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Abstract. Encoder-decoder neural network models have found widespread use in 
recent years for solving various machine learning problems. In this paper, we inves-
tigate the variety of such models, including the sparse, denoising and variational 
autoencoders. To predict non-stationary time series, a generative model is presented 
and tested, which is based on a variational autoencoder, GRU recurrent networks, 
and uses elements of neural ordinary differential equations. Based on the constructed 
model, the system is implemented in the Python3 environment, the TensorFlow2 
framework and the Keras library. The developed system can be used for modeling 
continuous time-dependent processes. The system minimizes a human factor in the 
process of time series analysis, and presents a high-level modern interface for fast 
and convenient construction and training of deep models. 

Keywords: prediction, variational autoencoder, GRU recurrent neural network, neu-
ral ordinary differential equation, latent space, nonstationary time series. 

INTRODUCTION 

Classical methods of autoregression with moving average (ARMA) [1, 2] are 
used to analyze and predict stationary time series. Autoregressive models with 
integrated moving average (ARIMA) [1, 3], heteroskedastic (ARCH/GARCH) 
[1, 4, 5] and other [6] are designed to analyze a wider class of nonstationary proc-
esses. GARCH models, in particular, help to provide the volatility analysis of fi-
nancial time series [7]. ARIMA models are based on numerical differentiation 
technique and an operator of finite differences to make time series stationary. 
Moving variance is applied in GARCH models to model heteroskedasticity. The 
choice of degree of autoregression and moving average in ARMA, ARIMA, 
ARCH and GARCH models, when analyzing the autocorrelation, is often carried 
out manually. 

Recurrent neural networks (RNNs) of the long short-term memory (LSTM) 
type have also been used in recent years to predict time series [8–11]. Gated re-
current unit (GRU), proposed in 2014 [11], is a simplified version of the LSTM 
network, probably shows as good results as LSTM [12], and therefore is widely 
used in recent years. Machine learning and deep learning techniques [8–15] main-
ly require scaling of the input data and presentation of the series in the form of 
“values for previous periods – values for the current period” or “features – the 
resulting value”. The main problem of such a representation is the invariance of 
the fixed values of the series with respect to time. This representation of the series 
assumes that each value of the series is fixed at the same interval, although in 
practice this is not always the case. 

The paper aims to develop a generative model on basis of the autoencoder 
for time series prediction, which will be sensitive to different intervals of fixing 
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values of the series and will be able to find hidden patterns in the data. The goal is 
also to minimize human interference in the data processing, leaving only the re-
quirement to scale the input data. 

AUTOENCODER MODELS 

An autoencoder is an artificial neural network that, without a teacher, based on an 
unmarked data is able to recognize encodings – effective representations of input 
data [8, 13]. Such encodings often have a much smaller dimension compared to 
the input data, so autoencoders are also a means to reduce dimensionality.  

An important feature of the autoencoder is that it can be a generative model, 
capable of randomly generating new data that is very similar to the input. Goals of 
the autoencoder are as follows: to reconstruct the input data, as well as to identify 
features hidden in the input data. The typical autoencoder model consists of two 
parts (Fig.1): the coder and the decoder networks. The coder has to recognize and 
convert the input data into a latent space, that is the internal representation of the 
input data. The decoder, in turn, is seen as a generating network that converts the 
internal representation into outputs. Typically, the decoder has the same architec-
ture as the coder, but symmetrically mapped relative to the layer responsible for 
creating the latent space (Fig.1).  

To achieve the first goal, namely, to provide the reconstruction of input data, 
training of the autoencoder is performed by minimizing the loss function, which is 
called the reconstruction error: 

 )))((,( xfgxE ,  (1) 

where х is an input vector, E  is a function that penalizes ))(( xfg  for dissimilarity 

to x , )(hg  is the decoder output, )(xfh   is the coder output. 

In order to better identify the features hidden in the input data, a regulariza-
tion is added to the autoencoder model. This allows the model to obtain more 
properties in addition to the ability to copy input data. The desirable properties of 
the model are as follows: 

Fig. 1. An example of a deep autoencoder model for the mnist dataset reconstruction, 
adapted from [8] 
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– presentation of sparsity of data; 
– resistance to noise in the input data and the absence of part of the inputs; 
– small values of the derivatives of codings relative to the input data. 
The regularized autoencoder is a model with the loss function presented in 

the form [13]:  

 ),())(,( xhhgxE  ,  (2) 

where E is the reconstruction loss (1), h is a coder layer, ),( xh  is a coder layer 
penalty. 

The peculiarity of regularized autoencoders is the absence of an obvious 
Bayesian interpretation. Thus, other known regularized models, for example the 
ridge regression and other, are an approximation of the Bayesian maximum of the 
a posteriori probability with the addition of a regularizing penalty, which corre-
sponds to the a priori probability distribution of the model parameters. Regularized 
autoencoders have a different interpretation, because the ),( xh  penalty depends 

on the x – an input data and therefore cannot be formally considered as a priori 
distribution. However, it is still believed that the introduction of the ),( xh  regu-

larizer helps to implicitly prefer certain functions. 
Let us consider several models of regularized autoencoders depending on 

how the penalty ),( xh  in (2) is defined. 

Model of sparse autoencoder. One of the key reasons for the high energy ef-
ficiency of the human brain is the sparse activation of its neurons: only a small 
part of the neurons is active in the brain at any given time. 

To model the sparseness in an artificial neural network, we consider the 
probabilistic interpretation of neuronal activation. Let the artificial neuron of the 
hidden layer be a Bernoulli random variable, and the average value of activation 
of this neuron corresponds to the probability of obtaining a unit in the Bernoulli 
test. The probability of activation of each such individual neuron should be low to 
increase the sparseness of the neurons of the hidden (latent) layer. Let the desired 
probability of neuron activation be equal to  , and let the empirical average value 

of neuron activation on the basis of train data be equal to ̂ . Sparsity loss [16, 17] 

is considered as the ),( xh  penalty in expression (2), a measure of dissimilarity 

between distributions and is based on the Kullback–Leibler divergence between 
the model distribution and the data distribution: 

 




ˆ

ln)ˆ||(KL . 

Learning criterion for the sparse autoencoder can be considered as follows: 

 ),()))((,()1( xhxfgxE  , 
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where ),( xh  is the sparsity loss, N is a number of neurons in a coder layer, 
]1,0[  is a sparsity weight, which is a hyperparameter of the model. 
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If   is large, the model will pay more attention to the target sparsity, but 
will not be able to reconstruct the inputs properly. If, on the contrary, the weight 
is too low, the model will mostly ignore the sparsity and will not find interesting 
features in the data. Methods of decision support [18, 19] can be used to deter-
mine the most acceptable   value based on quantitative and qualitative decision 
criteria in a particular practical problem. 

An important property of the sparse autoencoder is that it can be considered 
as a generative model with latent variables, which approximates the maximum 
likelihood. Let us consider a model [13] with an input vector of visible variables 
x, latent variables h and a common probability distribution 

 )|()(),( modelmodelmodel hxphphxp  . 

)(model hp  is called the a priori distribution of latent variables and represents the a 
priori belief of the model that it will “see” the input vector x, where h is still the 
output of the coder. This interpretation differs from the traditional use of the term 
“a priori”, which denotes the distribution )(wp , which describes the hypotheses 
about the parameters of the model before reading the training data. 

The logarithm of the plausibility of the model can be represented as:  

 
h

hxpxp ),(ln)(ln modelmodel . 

The autoencoder is considered as an approximation of this sum by a point es-
timate for only one value of h, which has a high probability. With this choice of h, 
the following function is maximized: 

 )|(ln)(ln),(ln modelmodelmodel hxphphxp  . 

The term )(ln model hp  can cause sparsity. For example, the a priori Laplace 
distribution 

 |)|(exp
2

)(model ii hhp 


  

corresponds to the sparsity penalty in terms of the 1L  norm.  

Denoising autoencoder. Another way to make the autoencoder show interest-
ing features is to add noise to the inputs and teach it to restore the initial not noisy 
input [8, 13, 20, 21]. There are two ways: 

 a random variable is added to the input vector, normally distributed with a 
small variance, which determines the noise level; 

 part of the input neurons is set to zero. The level of noise is determined by 
what part it is. This method is more used in image processing problems. 

In the denoising autoencoder models, a conditional distribution )|ˆ( xxC  of 

noisy examples under the condition of true examples is introduced. Next, the au-
toencoder learns the distribution of the reconstruction )ˆ|(reconstr xxp , which is 

estimated on the basis of training pairs )ˆ,( xx  as follows [13]:  

 select example x from the training set; 
 select the noisy version x̂  with )|ˆ( xxC ; 
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 use )ˆ,( xx  as a training example to estimate the distribution of reconstruc-

tion )|()ˆ|( decoderreconstr hxpxxp  , where h is the output of the coder, and 

decoderp  is determined by the decoder )(hg ; 

 minimize the following loss function using the mini-batch gradient de-
scent: 
 )|(ln)ˆ|(ln decoderreconstr hxpxxp  . 

If the encoder is deterministic, then the autoencoder is often a feedforward 
neural network, and the same methods can be used to train it as for any feedfor-
ward neural network, for example, the mini-batch stochastic gradient descent. 

The variational autoencoder (VAE) model was proposed in 2014 and is de-
signed to reconstruct the law of distribution of training data for artificial genera-
tion of samples from the general distribution [22]. This is a probabilistic model, 
because its output after training is determined randomly. VAE has a basic archi-
tecture common to all autoencoders (Fig. 2): the first part corresponds to the en-
coder network (it consists of the hidden layers 1 and 2 in the example in Fig. 2), 
followed by the decoder network (the hidden layers 3 and 4 in Fig. 2). The differ-
ence from deterministic encoders is that the VAE encoder for a given input results 
in the average encoding μ and the standard deviation σ. The coding is then chosen 
randomly from the Gaussian distribution with mean μ and standard deviation σ. A 
standard distribution other than Gaussian can also be used. Next, the decoder de-
codes the received encoding in the usual way. 

Inputs (on the right in Fig. 2) can have a complex distribution. During train-
ing, the coding moves inside the latent space, the coding space, and occupies an 
approximately spherical region similar to a cloud of Gaussian points. The loss 
function of the variational autoencoder is the sum of two terms [8]:  

 ),())(,( xhLhgxE  , 

Fig. 2. An example of the variational autoencoder model, VAE [8] 
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where E is the reconstruction error (1) of the input vector x, as before; ),( xhL  is 
the latent loss, which is often the Kullbak–Leibler divergence between the target 
distribution, such as Gaussian, and the actual coding distribution. 

It is easy to generate a new example based on a trained variational autoen-
coder: you need to choose a random encoding from the Gaussian distribution and 
decode it. 

LODE-GRU-VAE VARIATIONAL AUTOENCODER MODEL FOR TIME 

SERIES PREDICTION 

Fig. 3 shows a simplified architecture of the proposed model. It consists of an en-
coder – a LODE-GRU network, and a decoder network. Two modifications are 
proposed: with simulation of timestamp distribution and without it. In both cases, 
the pair  ii tx ,  – the data tensor together with the corresponding timestamps is 
the input for the model (Fig. 3). In the second case we suggest the uniform distri-
bution of these time slices on the observation interval. 

The proposed model is based on the ideas of 
variational encoder and GRU recurrent neural net-
works. Features of the GRU unit in comparison with 
the known LSTM are as follows. Firstly, a single state 
vector )(th  is used. Secondly, the forgetting gateway 
and the input gateway are controlled by a single con-
troller – a fully connected layer with a logistical acti-
vation function. If the result of this controller is equal 
to 1, then the forget gateway opens and the input 
gateway closes. If the result of the controller is equal 
to 0, then the opposite action occurs. This means that 
the place is first cleared before saving a certain memory. 
Thirdly, there is no output gateway in the GRU, so a 
complete state vector is the result at each time step. 
The main fully connected layer analyzes the current 
inputs and some parts of the previous state, which are 
determined by the additional gateway controller. 

The LODE-GRU encoder in Fig. 3 is a modifica-
tion of recurrent networks of the GRU type. The 
modification is to use the ordinary differential equa-

tions (ODEs) to predict the values of hidden trajectories. As a result, the LODE-
GRU network layers are defined as follows: 

 ),, , ( 11   tthfSolh , (3) 

 )( uhuxu bhWxWu   ,  (4) 

 )( rhrxr bhWxWr   , (5) 

 tanh (   )( )xh hh hh W x W r h b         ,  (6) 

 (1 )h u h u h         . (7) 

LODE-GRU 

Decoder 

zi

<xi, ti> 

xi

Fig. 3. A simplified  
LODE-GRU-VAE model 
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The block described by equation (3) generates a set of points according to 
the trajectory of the studied process under the conditions (4)–(7) of process 
transformations, which project the trajectory to another space called latent or 
hidden. The combination of neural ordinary differential equations and neural 
RNN networks began to be studied in 2018 to model irregularly observed time 
series [23], and was further developed in [24–26]. Equation (3) is called the latent 
ordinary differential equation (Latent ODE). Model (3)–(7) helps to generate new 
series values at intermediate points between observations, in contrast to standard 
neural RNN LSTM networks. This is especially useful when the time interval be-
tween adjacent observations is large. 

Let us modify the described model (3)–(7) to obtain the probability 
distributions of the hidden trajectories. Let us consider the case when the source 
vector for the encoder is a multidimensional Gaussian vector with a mathematical 
expectation equal to  

0z  and the variance equal to 
0z  during the last 

observation  . Therefore, the additional layer described by the next formula is 
added: 

 ), (~),(
000 zzhgz    . (8) 

Thus, the LODE-GRU-VAE model is described by formulas (3)–(8) and 

represents a variation encoder. The coding of the input data x in this model is 

characterized by a conditional probability distribution )/( xzq , where z is a ran-
dom vector in the latent space. The loss function in this case is the mathematical 
expectation of losses relative to z : 

 ~ ( / ) ~ ( / )( , ) ln ( , ) ( / ) (( ))z q z x z q z x KLL z q p x z D q z x p z    ,  (9) 

where ),( zxp  is the joint distribution of x  and z ,  KLD A B  is the Kullbak–

Leibler divergence, which determines the degree of “dissimilarity” of distribu-
tions A  and B . 

The rationale for the variation encoder is based on the Expectation Maximi-
zation (EM) method. For the autoencoder, the input and target are the same vec-
tor x. Therefore, the decoder returns the conditional distribution )/( zxp  when 

the code z is an input, and the error function determines the plausibility of the 
“binding” of the error function to the output of the last layer of the network. 

The EM algorithm assumes that we can calculate the distribution 
)/(),/( ),(  xpxzpzxp  . The problem is to maximize )/( xp  with respect 

to the parameters  . Let us take the logarithm of both parts of the equality above 
and express )/(ln xp : 

 ),/(ln)/,(ln)/(log  xzpzxpxp . 

Next let us take the mathematical expectation with respect to z : 

     dzxzpzqdzzxpzqdzxpzq
ZZZ

),/(ln)/,(ln)/(ln)(   . 

After the transformations we get: 

 dz
zq

xzp
zqdz

zq

zpzxp
zqxp

zZ







 








 
  )(

),/(
ln)(

)(

)/(), /(
ln)()/(ln . 
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The last term on the right is the Kullbak–Leibler divergence, which is always 

non-negative quantity. Therefore, the expression dz
zq

zpzxp
zq

Z







 
 )(

)/(), /(
ln)(  can 

be considered as the lower estimate of the value of )/(ln xp . 

Let us denote ),(
)(

)/(), /(
ln)( 







 
 qELBOdz

zq

zpzxp
zq

Z

. Then  

 ( ,θ) ln ( /θ) ( )( ) ( / )KLELBO q p x D q z p z x   .  (10) 

In general, maximizing (10) by the parameter  , the approximation ) (zq to 

)/( xzp  is performed. Let us show that the loss function (9) is equal to 

),( qELBO  (10). Using the formulas of conditional probability, let us rewrite (9) 
in the form: 

 ~ ( / )( )  ln ( / ) ( / ( ))( )z q z x KLq p x z D q z x p z   .  (11) 

Since ( / ) ( ))(KLD q z x p z  is close to zero for the same distributions )/( xzq  

and )(zp , and )(ln)/(ln xpzxp  , then the upper limit of the loss function will 

also be )(ln xp . That is, we came to the same result.  

The described LODE-GRU-VAE model can be trained by Adam, Rprop or 
similar methods with respect to the sample ));(;()/(~  xfzqxzqz  in order to 

obtain a gradient with respect to   and subsequent generation of distribution pa-
rameters. With this approximation, the Monte Carlo method can be used to calcu-
late the mathematical expectation for )/(ln zxp  and the Kullbak–Leibler diver-
gence at a fixed  . 

Let us consider how the described LODE-GRU-VAE model can be used to 
generate a new sequence of series. For example, the initial sequence of n  values 
is first fed to the input of the model, and the prediction of one next value is per-
formed on the basis of the model. Next, the predicted value is joined to the 
sequence. The prediction for the next value is calculated on basis of the last n  
values, which are given to the model. This process can generate a new sequence 
that is similar to the original time series.  

STATEMENT AND RESULTS OF THE EXPERIMENT. SELECTION 

OF MODEL HYPERPARAMETERS 

For the time series prediction experiment, let us choose a synthetic nonstationary 
time series, which is a function of ], 0[, ),2(sin Tttx   . To bring the data 
closer to the real ones, the Gaussian noise is added to each value of the series: 

  ), , 0(~, )(sin tx . 

Not all historical data is always available in real forecasting problems. 
Therefore, additional values are introduced: d  is the sampling step and i  is the 
indicator set of points to be left in the sample. The simulated series can be for-
mally written as follows: 
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 ittiXX
dkkk

T

,1

T ))(sin,(ˆ


 . 

The following parameters were selected for the experiment: 

 25,0 . 
 1000d . 
 Number of points to stay is 150. 
 The number of layers in the network that simulates the behavior of ODE 

and their dimension are 1 and 6, respectively. 
 Learning rate is adaptive, initially equal to 0,01. 
 The method for solving the differential equation is Dormand–Prince. 
 The optimization method for learning the neural network is Adamax. 

Gradients within the ODE-layers are calculated by the method of conjugate equa-
tions. 

 The dimension of the hidden space is 6. 
 The initial value of the variance is 0,1. 
 Number of epochs is 200.  
The next step is the analysis and processing of the experimental results. Met-

rics for assessing the quality of the model can be components of the error func-
tion. For example, the Kullbak–Leibler divergence can be chosen as a metric. But 
the limitation of the latter is that it is difficult to interpret. In this work, the mean 

square error MSE and the coefficient of determination 2R  are used. 
Several experiments have been carried out to prove the efficiency of the 

model (3) – (8) (Fig. 4, 5). In the first experiment, acceptable values of model 

quality metrics were obtained, namely MSE 11,0  and 78,02 R . In the second 
experiment, the values of the model quality metrics were almost the same and 

Fig. 4. Real and predicted values of the target variable (experiment 1) 
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also acceptable: MSE 10,0 , 80,02 R . The observed points on which the 
model was built are marked in Fig. 4, 5 in blue color. The unobserved values of 
the test set, which were used to assess the quality of the obtained model are 
marked in orange color. The graph of the predicted values is marked in yellow. 
Model’s predicted values are of admissible MAPE and RMSE rates. 

The software in the Python3 environment using the TensorFlow2 framework 
and the Keras library was developed, which implements the proposed encoder-
decoder system. The main arguments in favor of choosing the Python 3 program-
ming language were the speed of writing code and the popularity of this language. 
Tensorflow2 uses the capabilities of the Nvidia CUDA and has an integrated 
Keras library, and thus was chosen as the best framework in terms of hardware 
and performance resources. It is a high-level modern API for fast and easy design 
and learning of deep models. 

CONCLUSIONS 

The work is devoted to the research and development of a neural network model 
based on the encoder-decoder architecture and recurrent blocks for predicting the 
values of nonstationary time series. Models and methods of machine and deep 
learning used for sequence processing are studied: LSTM and GRU models of 
recurrent neural networks, generative models, such as VAE, encoder-decoder 
models for detecting hidden patterns in data, Adam and Adamax stochastic opti-
mization learning methods. 

The LODE-GRU-VAE model was built and tested to reconstruct the dynam-
ics of nonstationary time series. The model allows to generate values at interme-
diate points between observations, and therefore it is possible to generate new 
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Fig. 5. Real and predicted values of the target variable (experiment 2) 
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values of a series where the time interval between two adjacent observations is 
large. In standard GRU-type RNN networks, the latent state is updated with each 
observation and remains constant between them. Conversely, within the frame-
work of the LODE-GRU structure, a neural ordinary differential equation learns 
to model a continuous change in the latent state of a network between two obser-
vations. 

The encoder-decoder system is implemented based on the proposed model in 
the Python3 environment using the TensorFlow2 framework and the Keras li-
brary. Experiments have been carried out to prove the efficiency of this system in 
the problems of modeling processes that depend on continuous time. 
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ГЕНЕРАТИВНА МОДЕЛЬ ДЛЯ ПРОГНОЗУВАННЯ ЧАСОВИХ РЯДІВ  
НА ОСНОВІ АРХІТЕКТУРИ КОДУВАЛЬНИК-ДЕКОДУВАЛЬНИК / 
Н.І. Недашківська, Д.В. Андросов 

Анотація. Моделі нейронних мереж на основі архітектури кодувальник- деко-
дувальник знайшли широке застосування в останні роки для розв’язання різ-
номанітних задач машинного навчання. Досліджено різновиди таких моделей, 
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серед яких розріджений, шумопригнічувальний та варіаційний автокодуваль-
ники. Для прогнозування нестаціонарного часового ряду подано і протестова-
но модель, що базується на варіаційному автокодувальнику, блоках рекурент-
них мереж типу GRU і використовує елементи нейронних звичайних 
диференціальних рівнянь. На основі побудованої моделі реалізовано систему у 
середовищі Рython3 з використанням фреймворку TensorFlow2 та бібліотеки 
Keras. Розроблена система може використовуватися для моделювання проце-
сів, що залежать від неперервного часу. Система мінімізує втручання людини 
у процес аналізу часових рядів, представляє високорівневий сучасний інтер-
фейс для швидкого і зручного конструювання та навчання глибоких моделей. 

Ключові слова: прогнозування, варіаційний автокодувальник, рекурентна 
нейронна мережа типу GRU, нейронне звичайне диференціальне рівняння, ла-
тентний простір, нестаціонарний часовий ряд. 

ГЕНЕРАТИВНАЯ МОДЕЛЬ ДЛЯ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ 
РЯДОВ НА ОСНОВЕ АРХИТЕКТУРЫ КОДИРОВЩИК-ДЕКОДИРОВЩИК / 
Н.И. Недашковская, Д.В. Андросов 

Аннотация. Модели нейронных сетей на основе архитектуры кодировщик- 
декодировщик нашли широкое распространение в последние годы при реше-
нии различных задач машинного обучения. Исследованы разновидности таких 
моделей, среди которых разреженный, шумоподавляющий и вариационный 
автокодировщики. Для прогнозирования нестационарного временного ряда 
представлена и протестирована порождающая модель, которая основана на ва-
риационном автокодировщике, блоках рекуррентных сетей типа GRU и испо-
льзует элементы нейронных обыкновенных дифференциальных уравнений. На 
основе построенной модели реализована система в среде Рython3 с использо-
ванием фреймворка TensorFlow2 и библиотеки Keras. Разработанная система 
может использоваться для моделирования процессов, зависящих от непрерыв-
ного времени. Система минимизирует вмешательство человека в процесс ана-
лиза временных рядов, представляет высокоуровневый современный интер-
фейс для быстрого и удобного конструирования и обучения глубоких моделей. 

Ключевые слова: прогнозирование, вариационный автокодировщик, рекур-
рентная нейронная сеть типа GRU, нейронное обыкновенное дифференциаль-
ное уравнение, латентное пространство, нестационарный временной ряд. 


