will in-
crease with an increasing number of cores in the MCS, where: 

1. There will be additional processor resources for its implementation. 
2. It is possible to reduce the size of grains. 
3. There will be an optimal ratio between the number of streams and sub-

threads. 
Besides, the efficiency of nested parallelism implemented in OpenMP can be 

improved by more efficient implementation of the powerful sub-threads manage-
ment system embedded in the library, similar to how it was done in the fork-join 
model. Since the identified patterns of change in program execution time and 
speedup coefficients, in general, are preserved for all considered means of orga-
nizing parallelism, it can be argued that this approach will be effective regardless 
of the language or library by which it will be organized. 

Therefore, it can be argued that the use of fine-grained and/or combined 
(nested) parallelism in most cases is an effective approach to the implementation 
of parallel computing in multi-core computer systems. 

Possible directions of work continuation: 
1. Testing formed hypotheses in larger and more powerful multi-core com-

puter systems. 
2. Testing formed hypotheses on a number of more applied problems. 
3. Check the statement about the effectiveness of fine-grained and combined 

parallelism, regardless of the instruments of its organization, compared with me-
dium-grained parallelism. 

From the point of view of the development of high-level instruments of fine-
grained parallelism realization in modern parallel programming languages and 
libraries: 

1. Adaptation of existing computational planning methods to the realities of 
fine-grained and nested parallelism. 

2. Adaptation of existing effective processing queue management policies to 
the realities of fine-grained and nested parallelism. 
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ПОРІВНЯЛЬНИЙ АНАЛІЗ ЕФЕКТИВНОСТІ ВИКОРИСТАННЯ 
ДРІБНОЗЕРНИСТОГО ТА ВКЛАДЕНОГО ПАРАЛЕЛІЗМУ ДЛЯ ЗБІЛЬШЕННЯ 
ПРИШВИДШЕННЯ ПАРАЛЕЛЬНИХ ОБЧИСЛЕНЬ У БАГАТОЯДЕРНИХ 
КОМП’ЮТЕРНИХ СИСТЕМАХ / В.В. Мартелл, О.В. Корочкін, О.В. Русанова 

Анотація. Подано результати порівняльного аналізу ефективності викорис-
тання паралелізму різного ступеня зернистості в сучасних багатоядерних 
комп’ютерних системах з використанням найпопулярніших натепер мов про-
грамування та бібліотек (таких як C#, Java, C++ та OpenMP). Досліджено мож-
ливості підвищення ефективності обчислень у багатоядерних комп’ютерних 
системах за допомогою комбінацій середньо- та дрібнозернистого паралеліз-
му. Отримані результати демонструють високу потенційну ефективність вико-
ристання дрібнозернистого паралелізму для організації інтенсивних паралель-
них обчислень. На підставі цих результатів можна стверджувати, що 
порівняно з більш традиційними методами розпаралелювання, які використо-
вують паралелізм із середньою зернистістю, використання окремо дрібнозер-
нистого паралелізму може скоротити час обчислення великої тестової матема-
тичної задачі в середньому на 4% , а використання комбінованого паралелізму 
— до 5,5%. Це скорочення часу виконання доцільне в разі виконання надвели-
ких обчислень. 

Ключові слова: багатоядерна комп’ютерна система, ядро, потік, завдання, па-
ралелізм, зернистість, fork-join, коефіцієнт пришвидшення, дрібнозернистий 
паралелізм, вкладений паралелізм, комбінований паралелізм. 


