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APPLICATION OF BEAM THEORY FOR THE CONSTRUCTION  

OF TWICE DIFFERENTIABLE CLOSED CONTOURS BASED  

ON DISCRETE NOISY POINTS 

I. ORYNYAK, D. KOLTSOV, O. CHERTOV, R. MAZURYK 

Abstract. The smoothing of measured noisy positions of discrete points has consid-
erable significance in various industries and computer graphic applications. The idea 
of work consists of the employment of the technique of beam with spring supports. 
The local coordinates systems are established for beam straight line segments, where 
the initial angles between them are accounted for in the conjugation equations, 
which provide the angular continuity. The notions of imaginary points are intro-
duced, the purpose of which is to approach the real length of the smoothed contour 
to the length of the straight chord. Several examples of closed denoised curve recon-
struction from an unstructured and highly noisy 2D point cloud are presented. 

Keywords: spline, elastic beam, spring support, closed contour, imaginary point, 
noisy data. 

INTRODUCTION 

Two cases are discerned at geometrical computer modeling of plane curves or 
closed contours – their design or restoration from the set of measured points. In 
each case the provision of the curves smoothness is a necessary requirement of 
their construction.  

During geometrical design the important prerequisite is an aesthetical appeal 

and 2C  continuity of a curve. The most popular are the methods which are based 
on the Bezier curves, rational Bezier curves, B-splines and rational B-splines, or 
so-called NURBS curves [1]. For their construction it is needed to define the 
enumerated system of so-called control points. These curves pass exactly through 
the first and last points, while all other points are only attracting the curve to 
themselves. To increase or decrease the “weight” of attraction of the given control 
point the rational splines are applied.  

The problem of restoration of closed curves from the noise points has a big 
significance in a computational geometry. It is applied in image analysis, in re-
verse engineering, for restoration of the trajectories and forces acting on the mov-
ing material points, etc. [2]. As an example, mention the extraction of silhouettes 
from sensed depth images.  

Very often the restoration of the geometry is performed by fitting the points 
for the prescribed analytical figure (circle, ellipse, helix) with unknown character-
istics, orientation and center of coordinates. In this case the functional of error 
(sum of deviations) is specified, which usually is iteratively solved by least square 
method [3]. When the number of points is too big it is necessary to perform the 
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preliminary smoothing. Then the weighting Gaussian probability function is usu-
ally applied, which makes the closer positions of the considered points [4]. Yet its 
application might lead to unpredictable loss of the useful information (over 
smoothing). Furthermore, the drawback of similar techniques is that the real noise 
of input points (mean deviation) is not taken into account, even if it is known in 
advance [4]. 

Historically the first splines which exactly pass through the given measured 
points were solutions based on the Strength of Materials beam technique [5] and 
actually used the known equation of three moments [6]. To decrease the deviation 
of the curves from the given points it was suggested to use the solutions for ini-
tially pre-tensed beams [7]. Later on, the theory of beam splines was supple-
mented by possibility to use the elastic springs (supports) placed in the points 
of measurements. The increase in compliance of these springs lead to larger 
smoothing of the resulting curve [8].  

The most drawback of all beam based smoothing techniques is that the curve 
is presented in unique global coordinate system, i.e., the solution of kind 

( )y f x  is searching for. Sush presentation can be effective for drawing the sta-

tistical splines, where the independent variable x  is determined exactly, while the 
functions y  can be presented in any scale. For geometrical splines both coordi-
nated has the similar meaning and both are determined with errors. Usual ap-
proach is a parametrical presentation of both coordinates and execution the inde-
pendent smoothing with respect to each coordinate.  

Significant contribution to application of the theory of beams to the geomet-
rical smoothing are works of present authors [9, 10], where the initial straight 
segments between the neighboring points predetermine the local coordinate and 
vector basis which are adjacent to each other at a certain angle. Namely, the goal 
of the beam deformation was the smoothing of these angles [9, 10]. Note, that 
idea of application of initial straight segments and their vectorial basis is the main 
one in so-called corotational approaches in geometrical nonlinear analysis of the 
spatial beams, when the position of the deformed geometry is essentially deviate 
from the initial one [11].  

The peculiarity and main idea of given work consists in that beam spring 
splines are calculated iteratively with accounting for the big deviation and change 
of local basis vector system (tangent and normal) [12]. Besides the notion of ficti-
tious points is introduced here which are not related with the real (measured) 
points. These points are placed on calculated contour between the real points for 
decreasing the angle between the neighboring segments. 

GOVERNING EQUATIONS  

Consider the simplest model of the bending deformation of beam, so called Euler-
Bernoulli beam [6], its equations and parameters. Beam is described by the gener-

alized vector of state )(sY


, which characterized by set of four parameters at each 

local point of length coordinate s , i.e., )}();();();({)( sQsMssWcolumnsY 


. 
Here, instead of some function and its derivatives, as usually accepted in mathe-
matics, the following conventional parameters of the theory of beam are used. So, 
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we operate by notions of: )(sW  is the deviation or displacement, the positive 

value of which is directed toward the normal; )(s  is the angle of rotation, the 
positive direction coincides with rotation from the tangent vector to normal one, 
i.e., is in clockwise direction; )(sM  is the bending moment; )(sQ  is transverse 
force. Their positive directions are chosen in such manner that in all differential 
equations the sign «+» is used. Thus, the following dependences between the 
beam parameters are used:  

 mq
ds

sdQ
sQ

ds

sdM

EI

sM

ds

sd
s

ds

sdW





)(
  );(

)(
  ;

)()(
    );(

)(
, 

where  is given outer distributed force, EI  is so called rigidity of the beam 
section. The solution of the system of governing equations is presented in form 
suitable for application of transfer matrix method, and is the following:  
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where )0(0  sYY


 is the vector of state at initial point of the segment. Note that 

here we take that 1EI , and 0mq  .  

The set of measured positions of enumerated points ),( bibii YXB  is a re-

quired input information, thus each point has number i , it is characterized by two 
coordinates position which are measured with some error characterized by some 
prescribed statistical deviation  .  

At each iteration number, j , the geometry of analyzed curve is presented as 

a set of points ),( j
i

j
i

j
i YXA , where each point j

iA  is related with initial point iB  

with the same index i . Note, that before first iteration the positions of points 
0j

iA   coincide with those of measured points iB . Usually, we will omit the upper 

index j  in designation of points iA . Consequent points iA  are connected by 
straight segments. These segments form certain angles between themselves, 

ii ,1 , the positive directions of which is counted clockwise (Fig. 1). Thus, the 

beginning and end of each segment i , at each iteration, j , have some positions, 

which coincide with positions of points iA  (Fig. 1). The vectorial length of each 

segment is denoted as iL


: 

 jYYiXXAAL iiiiiii


)()( 111   . 

Each of these segments is related with local tangent vector it


 and normal 

vector in


, which is rotated clockwise with respect to former one. Thus, if the tan-

gent vector it


 is given by:  
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   const jbia
L

L
st ii

i

i
i






.  

Then normal vector in


 is found from the expression:  

const)(  jaibjdicsn iiiii

 .  

The important constituent of the modelling is accounting for the angle be-
tween two segments, name it as a misalignment angle. It must be smoothed at the 
next iteration. This angle is denoted as ii ,1 , and its direction is clockwise, 

Fig 1, and calculated by the formulas of the vector and scalar products of the unit 
vectors:  

11, *)(sin   iiii tt


;     11, )(cos   iiii tt


. 

We use both definitions of angle to get the correct values of it in each quad-
rant of the coordinate system. Note, that if both signs are positive, then angle lies 
in first quadrant, if both are negative – in third quadrant, and so on.  

Formulate the main parameters, unknowns and equations which will be used 
in calculation.  

Introduce the following designations for main parameters (unknowns at each 
iteration). At each segment, i , introduce the vector of state in initial point, thus 

)0(0, sYi


, and vector of state at the last point of segment, thus )(, iei ssY 


. Evi-

dently, these two vectors of state are related by Connection equations (1), at 

ii Lss


 . 

The peculiarity of given approach consists in consideration of initial noisy 
points as the fixed positions of elastic supports, where the additional force of in-

teraction is proportional to the deviation of the position of the contour point iA


 

from the support point iB . This deviation is determined before the next iteration 

and designated as i . Other peculiarity consists in accounting for the angle of 
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Fig. 1. The model of discrete beam segments on elastic springs (supports)
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misalignment [10]. So, additionally to the Connection equations, write the Conju-
gation equations, which relate the vectors of state at the end of previous segment 
with that at the beginning of the next one: 

 1,0 ,1i iW W  ; (2) 

 1,1,0,1   iiii ; (3) 

 1,0 ,1i iM M  ; (4) 

 )( 1,1,0,1 iiiii WCQQ  , (5) 

where iC  is the rigidity of support (characteristic of spring), and i  is some 

conditional distance, the value of which before the first iteration is taken as 
0i  . 

Equation (5) can lead to some computational errors when iC  is a very big. 

As alternative presentation of (5) we use relation  

 )()( 1,0,11, iiiii QQDW   , (6) 

where the notion of the support’s compliance iD  is introduced, which is inverse 

to the rigidity  1 ii CD . 

Comment these equations. First one (2) is intended for that displacements 

(positions) at the border between two segments should be equal — 0C  continuity. 
Second one (3) is intended for that angle of tangent to the next segment should be 
on value of 1,  ii  lesser than the angle of tangent at the end of the previous one –

actually this gives the angle continuity requirement of the deformed contour — 
1C  continuity. Third condition (4) is a condition of continuity of second deriva-

tives. The values of calculated 1,iW  and i , the latter is being determined before 

each iteration by the special procedure, have the signs. The positive sign means 

that value is directed toward direction of vector in


. Note that at intermediate val-

ues of iD  and iC  the equations (5) and (6) are equivalent. If 1iC  , then equa-

tion (6) should be used, which in limit case of iC , or 0iD , actually leads 

to equation: ,1 .i iW    Similarly, there are no restrictions in applying of (6), 

when 0�iC , or �iD , then equation (5) will be reduced to 1,0 ,1i iQ Q  .  

Thus, if the whole number of measured points is equal to N , then we intro-

duce N  segments (the last one for closed contours connect the point i N  with 

point 1i  ). This means that at whole we have NN 8*4*2   unknowns (two 
sets of four ones at the beginning and at the end of each segment). For determina-
tion of them there are N  sets of Connection equations (1), thus 4N  ones at the 

whole, and similarly 4N  Conjugation equations (2) – (5). 
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MAIN IDEA OF ALGORITHM  

Describe the procedure of consequent rebuilding of the smoothed contour at each 
iteration. The main result of calculation is deviation of points iA  from the previ-

ous positions, and they are designated as iW


. According to Conjugation require-

ment (2):  

 1,0 ,1i i iW W W 
  

. 

Yet, evidently the displacements of beam,  W s  are directed toward the 

normal to each straight segment, which are different for two adjacent segments. 

Thus, the vectorial displacements 1,0iW 


 and ,1iW


 are different: 

 1,0 1,0 1 ,1 ,1i i i i i iW W n W W n    
    

. 

To provide the 0C  continuity of deformed contour we make the following 
original enhancement: namely, introduce the notion of continuous normal vectors 
to the calculated deformed geometry. They are derived by rotation of initial nor-
mal vectors on the calculated angle of deformation )(si . We name them as de-

formed normal, denote them as 1in  and calculate by the following formula: 

 jsdiscstsnsn iiiii


)()()(sin)(cos)(  , (7) 
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Evidently, that due to condition (3) the deformed normal are continuous 
along the whole contour including the borders between adjacent elements, i.e. 

)()0(1 iii ssnsn   . Then treating the calculated vectorial displacements 

as )()()( snsWsW ii 


, we get that positions of two adjacent border points j
iA


 
will be continuous.  

Accounting for continuity of displacements )(sW  and angle of deformation 

)(s  calculate the position of each inner point of segment )(sR j
i


, which is pre-

sented as the sum of initial position and calculated deformed position:  

 )()()( 1 snsWstAsR ii
j

i
j

i   
. (8) 

Thus, formula (8) is a main formula to determine the positions of all points 
after each iteration. It may happen, that derived figure satisfy the requirements to 
the smoothed contour and we can stop the calculations immediately. But if the 
derived contour does not satisfy to the requirements, we have two options. First is 
a trivial one. We can start again the procedure from the first iteration, where 

0j
i iA B  , but different value of rigidity iC  can be chosen: the smaller it is, the 
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smoother contour will be. This option is applicable when the deviation of measured 
points is small as compared with distance between them. 

More complicated is the second option which requires the creation of addi-
tional refining procedures, and which is the main objective of our analysis. Con-

sider that first iteration is already performed at initial (big) values of iC , take 

them to be of the same value and designate as SC . This results in derivation of 

new positions of points iA . Connect these points, form new segments and derive 

new angles of misalignments. Take other (smaller) values of sC  and perform the 

next iteration.  

Important to evaluate whether the given value of sC  is big or small. Evi-

dently the value of sC  can be considered as a small one, when the calculated dis-

placements W  are small as compared with segment length. Theory of beams [6] 
states, that following property characterizes the dimensionless rigidity of spring, 

EI

LC
C s

s 6

3
 . The spring is rigid if 1sC , and is flexible if 1sC . Thus, we ini-

tially chose some approximate mean value of length of all segments, L , and then 

we chose some initial big value of the rigidity, for example, 400sC  . Then real 

sC  is calculated as 

 ss C
L

C
3

6
 , 

because 1EI . 
To complete the preparation for the next iteration it is necessary to find the 

preliminary force of the spring tension, which is characterized by some condi-

tional distance i . If consider i  as the absolute distance between points iB


 

and iA


, then some collisions could occur. It may happen that some point iB


 lays 

on (or is very close to) the new contour, but is situated very far from related cal-

culated point iA


. In such treatment: a) the value of i  could be big, thus the 

large preliminary force will arise, although point iA


 is very close to contour; b) it 

is not possible to define the sign of i  (“+” or “-”), which would lead to unpre-

dictable results at the next iteration.  

Then, value of i  is defined as the shortest distance from point iB


 for both 

segments 1i iA A


 and 1i iA A 


 with accounting for their signs. These two distances 

are designated as i1  and i2 , and are determined as: iiii nBA 11  


; and 

iiii nBA 2


. The smallest by module of them is chosen as i  with accounting 

of its sign, so i  is taken with sign «+», if point iB  is situated at the right side 

from the respected segment and «-» otherwise.  

Some cases of choosing the value of i  are shown on Fig. 2.  



I. Orynyak, D. Koltsov, O. Chertov, R. Mazuryk 

ISSN 1681–6048 System Research & Information Technologies, 2022, № 4 126

REFINEMENT OF LENGTH AND CURVATURE AND IMAGINARY POINTS  

Before j -th iteration we operate only by the positions of border points 1j
iA  . The 

main result of calculation at j -th iteration is position of each point s , where 

0 is s  , of the segment (8). Analyze the change of length of infinitely small 

straight element s  of the segment after deformation. Rewrite the expression (8) 
with accounting for (7):  

 )()()( 111 sYnsXtAsR j
i

j
i

j
i

j
i

 


, (9) 
where 
 ))(sin)(()( ssWssX  , )(cos)()( ssWsY  .  

These formulas give the position of each point s . Accounting for known 
formula of differential geometry get the deformed length and curvature at each 
point s . Write the auxiliary expressions which are derived by differentiation 
of (9):  

 )()(cos)()(sin)(1)( ssxWssWsX   ;  

 )()(sin)()(cos)()( sssWssWsY   .  

They allow to find elongation, )(s , (relative change of length) of each point s : 

 22 )()()( YX
s

s
s d  




 ,   

where ds  is the deformed length of initial element s . The curvature, )(sd , of 
the curve (9) in each point is given by known expression:  
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Fig. 2. Some cases of finding the distances from control point A  to two straight segments:
a — one distance is positive and other is negative; b — both distances are positive 
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Expand the components of numerator (10) with accounting for known dif-
ferential dependences (1):  

  )()(cos)(2)(sin)()(
¨

sMssssMsX  

 )(cos)())()((sin)( 2 sQsWsMssW  ; (11) 

  )()(sin)(2)(cos)()(
¨

sMssssMsY  

 )(sin)())(()(cos)( 2 sQsWsMssW  . (12) 

So, expressions (10) together with (11) and (12) allow to find the real curva-
ture of curve (9).  

Now introduce the notion of imaginary points. Theory of beams is based on 
assumption that calculated angles are small, i.e.,  tgsin . If the number of 

points iA  is small, then misalignment angles are large (Fig. 1). Thus, calculated 

angles are also large which lead to some inaccuracy. To decrease these angles of 
misalignment it is suggested to introduce the imaginary support points. These 
supports have zero rigidities 0iC . Nevertheless, the number of segments be-

comes larger and angles of misalignments become smaller. In details, this crucial 
idea of the method will be illustrated on testing examples.  

RECOVERY OF FIGURES FROM EXACTLY MEASURED POINTS 

Example 1. Start with example when several points of the circle are given 
exactly. Let we have four points )1,2( 111  yxB ; )1,2(2B ; )1,2(3 B ; 

)1,2(4 B . Evidently, they are situated on the circle of radius 236.25 R , 
thus the curvature   is equal to 4472.0 .  

When all points are given exactly (imaginary points are not exact) there is no 
necessity to perform the iteration procedure, because the result is obtained at 
once. The fourth Conjugation equation is used in form:  01, iW . 

The calculation results are shown on Fig. 3. Due to small number of input 

points the calculated figure is not continuous. This relates to the tangent 1C  and 

curvature (moment) 2C  continuity. The calculated values of moment (curvature) 
are constant and equal to 5235.0 , which is 17% higher than accurate value 
(Fig. 3, b). Note, that axis of abscise is related with the lengths of initial straight 
segments, formed by 4 input points and the whole length is equal to 4+2+4+2=12. 
The above values of 5235.0  is the formal solution by the beam theory. The 
real curvatures are calculated by formulas (10). The graph of real curvatures is 
shown on Fig. 3, c, which extremal values notably differ from exact and beam 
ones.  

To improve the results, employ the idea of imaginary points. Introduce one 
imaginary point at the middle of each calculated graph section between two real 
points (Fig. 3, a). Denote them as 21B , 32B , 43B , 14B . Determine their 
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coordinates. Connect consequently points 1B , 21B , 2B … 4B , 14B , 1B  and get 
the new graph for eight initial points (Fig. 4).  

As we see the contour is more smooth, angular misalignments are almost in-
visible. The calculated beam curvatures are equal to 0.4773, which are 6.7% 
higher than exact ones. Yet the extremal geometrical curvatures given by formula 
(10) are still in 1.5 times higher than accurate value. 

Therefore, insert additional 24 imaginary points – 3 points between the al-
ready used points – real and imaginary ones (Fig. 4). So, at the whole we get 4 
real and 28 imaginary points. The results of calculation are shown on Fig. 5. The 
beam curvatures coincide with exact one (Fig. 5, b). The real curvatures after 3rd 
iteration are shown on Fig. 5, a. In this case they better correspond to the exact 
ones and the difference does not exceed 2%.  

One may get the false impression that the accuracy of reproduction of 
calculated contour is related to the accuracy of preliminary placement of imagi-
nary points. To show that crucial is only the fact of their insertion rather than 
place of placement, make the following test. Consider the contour obtained from 

1 —
2 —

1 

2 

a b
Fig. 3. Recovery of circle from 4 exactly measured points given as the vertices of the 
rectangle: a — calculated figure; b — beam and geometrical curvatures 

1 —
2 —

1 

2 

a b
Fig. 4. Recovery of circle by four exact points and four imaginary ones: a – restored 
graph; b – recalculated curvatures by formula (10) 
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32 points (4+28), Fig. 5, a. For convenience consequently renumerate them start-
ing from real point 1B . Artificially shift points N4, N14, and N26 outwardly, as 
shown on Fig. 6, a. From these points, we will form an initial polygon, which is 
the initial input geometry.  

The calculated contours for some iterations are shown on Fig. 6. In particu-
lar, after first iteration the contour contains local loops, Fig. 6, b. After second 
iteration the contour resemble a slightly oval contour, Fig. 6, c. The contour be-
come better with each subsequent iteration and after 6th iteration it is almost indis-
cernible from the ideal circle. After 9th iteration the correctly calculated curvatures 
are very close to the exact ones and differ with them only by 1–2%. Thus, availability 
of 32 points (real or imaginary) is almost enough to get the ideal circle. This 
means, that in overage 360 / 32 12   (and lesser) angular misalignment can be 
effectively smoothed by our modified beam approach.  

Example 2. Consider the circle formed by unevenly placed points. In prac-
tice the measurements are often performed with some restrictions, when the avail-
able to measurements is only some segment of the circle. Set three points (Fig. 7), 

namely )2/1,2/3( 111  yxB ; )1,0(2B ; )2/1,2/3(3B . Evidently these 

points belong to the circle of radius 1, and curvature is also 1. Note, that these 
points embrace only the 1/3 of the full circumference. Due to unevenness of their 
placement, the angular misalignments between the straight segments are: between 
the first and second ones – angle is 60 , between second and third - 120 , and 
third and first ones – 120 . When the angle is larger than 90 , the sense of beam 
theory is lost – angle does not only essentially differ from its tangent, but they 
have the different sighs. Therefore, from the start insert only one imaginary point, 
for example, )5,0(13 B . The results are shown on Fig. 7. Evidently, the contour 

contains the loop and do not resemble the circle at all.  
Consider the calculated contour Fig. 7, b as initial one, and insert between 

the real points 1B  and 2B  and point 2B  and point 3B  15 additional imaginary 

points, also insert 26 points between the points 3B  and point 13B , the same is 

between 13B  and 1B . The calculation is performed at several iterations, until the 

a b
Fig. 5. Recovery of circle by 4 real and 28 imaginary points: a — calculated graph;
b — recalculated curvatures by formula (10) 
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stabilization of the geometry (Fig. 8). The derived geometry, which contains 3 
real and 83 imaginary points, is very close to the ideal circle, Fig. 8, a. As to 
beam curvatures they differ only by 0.1% from exact ones, while the geometrical 
curvatures are slightly worse – the difference reach up to 0.3%.  

a b

c d

e f

Fig. 6. Recovery of circle from 4 real and 28 imaginary points, three of which were es-
sentially shifted: a — initial placement of points; b — contour after 1st iteration; c —
after 2nd iteration; d — after 6th iteration; e — after 9th iteration; f — calculated by (10) 
curvatures after 9th iteration 
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Example 3. Here we consider a more complicated figure – ellipse. In con-
trast to the circle, its curvature is not a constant. So, it is interesting to explore the 
ability of the method to restore the figures with variable curvature. Use the equa-
tion of ellipse with respect to parameter  , where the coordinates of any point are 

given by equations: )(cos*2 x  and )(sin*1 y . The curvature of ellipse is 

given by the following expression:  

 
3

2222 ))()(cos(

*)(



baa

ba
. (13) 

Note, that in point 0  2)0(
2


b

a
, and value of 

4

1
)2/(

2


a

b
. So, 

the curvature changes in 8 times within the range of 90 degrees.  
Generate 40 points (10 points for each quadrant), between which the curva-

ture changes proportionally, i.e., in 10 8k  times. These points (their parametric 

values of i ) are easily generated from equation (13). Fig. 9 shows the positions 

Fig. 8. Recovery of circle from 3 real points and 83 imaginary ones: a — calculated con-
tour; b — beam and geometrical (10) curvatures 

a b

Fig. 7. Recovery of the circle from 3 real points placed at the upper part of circle and one
imaginary point: a — input point; b — calculated contour with loop 

a b
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of 40 generated ellipse points and corresponding calculated contour and its beam 
and geometrical curvatures. In general, we see a very good correspondence, with 
the exception of points which lays on axis x , where the real curvature is the 
largest. Here the deviation of geometrical curvature from the exact one at-
tains 10%. Of course, these results can be improved by taking more input points 
in the vicinity of point 0 . Yet, in general, the results are very optimistic, even 

for figure with quickly changing curvature.  

RECOVERY OF THE CIRCLE FROM NOISY POINTS 

Example 4. Consider again the ideal circle of radius 1. Take 40 evenly distributed 
points on it. Then add the noise to each coordinate of point ( X  and Y ) according 
to uniform continuous distribution with random parameters ranged from lower 
boundary 3.0a  to upper boundary 3.0b . The noise is characterized by theo-
retical statistical deviance: 

  
32

)( ab
theor


 .  

So, in our case 173.0theor . 

The input random points are given in Table .Their sequence does not resem-
ble the ordered one, where each next enumerated point is placed in clockwise di-
rection from the previous one. So, their placement sometimes looks as chaotic 
one, which complicates the calculations. The results of calculations are shown on 
Fig. 10. A large number of closed loops are formed at first iteration. Then, with 
decreasing of the spring rigidity their number decreases, and the reason is the 
overlapping of the points which form the loops. The loops are completely 

unraveled at 15th iteration when 473.0C . With subsequent iterations the con-
tour more and more resembles a perfect circle. The calculations are ceased at 40th 

iteration when 51033.3  �C .  

Fig. 9. Recovery of ellipse from exactly placed discrete points: a — input points and 
calculated contour; b — graph of exact curvature of ellipse and its calculated beam and
geometrical curvatures 

a b
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Introduce the notion of conditional empirical calculation deviance, emp , 

i.e., root mean square deviation of input points iB  from the calculated contour, 
which we approximately define by formula 

Рис. 10. Recovery of circle from 40 noised points generated by uniform distribution law 
with an extremal deviation equal to 30.0 : a — input points and contour at 1st iteration; 
b — contour after 5th iteration, 66.21C ; c — after 12th iteration, 49.1C ; d — after 

15th iteration, 47.0C  ; e — after 40th iteration 51033.3 C ; f — the beam and geo-
metrical (10) curvatures after 40th iteration 

a c

c d

fe 

ba 

dc 
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Generated 40 random points with respect initial 40 evenly chosen points on 
the circle 

N X Y N X Y N X Y N X Y 
1 0.9616 0.0000 11 0.0727 -1.2507 21 -0.9969 0.0611 31 -0.0193 0.8941 
2 0.7032 0.0773 12 -0.1389 -1.0679 22 -1.2485 0.3154 32 -0.0225 0.8435 
3 0.9809 -0.4040 13 -0.5283 -0.7405 23 -0.9942 0.1106 33 0.3933 0.8832 
4 0.8522 -0.4137 14 -0.4458 -0.9472 24 -1.1331 0.3298 34 0.4438 1.0902 
5 0.7612 -0.6313 15 -0.7771 -1.0927 25 -1.0327 0.6022 35 0.5909 0.9511 
6 0.6053 -0.7451 16 -0.5359 -0.8588 26 -0.6491 0.6211 36 0.6392 0.6346 
7 0.4106 -0.6431 17 -0.5966 -0.8475 27 -0.7522 0.5364 37 0.9852 0.2956 
8 0.5256 -0.8696 18 -0.8945 -0.1577 28 -0.6898 1.1809 38 0.9390 0.6324 
9 0.1888 -0.6788 19 -0.7431 -0.0267 29 -0.4768 0.9159 39 0.7484 0.1707 

10 0.0165 -0.9612 20 -1.2399 0.0237 30 -0.2465 0.9901 40 1.1081 0.2060 
 

  
N

i
N

emp

2
1


 
. (14) 

Calculate this value by formula (14) at the last (40th) iteration. Empirical 
deviation is equal to 151.0emp , which is very close to the theoretical 

deviance. Such good correspondence is due to the big number of input points, and 
that conditional distance i  reflects the essence of the distance to the contour. 
Underline, that above example illustrates that attained empirical deviance at the 
given iteration emp  can be used as a condition of termination of smoothing 

process, provided that theoretical deviance is known.   

EXTRACTION OF SILHOUETTES FROM NOISY POINTS [4] 

Example 5. The problem of recovery of silhouettes from noisy dense points was 
considered in work [4]. Among other, this work is remarkable that it gives a lot of 
sets of artificially generated random points from continuous silhouettes, yet the 
original silhouettes were not provided. Unknown is also the principle of the ran-
dom points generation. In the title of respected files, which were supplemented to 
work [4], there are some numerical values of errors which can be treated as devi-
ance of input points. Other problem with these data is the numeration of points. 
Our method works with numerated points and does not change their numeration. 
But as is shown in Example 4 when points are very dense noisy, the renumeration 
is desirable. Yet, in this work we will not apply the renumeration procedure, to 
show that our method is very effective even without it.   

Consider first figure from work [4] — butterfly. Input noisy data are given in 
the file (butterfly_2percent_noise.txt”), where 164 points are presented. The men-
tioned in the file name noise is given in percent. Due to that all pictures are given 
in absolute coordinates which range approximately from 0.5  to 0.5  as for x  

as for y , thus we assume that deviance was calculated relatively to the value of 

0.5. Thus, we take that theoretical deviance is equal to 01.05.002.0theor  .  
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The results of calculation are given on Fig. 11. Initial input points are 
presented on Fig. 11, a. The results of calculation after 1st iteration are shown 
on Fig. 11, b, where three local loops are presented, and the empirical deviance is 

Fig. 11. Recovery of contour of butterfly based on input points given in [4]: a — initial 
points; b — contour after 1st iteration; c — after 15th iteration, 64.1C ; d — after 20th 

iteration, emp ≈ 0. 010 , 377.0C ; e — after 30th iteration, f — returning to the same 

rigidity as at 20th iteration, emp ≈ 0. 010  

a b

e f

c d
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very small and equal to 00029.0 emp  . After 15th iteration the contour still has 

one small loop (at the left side of picture) and calculated deviance becomes 
00672.0emp  , which is less than assumed theoretical value. Interesting to no-

tice, that the contour doesn't look smooth enough. At 20th iteration ( )377.0C , 

the calculated value 01060.0emp  , which is very close to the criterial value. 

Yet the contour still contains one local loop; to unravel it perform the several 
additional calculations. At 30th iteration 01378.0emp  , which is larger than 

theoretical one, which testifies about the oversmoothing of the contour, what is 
subjectively visually confirmed. It is interesting to note, that we can return from 
30th iteration’s rigidity to the 20th iteration’s rigidity (which is equal to 

377.0C ). In this last case the calculated value of 01059.0emp  , yet the local 

loop has disappeared. 
Consider the data for crab [4], (“crab_2percent_noise.txt”), Fig. 12, where 

284 points are given. The theoretical deviance is taken to be 01.0theor  . The 

larger number of points might lead to the increase of the number of local loops at 
first iterations. The results at first iterations are presented on Fig. 12, b, where 
input points and calculated contour points almost coincide. The value of calcu-
lated deviance 00032.0 emp   is very small due to large rigidity of supports, yet 

contour has four local loops. At 15th iteration the contour still has some visual 
misalignments, and the calculated deviance is equal to 01051.0emp  , which is 

close to the theoretical one. Besides, contour still has one loop. At 18th iteration 
the calculated and theoretical deviances are almost the same, but contour still con-
tain the loop. At 30th iteration the calculated 01716.0emp  , which is larger than 

the theoretical one, and visually the contour looks like the oversmoothed one. 
Therefore, we start to change the supports rigidity in inverse order. Fig. 12, f 

shows the calculated contour when the rigidity 22.1C , which is the same as in 

direct order 16th iteration. Here the value of 01049.0emp  , which is very close 

to the theoretical one. So, contour of Fig. 12, f can be considered as the good re-
sult of smoothing.  

Consider the figure of dolphin [4] (“dolphin_2percent_noise.txt”), Fig. 13, 
179 points, 01.0theor  . There are 3 local loops at 1st iteration, Fig. 13, b. Calcu-

lated deviance after 15th iteration at 64.1C  is equal to 0086.0emp  , which is 

slightly less than the theoretical one. At 18th iteration 0102.0emp   and is close 

to theoretical one. At 30th iteration the deviance 0165.0emp  , which testifies 

that contour is oversmoothed, and this is visually confirmed. Increasing the itera-
tion number (decreasing the rigidity) lead to additional oversmoothing. As example, 

consider the contour obtained after 60th iteration at 5102 C , where 
08902.0emp  , which is one order higher than the theoretical one. Evidently, the 
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peculiarity of the method is that at very small number of rigidity it eventually 
gives the perfect circle. So, the criteria of termination should be specified.  

 

Fig. 12. Recovery of the contour of crab based on data of [4]: a — nitial points; b —
contour after 1st iteration; c — after 15th iteration; d — after 18th iteration, emp ≈ 0. 010 ; 

e — after 30th iteration; f — reverse increasing of rigidity till the value as in direct 
smoothing after 16th iteration, emp ≈ 0. 010  

a b

c d

e f
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a b

c d

e f

Fig. 13. Recovery of dolphin contour based on data of work [4]: a — input data; b — con-
tour after first iteration; c — 15th iteration, 0086.0emp  ; d — 18th iteration, 0102.0emp  ; 

e — 30th iteration 0165.0emp  ; f — 60th iteration, 08902.0emp   
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CONCLUSIONS 

Based on the authors’ experience in the field of structural mechanics the princi-
pally new methods of smoothing the noisy data to get the continuous closed con-
tours is proposed. The following results are obtained: 

Based on the theory of straight beams, which lays on discrete elastic sup-
ports with finite rigidity, the general governing equations are formulated. They 
include 4 Connection equations for each straight beam segment and 4 Conjuga-
tion equations, which should “match” the end of previous segment with the be-
ginning of subsequent one. The last one among other serves to smooth the angle 
of misalignment between two neighboring segments, which is attained by corre-
sponding requirements to the angular deformations of segments at their border.  

The notion of imaginary points is suggested, which broke the segment on 
two smaller one but do not envisage the insertion of the additional support be-
tween them. They are introduced when the angular misalignment between two 
adjacent segments is large. Their availability is very instrumental in providing the  

2C  continuity of the smoothed contour. 
The algorithm of refinement of calculated positions of the points of segment 

is proposed. It accounts for by rotating the initial normal vector to the segment on 
the calculated deformation angle in each point. This serves to provide the continu-
ity of the contour points. The iteration process of refinement of the contour which 
consists in consequent process of the decreasing the support rigidities is proposed. 
Its efficiency is confirmed to analysis of very dense and noisy input points, where 
the local loops may occur at initial stages of algorithm.  

The notion of experimental (calculated) statistical deviance from the initial 
input points is suggested. It is shown that for attainment the visually best smooth-
ing this value should be close with the theoretical (generated) deviance of input 
points. So, this value can be used for formulation of the criteria of formal termina-
tion of smoothing procedure.  
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ЗАСТОСУВАННЯ ТЕОРІЇ БАЛОК ДЛЯ ПОБУДОВИ ПЛОСКИХ ДВІЧІ 
ДИФЕРЕНЦІЙОВАНИХ ЗАМКНУТИХ КРИВИХ ЗА НЕТОЧНИМИ 
ДИСКРЕТНИМИ ДАНИМИ / І.В. Ориняк, Д.Р. Кольцов, О.Р. Чертов, Р.В. Мазурик 

Анотація. Згладжування дискретних точок, заміряних з певною похибкою, 
має велике значення в різних технічних застосуваннях та комп’ютерній графі-
ці. Ідея роботи полягає в застосуванні методів теорії балок на пружних опорах. 
Установлюються локальні системи координат для прямолінійних відрізків ба-
лок, де кути неспіввісності згладжуються відповідними умовами в рівняннях 
спряження. Для наближення довжини отриманого контуру до довжини прямо-
лінійних балок уводиться поняття умовних точок, що розміщуються між точ-
ками замірів. Наводиться ряд прикладів реконструкції реальних контурів по 
заміряних дискретних точках із заданою і невідомою похибками.  

Kлючові слова: сплайн, пружна балка, опора, замкнутий контур, уявна точка, 
неточні дані. 

 


