UDC 004.8:004.032.26
DOI: 10.20535/SRIT.2308-8893.2022.1.07

ADAPTIVE HYBRID ACTIVATION FUNCTION
FOR DEEP NEURAL NETWORKS

Ye. BODYANSKIY, S. KOSTIUK

Abstract. The adaptive hybrid activation function (AHAF) is proposed that com-
bines the properties of the rectifier units and the squashing functions. The proposed
function can be used as a drop-in replacement for ReLU, SiL and Swish activations
for deep neural networks and can evolve to one of such functions during the train-
ing. The effectiveness of the function was evaluated on the image classification task
using the Fashion-MNIST and CIFAR-10 datasets. The evaluation shows that the
neural networks with AHAF activations achieve better classification accuracy com-
paring to their base implementations that use ReLU and SiL. A double-stage pa-
rameter tuning process for training the neural networks with AHAF is proposed. The
proposed approach is sufficiently simple from the implementation standpoint and
provides high performance for the neural network training process.

Keywords: adaptive hybrid activation function, double-stage parameter turning pro-
cess, deep neural networks.

INTRODUCTION

In the recent years deep neural networks (DNNs) have got a wide proliferation for
solving ranges of problems in virtually all areas of human activity, including the
fields of Data Mining, Big Data, Data Science, digital video and audio signal process-
ing, natural language processing, forecasting and control of complex systems [1-6].

The common property of all neural networks is their learning ability which
consists of tuning the parameters (and, possibly, architectures) during the process-
ing of available information and their universal approximation capabilities [7, 8]
that allows to analyze and recover arbitrary complex nonlinear dependencies in
the source data.

The most popular neural node of the DNN is the elementary perceptron of
F. Rosenblatt which uses so-called squashing functions as their activation func-
tions [7], such as sigmoid o-functions, which are the most common squashing
functions, tanh, Softsign, Satlin, aretan and others. At the same time the applica-
tion of squashing functions runs against computational difficulties (so-called ef-
fect of vanishing gradient) when their derivatives approach zero while the input
signal moves further from the origin.

Thereby instead of the squashing functions various DNN implementations
commonly use piece-wise activation functions that belong to the so-called “recti-
fied unit” family [9] which includes ReLU, ELU, PReLU, LReLU, NReLU and
other similar functions [10—12]. It shall be noted that piece-wise activation func-
tions allow only piece-wise approximation, i.e., the number of nodes and layers in
the neural network shall be significantly increased to provide the required ap-
proximation capacity for non-trivial dependencies.

At the same time, there is a relatively wide group of recurrent neural net-
works [13] such as long-short-term memories, transformers and similar networks

© Ye. Bodyanskiy, S. Kostiuk, 2022

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2022, Ne 1 87

Ye. Bodyanskiy, S. Kostiuk

that use squashing functions in their gated recurrent units [3], so the hybrid acti-
vation functions were introduced that combine the properties of both the rectifiers
and sigmoid functions. The list of hybrid functions includes [14], Swish [15],
S-shaped [16], WiG [17] and other similar functions [18, 19].

All such hybrid activation functions have some free parameters that define
their exact shape, amplitude and singular points which shall be in some way se-
lected and adjusted for solving specific tasks. In this regard, it is advisable to in-
troduce some additional procedures for automatic adjustment of the activation
functions parameters. [20-25] address the off-line procedures that allow to find
the required function parameters after the synaptic weights of the network are al-
ready set up. It is clear this approach significantly increases the training time.

In [26] the adaptive parametric rectified linear activation function (Ad-
PReLU) was introduced where the parameters were adjusted simultaneously with
the synaptic weights during the error backpropagation procedure. This approach
allowed to reduce the training time and improve the quality of the obtained solu-
tion compared to Adaline, ReLU and tanh on the prediction task.

It is advisable to implement a similar approach for hybrid activation func-
tions [14—19] and synthesize on their basis an adaptive activation function that is
a generalization of the ones that are already used in the DNN applications.

ARCHITECTURE OF A NEURON WITH ADAPTIVE HYBRID ACTIVATION
FUNCTION

Elementary perceptron of F. Rosenblatt as node of a neural network performs a
non-linear transformation of the following form:

j}j(k) = Wj(ejo + Zn:Wjixi(k)] = Wj[Zn:Wj[xi(k)J = \I’j(WJT'x(k)) = \Vj(uj(k)))
i=1 i=0

where y ; (k) — output signal of the j-th neuron of the network on the 4-th data
processing step, k=1,2,3,....N,..., ¢ j(u j(k)) —mnon-linear transformation that
is performed by the activation function on the signal of internal activation u ; (k) ,

0o — threshold signal, w; — synaptic weight on the i-th input of the j-th neu-

ron, i=0,1,2,...n, w;u=0,, w; = (wjo,wjl,...,wjn)T eR™, x(k)= (L, x; (k),...
%, (k)" — (n+1)x1— dimensional vector of the input signals.

One of the most popular activation functions in the neural networks is a so-
called sigmoid one that is studied by G. Cybenko [7] and has the following form:
1
Wj(uj)ZG(Yjuj)zma (1)
where y; — so-called gain parameter [20] that defines the shape of this function.

The gain parameter value is often assumed to be equal to 1.

While the usage of sigmoid activation functions allows to provide universal
approximation capabilities for the neural network, its application in DNNs runs
up against computational complexities when the signal of internal activation starts

88 ISSN 1681-6048 System Research & Information Technologies, 2022, Ne 1

Adaptive hybrid activation function for deep neural networks

to rise in its amplitude. In those cases, the derivative of the o -function ap-
proaches zero, i.¢., the effect of “vanishing gradient” increases.
To overcome this problem, we propose using a hybrid activation function of
the following form:
Bju;

‘Vj(”j)zzﬁj”jG(Vj“j)zzl 2

4 1
where B, and y; — parameters that shall be determined together with the synap-

tic weights during the training process. Being a modification of (1), activation
function (2) does not suffer from the vanishing gradient effect. Note that the de-
rivative of (2) by the signal of internal activation:

oy ;(u;)
Ou;

produces small by amplitude values only when u; <<0 that can be compensated

=Bjo(yu)A+u;y;(1-o(y,u;)))

by dialing the gain parameter v ;.

Fig. 1 shows the architecture of an artificial neuron with adaptive hybrid ac-
tivation function (2) (AHAF) in which function parameters B; and v are trained

together with the vector of synaptic weights.

o(y;u;)

N
,L,//’

e.
[Learning algorithm |4—/®-—o ¥

Fig. 1. Neuron with adaptive hybrid activation function (AHAF)

Here y; — external reference signal, e;=y; -7, =yo—y;(u;)=

=y, —Bu;(1+ e '7"7)"! — learning error.

TRAINING ALGORITHM FOR A NEURON WITH AHAF

For training artificial neurons with AHAF we use the standard o-rule [9] that for
a regular perceptron of F. Rosenblatt and the error squared loss criteria:

1

2
E, (k)= %eﬁ (k)= %(yj (k) — v j(u; (K)))? = E[yj (k) - w,{zwﬁx,- (k)B
i=0

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2022, Ne 1 89

Ye. Bodyanskiy, S. Kostiuk

allows to refine the synaptic weights with a recurrent procedure:

B () dey (k)
wji (k) =w;; (k=1) =m,, (k) Ge; (k) owy;

oe; (k) Oe;(k) Ou;(k)
ow; ou (k) ow;;
=w; (k=1 +n,(K)e; () (u; (k)x; (k) = wj; (k =1) +n,, (k) ; (k)x; (k) ,
where m,,(k) — learning rate parameter the choice of which determines the con-
vergence rate and the filtering (smoothing) abilities of the algorithm,
d,(k)=e j(k)q/} (u;(k)) — so-called & -error, based on which the error back-

propagation procedure is implemented for training of multilayer neural networks.
For a neuron with AHAF that has a two-layer architecture (i.e., the first lay-
er — synaptic weights w i =0,1.,m, the second — tunable parameters 3 j and

= w;; (k=1 =, (k)e; (k) =w;;(k=1)=n,,(k)e; (k)

v;), backpropagation is implemented on a per-neuron level: parameters of the

activation function are tuned first, then — the synaptic weights. This training pro-
cedure is referenced in this paper as the double-stage parameter tuning procedure
(the DSPT procedure).

Considering that the -rule for tuning the activation function parameters
LCTR R Ok

U u.
_]:ujo'(yj'“j): !

B, 1+e 7"

a\v . uz. efyjuj
—L =B oy u)1-o(yu;)=p; —
oy, 1

E— v
te Y 14 1M
can be written in the form of:

2

agé(jk) = B, (k—1)+ng(K)e, (k) a‘ggi") =
=B, (k=D +mg(k)(y; (k) =y ;(u;(k),p;(k —1),y ;(k—1)))x
xu ;(k)o(y ;(k—Du;(k)),
where u (k) =w} (k—1)x(k) , and:
OF ;(k) oy (k)

100 =7,k =D =, 025 =1 =D+ (e, () ==

=y k=11, (K) (v ; (k) = ;(u; (k),B Gk =)y (K — 1)) x
%P (k —Du (K)o ; (k =D (k) (1= o(y ; (k = Du;(5))) =

=y ;(k=1)+n, (k)e; (k) (K)o (v ; (k= Du; (k) (A= oy ; (k =D ;(k))),

the training error can be recalculated after the tuning is performed for 3; and v :

e;j(k)=y; (k)= ;(u;(k),B,;(k).y,; (k)=

B,;(k)=P,;(k—1)—mng(k)

90 ISSN 1681-6048 System Research & Information Technologies, 2022, Ne 1

Adaptive hybrid activation function for deep neural networks

B (kyu; (k) B (kyw; (k—1)x(k)
=y;(k)-— —mic])uj(k) = (k) == »(jk)wT(kfl)x(k) ’
l+e 1+e 7YY
and the synaptic weights are turned:
~ o ow(u(k),B;(k).y (k)
wi(k)=wj;(k—1)+mn,,(k)e; (k) / L I x (k)=

ou (k)
= wji(k = 1)+, () (B (k) 5 (v (k) (k) %
x (1 (kY (0) (1= oy (k) ; (k) (k) = w, (k= 1)+, ()3, (k)x, (k)

where N
8, (k) =¢;(k)y';(u ;(k),B;(k),y (k) =
=, () (k) oy (e ()1 + 0, (k)Y (k) (1= 0y ; (e ()

With regards to selection of the learning rate parameters 7y, #,, 7., the adap-
tive training algorithms like Adam [27], that are popular in DNNs, can be suc-
cessfully replaced by the ones with the filtering and tracking properties [28] that
have a sufficiently high speed of convergence.

For training of multi-layer networks, the hybrid error back propagation pro-
cedure can be used that, comparing to the standard one, calculates the training
error and the §-error twice per each hybrid layer of the network: e;(k), e;(k),

8;(k), §;(k).

EVALUATION

Performance of the adaptive hybrid activation function was evaluated on the im-
age classification task on two different datasets with two base neural network ar-
chitectures in a similar way to [29]. The base architectures were modified to use
AHAF activations instead of “classic” activations like ReLU and SiL. The per-
formance of the modified networks was compared to the reference implementa-
tions. The neural network implementations together with the valuation and train-
ing environment were coded in Python 3.8 using PyTorch 1.9.0 [30]. The
implementation is publicly available on GitHub: https://git.io/JDBIZ.

A. Dataset

The models with adaptive hybrid activation function were evaluated on two data-
sets: Fashion-MNIST [31] and CIFAR-10 [32].

Fashion-MNIST is a dataset that contains 60000 monochrome images, each
28x 28 pixels in size, with associated class labels. Out of all images, 50000 im-
ages are used for training and 10000 are used for validation. The classes are ex-
clusive, the one-hot encoding was used for the class labels. The pixel values were
divided by 255 to rescale them to the [0,0---1,0] range. The images were aug-
mented using the random horizontal flip with the flip probability of 0,5 and the
random shift by both width and height with the maximum shift factor of 0,1.

CIFAR-10 is a dataset of 60000 RGB images, each 32x32 pixels in size and
each having a one of 10 class labels associated with it. The train to test distribu-
tion is 5:1, where all images are randomly selected from the whole dataset. The

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2022, Ne 1 91

Ye. Bodyanskiy, S. Kostiuk

classes are exclusive, the one-hot encoding was used for the class labels. Pixel
values on all color channels were rescaled to the [0,0..1,0] range using division by
255. The training set was augmented using the random horizontal flip with probability
of 0,5 and the random horizontal and vertical shift by the maximum factor of 0,1.

B. Neural Networks and Activations

Two base neural networks architectures were used in the experiment: LeNet-5
[33] and KerasNet from Keras version 1.2.2 [34].

LeNet-5 is a simple convolutional neural network consisting of 4 layers: 2
convolutional layers with pooling and activation functions, 1 linear layer with an
activation function and 1 output linear layer with Softmax. The convolutional
layers use 5x5 filters with 20 output channels for the first layer and 50 output
channels for the second layer. Max pooling with the kernel of 2x2 is used as the
pooling implementation. The hidden linear layer has 500 output features, the
output layer has 10, one per each class. Several variants of LeNet-5 were used for
evaluation: one with ReL U activations for the hidden layers, one with SiL, one
AHAF activation initialized as ReLU and one with AHAF activation initialized as
SiL. The total number of parameters depends on the size of the input images:
431000 and 657000 for Fashion-MNIST and CIFAR-10 correspondingly. The
total number of parameters does not count the parameters of AHAF activations.

KerasNet is a neural network that is partially similar to VGG. The network
has 6 layers: 4 convolutional layers with activation functions with each second
layer followed by max pooling with dropout, 1 hidden linear layer with an
activation function and dropout, 1 output linear layer with Softmax activation.
The first and the second convolutional layers have 32 output channels with 3x3
filters, the first layer applies 1x1 padding to its input, while the second one does
not apply any padding. Max pooling with 2x2 kernels and the dropout with the
probability of 0,25 follow the first two convolutional layers. The third and the
fourth convolutional layers use 3x3 filters and have 64 output channels, the third
layer applies 1x1 padding while the fourth does not apply any padding. Max
pooling with the kernel size of 2x2 and the dropout with the probability of 0,25
are used after the third and fourth convolutional layers. The hidden linear layer
has 512 output features, dropout with the probability of 0,5 is applied after the
hidden linear layer. The output layer has 10 output features, one per each class.
Several variants of KerasNet were used for evaluation: one with ReLU activations
for the hidden layers, one with SiL, one AHAF activation initialized as ReLU and
one with AHAF activation initialized as SiL. The total number of parameters
depends on the size of the input images: 889834 and 1250858 for Fashion-
MNIST and CIFAR-10 correspondingly. The total number of parameters does not
count the parameters of AHAF activations.

C. Training Procedures

The neural networks were trained on the Fashion-MNIST and CIFAR-10 datasets
with the batch size of 64 for 100 epochs on a laptop with NVIDIA GeForce GTX
1650 Max-Q. The RMSprop optimizer was used for training with the initial learn-
ing rate of 10™* and the learning rate decay of 10 applied per one minibatch.

The neural network variants with AHAF activations were trained using the
“classic” training procedure (when all trainable parameters are updated in one go)
and the DSPT procedure. Implementation of the DSPT procedure uses separate
instances of the optimizer class per each set of parameters one per all AHAF
parameters, one per the trainable parameters outside of AHAF activations.

92 ISSN 1681-6048 System Research & Information Technologies, 2022, Ne 1

Adaptive hybrid activation function for deep neural networks

The training set loss and the test set accuracy were recorded per for each of
the training runs. The results of the training are analyzed and presented in the
following section.

D. Analysis of Results

The network variants with AHAF activations outperform the base implementa-
tions with ReLU and SiL activations on both CIFAR-10 and Fashion-MNIST.
LeNet-5 achieves the best results on the Fashion-MNIST dataset with AHAF ac-
tivations initialized as ReLU and the DSPT procedure. KerasNet achieves the best
results on the CIFAR-10 dataset with AHAF activations initialized as SiL and the
DSPT procedure. Table presents the best achieved test set accuracy and the epoch
number when this result was achieved for each of the network variants, datasets
and parameter tuning procedures used for evaluation.

Best test set accuracy, up to 100 epochs

Network Activ. Init. Proc. Fashion-MNIST CIFAR-10
Acc.,% Epoch Acc.,% Epoch

LeNet-5 ReLU N/A Classic 91,43 98 75,89 96
LeNet-5 SiL N/A Classic 90,60 95 73,76 95
LeNet-5 AHAF ReLU Classic 91,55 99 76,69 95
LeNet-5 AHAF SiL Classic 91,16 99 74,47 99
LeNet-5 AHAF ReLU DSPT 91,73 93 74,44 95
LeNet-5 AHAF SiL DSPT 90,95 100 74,05 95
KerasNet RelLU N/A Classic 91,29 100 79,36 97
KerasNet SiL N/A Classic 91,76 93 79,83 99
KerasNet AHAF ReLU Classic 91,30 84 79,71 100
KerasNet AHAF SiL Classic 92,02 97 80,31 98
KerasNet AHAF ReLU DSPT 91,35 55 79,30 96
KerasNet AHAF SiL DSPT 91,96 98 80,37 98

Analysis of the dependency between the training loss, test set accuracy and
the training epoch shows the potential for performance improvements using long-
er training runs (running the training for more epochs), different optimizers and
learning rates. For KerasNet on the CIFAR-10 dataset the SiL-initialized AHAF
activation function consistently shows lower training loss and higher test set
accuracy comparing to the base implementation with SiL. Fig. 2 illustrates the

80 1 20+ —— RelU activation, no DSPT
’ —— SiL activation, no DSPT
70 - 1,8 —— RelU-like AHAF, no DSPT
—— Sil-like AHAF, no DSPT
v 1,6 —— RelU-like AHAF, DSPT
60 - L —— Sil-like AHAF, DSPT
[=)]
£ L4+
—— RelU activation, no DSPT E
50 1 —— SiL activation, no DSPT 51,24
—— RelU-like AHAF, no DSPT
40 —— SilL-like AHAF, no DSPT 1,0
—— RelU-like AHAF, DSPT
—— SiL-like AHAF, DSPT 0,8 1
30 A T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

Fig. 2. Dependency between the loss, accuracy and the training epoch for KerasNet
network on CIFAR-10

Cucmemni docniodcenns ma ingopmayiini mexnonozii, 2022, Ne 1 93

Ye. Bodyanskiy, S. Kostiuk

dependency between the training loss, the test set error, and the training epoch for
the KerasNet network trained on the CIFAR-10 dataset.

For neural networks with AHAF initialized as ReLU, AHAF keeps its
ReLU-like form, but changes the amplitude during the training process. This
observation can be explained by the values of the gradient with respect to the y
parameter — the gradient decreases with the increase of the y parameter. For
neural networks with AHAF initialized as Sil., AHAF changes its form and
amplitude during the training process. Fig. 3 and Fig. 4 show the form of the
activation functions for the two final neurons of the KerasNet network trained on
the CIFAR-10 dataset with ReLU-like and SilL-like AHAF activations

correspondingly.
5 2]
2 - 2,5 1 2,5
04 J 04 J 0.0- 0.0 04 /
-10 0

10 0 10 0 i u5lo 0 I 0
| 5 |

- / 2,5 . / / 255 T / 2 /
: ; : 3 0+ . 00 - 0 4
10 0 10 0 10 0 0

P

04 0,0 ;
-10 0
Fig. 3. The activation function form for AHAF initialized as ReLU

2,5‘J Z,S-J 2’5"/ Z,S'J 2’5-‘/
O,D'I 4 0,0 1; / 0,0-| 2 (J,O-I 4 0’0-I
-10 0 -10 0 -10 0 —=10 0 —=10 0
5 g
\/ A R o AR AL
0-. T O’O-. T 070-. T 0’0_. T 0’0-.
-10 0 -10 0 -10 0 -10 0 -10 0

Fig. 4. The activation function form for AHAF initialized as SiL.

CONCLUSIONS

Proposed an adaptive hybrid activation function (AHAF) that is applicable for
usage in feed-forward and recurrent deep neural networks and combines the
properties of both squashing functions and the ones from the rectified unit family.
This function does not suffer from the effect of “vanishing gradient” and its pa-
rameters are trained together with the synaptic weights. Introduced a training al-
gorithm for a neuron based on AHAF.

The proposed approach is sufficiently simple from the implementation
standpoint and provides high performance for the neural network training process.

REFERENCES

1. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553,
pp. 436-444,2015. doi: 10.1038/nature14539.

2. J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural Net-
works, vol. 61, pp. 85-117,2015. doi: 10.1016/j.neunet.2014.09.003.

94 ISSN 1681-6048 System Research & Information Technologies, 2022, Ne 1

Adaptive hybrid activation function for deep neural networks

W

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

. D. Graupe, Deep Learning Neural Networks: Design and Case Studies. USA: World

Scientific Publishing Co., Inc., 2016.

A.L. Caterini and D.E. Chang, Deep Neural Networks in a Mathematical Frame-
work, 1st ed. Springer Publishing Company, Incorporated, 2018.

C.C. Aggarwal, Neural Networks and Deep Learning: A Textbook, 1st ed. Springer
Publishing Company, Incorporated, 2018.

G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Mathemat-
ics of Control, Signals and Systems, vol. 2, no. 4, pp. 303-314, 1989. doi:
10.1007/BF02551274.

. K. Hornik, “Approximation capabilities of multilayer feedforward networks”, Neural

Networks, vol. 4, no. 2, pp. 251-257, 1991. doi: 10.1016/0893-6080(91)90009-T.

A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Proc-
essing, 1st ed. USA: John Wiley & Sons, Inc., 1993.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Hu-
man-Level Performance on ImageNet Classification”, in 2015 IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 1026-1034. doi:
10.1109/ICCV.2015.123.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs)”, arXiv [cs.LGJ], 2016. doi:
10.1162/neco.1997.9.8.1735.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recogni-
tion”, in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770-778. doi: 10.1109/CVPR.2016.90.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, Neural Comput.,
vol. 9, no. 8, pp. 1735-1780, 1997. doi: 10.1162/neco0.1997.9.8.1735.

S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-Weighted Linear Units for Neural
Network Function Approximation in Reinforcement Learning”, arXiv [cs.LG], 2017.
P. Ramachandran, B. Zoph, and Q.V. Le, “Searching for Activation Functions”,
arXiv [cs.NE], 2017.

X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep Learning with S-shaped
Rectified Linear Activation Units”, arXiv [cs.CV], 2015.

M. Tanaka, “Weighted Sigmoid Gate Unit for an Activation Function of Deep Neu-
ral Network”, arXiv [cs.CV], 2018.

B. Yuen, M.T. Hoang, X. Dong, and T. Lu, “Universal Activation Function For Ma-
chine Learning”, arXiv [cs.LG], 2020.

D. Misra, “Mish: A Self Regularized Non-Monotonic Activation Function”, arXiv
[es.LG], 2020.

J.K. Kruschke and J.R. Movellan, “Benefits of gain: speeded learning and minimal
hidden layers in back-propagation networks”, IEEE Transactions on Systems, Man,
and Cybernetics, vol. 21, no. 1, pp. 273-280, 1991. doi: 10.1109/21.101159.

Z. Hu and H. Shao, “The study of neural network adaptive control systems”, Control
and Decision, no. 7, pp. 361-366, 1992.

C.-T. Chen and W.-D. Chang, “A Feedforward Neural Network with Function Shape
Autotuning”, Neural Netw., vol. 9, no. 4, pp. 627-641, 1996. doi: 10.1016/0893-
6080(96)00006-8.

E. Trentin, “Networks with Trainable Amplitude of Activation Functions”, Neural
Netw., vol. 14, no. 4-5, pp. 471-493, 2001. doi: 10.1016/S0893-6080(01)00028-4.

F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning Activation Func-
tions to Improve Deep Neural Networks”, arXiv [cs.NE], 2015.

L.R. Siitfeld, F. Brieger, H. Finger, S. Fiillhase, and G. Pipa, “Adaptive Blending Units:
Trainable Activation Functions for Deep Neural Networks”, arXiv [cs.LGJ, 2018.

Y.V. Bodyanskiy, A. Deineko, I. Pliss, and V. Slepanska, “Formal Neuron Based on
Adaptive Parametric Rectified Linear Activation Function and its Learning”, in
Proc. Ist Int. Workshop on Digital Content & Smart Multimedia “DCSMART
20197, vol. 2533, pp. 14-22.

D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”, arXiv
[es.LG], 2017.

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2022, Ne 1 95

Ye. Bodyanskiy, S. Kostiuk

28

29.

30.

31.

32.
33.

34.

. P. Otto, Y. Bodyanskiy, and V. Kolodyazhniy, “A new learning algorithm for a fore-
casting neuro-fuzzy network”, Integrated Computer-Aided Engineering, vol. 10, pp.
399-409, 2003. doi: 10.3233/ICA-2003-10409.

F. Manessi and A. Rozza, “Learning Combinations of Activation Functions”, CoRR,
vol. abs/1801.09403, 2018.

A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”, in Advances in Neural Information Processing Systems 32, H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Reds Curran
Associates, Inc., 2019, pp. 8024-8035.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms”, arXiv [cs.LG], 2017.

A. Krizhevsky, Learning multiple layers of features from tiny images, 2009.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition”, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,
1998. doi: 10.1109/5.726791.

F. Chollet et al., “Keras”, 2015. [Online]. Available: https://github.com/ fchollet/keras.

Received 17.12.2021

INFORMATION ON THE ARTICLE

Yevgeniy V. Bodyanskiy, ORCID: 0000-0001-5418-2143, Kharkiv National University
of Radio Electronics, Ukraine, e-mail: yevgeniy.bodyanskiy@nure.ua

Serhii O. Kostiuk, ORCID: 0000-0003-4196-2524, Kharkiv National University of Radio
Electronics, Ukraine, e-mail: serhii.kostiuk@nure.ua

AI[éHTI/IBHA IBPUJHA O®OYHKIOISA AKTUBALIL s TJAABOKHUX
HEHWPOHHUX MEPEX / € B. bonsuacekuii, C.O. KocTiok

AHoOTaNis. 3anponOHOBaHO aaNTUBHY TiOpuaHy QyHKito aktuBanii (AHAF), mo
MO€HY€E OCOOMUBOCTI BUIPSAMHUX OJOKiB (rectifier units) Ta cruckansHux (squash-
ing) ¢yHKUid. 3anpornoHoBaHa QyHKIiS MOke OyTH BUKOpPHCTaHA SIK MpsiMa 3aMiHa
aktuBauifHux QyHkuiit ReLU, SiL i Swish mist rmmbokux HEHPOHHUX MEpeK, a Ta-
KoX HaOyTH GopMu ofHiel 3 NUX QYHKIIH B mporeci HaB4aHHSA. EQexTuBHICTH
(hyHKUil KocmipKkeHo Ha 3amavi Kiacugikarii 300pakeHs Ha Habopax maHux Fashion-
MNIST i CIFAR-10. Pe3ynpratu [OCHiIKEHHS MTOKa3ylOTh, [0 HEHPOHHI Mepexi 3
aktuBauiiunmu Qyukuismu AHAF mokasyrors TouHicTh Kinacudikarii Kpaity, HiK
ix 6a3oBi peamnizauii Ha ocHOBI ReLU Ta SilL. 3ampornoHoBaHo ABOETAITHUIN MpPOLEC
HaJALITYBaHHS MapaMeTpiB Uil HaBYaHHs HelpoHHHX Mepex 3 AHAF. 3anponono-
BaHMI MiAXiJ TOCTaTHRO MPOCTHIl B peanizauii Ta 3abe3nedye BUCOKY MPOLYKTHB-
HICTb y HAaBYaHHI HEUPOHHOT MEpeKi.

KunrodoBi cioBa: aganTuBHa ribpuaHa GyHKIIS aKTUBALil, IBOSTAIIHUN Mpolec Ha-
JIAIITYBaHHS MapaMeTpiB, TIINOOKI HEHPOHHI Mepexi.

AIléHTI/IBHASI T'MBPUTHASL OYHKIUA AKTUBALIUU IJIS1 TJUIYBOKHX
HEUWPOHHBIX CETEM / E.B. boganackuii, C.A. Kocrrok

96

AnnoTtanus. [Ipemioxena anantuBHas rudpuanas yskunus akrtuBanuu (AHAF),
KOTOpasi 00BbEIMHSIET CBOIMCTBA BBIIPSIMHUTENBHBIX OJ0KOB (rectifier units) u cxu-
Mmaromnx (squashing) ¢ynkumit. [IpemiokenHas GyHKIMS MOXET OBITH HCIIOIB30-
BaHa Kak MpsMasi 3aMeHa akTuBaluoHHbIX ¢yHkuuid ReLU, Sil u Swish mis rimy6o-
KUX HEHPOHHBIX CETeH, a TakkKe NMpPHHUMAaTh (HopMy OOHOH M3 3THUX (YHKUUH B
nporecce o0yueHus. DPdHeKTHBHOCTh (DYHKIUU MCCIeOBaHA Ha 3aja4ue Kiaccudu-
Kaluu u300paxeHnii Ha Habopax nanubix Fashion-MNIST u CIFAR-10. Pesyibra-
TBI MCCIICOBAHUS NOKa3bIBAIOT, YTO HEHPOHHBIC CETH C aKTHBALIMOHHBIMHU (YHK-
musiva AHAF mokaspIBaroT TOYHOCTh KJIACCH(UKAIMK JYUIIyI0, YeM HX 0a30BbIe
peanu3auuu Ha ocHoBe ReLU u SiL. IIpeaoxeHo IBYXITalHbIN MPOIECC HACTPOK-
KU TapamMeTpoB 1yt o0ydeHus: HelipoHHEIX cetelt ¢ AHAF. IpemnosxkeHHbIH ToAX0x
JIOCTaTOYHO MPOCTON B peaau3allid U 00ECHEeYMBAET BBICOKYIO MPOMYKTUBHOCTH B
00y4eHHHU HeWPOHHOII ceTH.

KnroueBble cioBa: ajnanTuBHas ruOpuaHas (QYHKIMS aKTHBAIMH, JBYXITAITHBINA
IIPOLIECC HACTPOMKH MapaMeTpoB, IIyOoKHe HEHPOHHBIE CETH.

ISSN 1681-6048 System Research & Information Technologies, 2022, Ne 1

