
 

 Sandeep Kumar Bothra, Sunita Singhal, Hemlata Goyal, 2022 

Системні дослідження та інформаційні технології, 2022, № 3                                                121 

UDC 519-62 
DOI: 10.20535/SRIT.2308-8893.2022.3.08 

COST EFFECTIVE HYBRID GENETIC ALGORITHM  

FOR WORKFLOW SCHEDULING IN CLOUD 

SANDEEP KUMAR BOTHRA, SUNITA SINGHAL, HEMLATA GOYAL 

Abstract. Cloud computing plays a significant role in everyone’s lifestyle by snugly 
linking communities, information, and trades across the globe. Due to its NP-hard 
nature, recognizing the optimal solution for workflow scheduling in the cloud is a 
challenging area. We proposed a hybrid meta-heuristic cost-effective load-balanced 
approach to schedule workflow in a heterogeneous environment. Our model is based 
on a genetic algorithm integrated with predict earliest finish time (PEFT) to mini-
mize makespan. Instead of assigning the task randomly to a virtual machine, we ap-
ply a greedy strategy that assigns the task to the lowest-loaded virtual machine. Af-
ter completing the mutation operation, we verify the dependency constraint instead 
of each crossover operation, which yields a better outcome. The proposed model in-
corporates the virtual machine’s performance variance as well as acquisition delay, 
which concedes the minimum makespan and computing cost. One of the most as-
tounding aspects of our cost-effective hybrid genetic algorithm (CHGA) is its capac-
ity to anticipate by creating an optimistic cost table (OCT) while maintaining quad-
ratic time complexity. Based on the results of our meticulous experiments on some 
real-world workflow benchmarks and comprehensive analysis of some recently suc-
cessful scheduling algorithms, we concluded that the performance of our CHGA is 
melodious. CHGA is 14.58188%, 11.40224%, 11.75306%, and 9.78841% cheaper 
than standard Ant Colony Optimization (ACO), Particle Swarm Optimization 
(PSO), Cost Effective Genetic Algorithm(CEGA), and Cost-Effective Load-
balanced Genetic Algorithm (CLGA), respectively. 

Keywords: cloud computing, cost effective, genetic algorithm, metaheuristic algo-
rithm, predict earliest finish time, Workflow scheduling. 

INTRODUCTION 

Cloud computing is a buzzword in the current era, which provides a very elastic 
‘pay as you go’ model[1]. Dr. Raj Kumar Buyya says, “A cloud is a kind of paral-
lel and distributed system made up of a number of linked, virtualized computers 
that are constantly provided and shown as one or more unified computing re-
sources in accordance with service-level agreements negotiated between the ser-
vice provider and customers” [2]. On the basis of physical location and distribu-
tion, various deployment models are available now. Task scheduling is critical for 
maximizing the use of cloud resources as well as providing end users with quality 
of service (QoS) [3]. 

Static scheduling and dynamic scheduling are two different sorts of task 
scheduling issues. In the static category, all task characteristics, including the 
costs of computation and communication for each activity as well as how those 
activities relate to one another, are known in advance. However, the dynamic cat-
egory makes such information unavailable and makes judgments at runtime [4]. 
Furthermore, static scheduling refers to compile-time scheduling, and dynamic 
scheduling refers to scheduling at runtime. 
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Heuristic-based and guided random search-based algorithms are the two 
types of static scheduling algorithms that are most frequently used. 

Heuristic-based algorithms deliver approximate, frequently excellent results 
because of their polynomial time complexity [5]. Similar to heuristic-based 
algorithms, guided random search-based algorithms provide approximations, but 
the results’ quality may be increased by including more rounds, which raises the 
cost of the methods [6]. 

Dependent tasks are represented as a workflow, which is a set of nodes and 
edges, with each node representing a job and each edge representing follow-up 
dependence [7]. Workflow is scheduled and executed by the workflow 
management system where tasks are scheduled and provisioned to virtual 
machines [8]. Various researchers are engaged themselves to resolve the problem 
of resource scheduling in cloud. Many tasks have been completed using the 
heuristic approach; however it is not very excellent owing to its problem-
dependent aspect, which is that it is unable to provide a globally optimum 
solution. As a result, the researcher prefers to use a meta-heuristic technique. Due 
to its task-independent character, the meta-heuristic method delivers a global 
optimal solution. The researcher’s ultimate objective is to maximize cloud 
resource usage while lowering costs for cloud’s end users [9], [10].  

The majority of quadratic time complexity list-based scheduling algorithms 
just evaluate the current task when allocating a task to a processor. Although it is 
a low-cost method, it does not examine what comes before the current job, which 
could lead to poor decisions in some cases.  Lookahead [11] is an example of an 
algorithm that analyses the impact on child nodes, but it raises the time 
complexity to the fourth order. As a result, we used the PEFT approach in our 
proposed model “cost-effective hybrid genetic algorithm” (CHGA). One of 
PEFT’s most amazing features is its ability to predict by making an OCT with 
optimistic costs while preserving quadratic time complexity. 

Motivation. Following a comprehensive review, we motivated to resolve a 
research gap where many parameters, such as virtual machine (VM) performance 
variation, booting time, and shutdown time, as well as load balancing across VMs 
and minimize execution time in parallel using heuristics approaches, are not 
effectively addressed. 

Objective. The goal of this research is to arrange the tasks of workflow in 
such a way that it reduces not only computation costs but also processing time 
while maintaining load balance among virtual machines. Our objective was to 
create a hybrid meta-heuristic technique for reducing processing time and expense 
while maintaining load balance across virtual machines under time constraint. 
During population initialization in genetic algorithm, we employed predict 
earliest finish time (PEFT) approach, which is significant for decreasing the 
makespan. We also took into account the time it takes for a virtual machine (VM) 
to boot up and performance fluctuations, both of which have an effect on 
computation time and execution cost. This represents the novelty of our model. 
To keep the load balanced among the virtual machines, we employed a greedy 
method [10] in our proposed model “cost-effective hybrid genetic algorithm” 
(CHGA).   

The remaining sections of the paper are structured as follows. The second 
section goes through some background information. Sections III and IV contain 
problem definitions and details of our proposed model, respectively. The per-
formance review may be found in Section V. Section V consists of two sub-
sections: result analysis and discussion. Finally, Section VI draws the paper 
toward its conclusion. 
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RELATED WORK 

Comprehensive work has been done by us on various meta-heuristic algorithms in 
literature [9], some of them are genetic algorithm (GA) [12], ant colony optimiza-
tion (ACO) [13], particle swarm optimization (PSO) [14], artificial bee colony 
algorithm (ABC) [15] etc. 

The RDPSO (Revised Discrete PSO) technique employed in[16] involves a 
greedy adaptive search procedure to establish the swarm particle, followed by the 
computation of local best and global best. It focuses on achieving the lowest 
execution cost, but load balancing across virtual machines is not provided. 

In literature [17] , researchers designed a PSO-based algorithm to minimize 
execution cost as well as makespan and compared it with the Best Resource 
Selection (BRS) algorithm, but they didn’t take into account dependent tasks in 
scheduling approach. This deficiency is removed by [18], where ACO is applied 
to the workflow. They used an approach ant strategy: front ant and back ant. Their 
study took into account pre-execution time and a pheromone threshold value, but 
they did not mimic a different type of scientific workflow. 

Researchers in Dynamic Objective-based GA (DOGA) [19] reduced the cost 
of workflow execution and reached a result that was comparable to PSO, but they 
ignored the booting time factor and the load balancing approach. Authors pro-
vided a GA-based technique in the literature [20], where cost and time span are 
both reduced within a user-defined deadline. This paper was not based on real 
world workflow, which is accomplished by [21]. 

A multi-objective PSO approach with a weighted linear transform fitness 
function is presented in the literature [22]  and they conclude that their proposed 
algorithm is better than genetic algorithms, but they consider only makespan and 
resource utilization as parameters, not other parameters like execution cost, load 
distribution, etc. The outcome of their experiment is not very trustworthy due to 
the limited size of their workflow. 

A new approach SACO Slave ACO(SACO) [23] proposed a slave-ant 
concept where two techniques are used: diversification and reinforcement. These 
techniques escape slave ants from long paths. Their experiment didn’t consider 
heterogeneous resources or load balance concepts. Multi Objectives ACO(MO-
ACO) [24] addresses this flaw by presenting an approach for scheduling jobs in a 
cloud context that considers load balancing with cost and time but ignores 
dependent tasks in the cloud.  

The Greedy-Ant-based ACO [25] approach uses forward and backward 
dependency techniques to build transition probability. To allocate the virtual 
machine, they used a greedy strategy. They compared their meta-heuristic model 
with a heuristic that has a high level of scarceness in their research. 

In the suggested GA [26], VMs are grouped based on their capacity to 
shorten the time it takes for a procedure to complete. Before clustering the VM, 
they considered cost computing to make this approach more successful. They did 
not include the VM termination delay in their study, and they also did not 
examine the load balancing idea.  

In the literature [27], authors focused on function optimization using improved 
genetic algorithms, whereas machine learning concepts are included with GA [28].   

In order to reduce makespan and cost, authors presented a HEFT-ACO tech-
nique [29] that is based on the heterogeneous earliest end time (HEFT) and ACO, 
but they did not integrate the idea of load balancing across virtual machines. 
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In research [10], authors focused on balancing the load among virtual ma-
chines to increase performance. To achieve this, a greedy seeding strategy was 
applied with the genetic algorithm, but there was no efficient heuristic approach 
to reduce the makespan and cost.  

Following a comprehensive review, we observed a research gap where many 
parameters, such as virtual machine (VM) performance variation, booting time, 
and shutdown time, as well as load balancing across VMs and minimize execution 
time in parallel using heuristics, are not effectively addressed. 

Our goal was to develop a hybrid meta-heuristic approach for processing 
time and cost reduction in a time-constrained situation while maintaining load 
balance across virtual machines. To accomplish this, we used the PEFT strategy 
during population initialization, which helps to reduce the makespan. The ability 
of PEFT to anticipate by building an optimistic cost table (OCT) while preserving 
quadratic time complexity is one of its most amazing features. We also took into 
account the time it takes for a VM to boot up and performance fluctuations, both 
of which have an effect on computation time and execution cost. To keep the load 
balanced among the virtual machines, we employed a greedy method in our pro-
posed model CHGA. 

PROBLEM DEFINITION 

Minimization of computing costs and makespan of scientific workflow with bal-
ancing the loads among virtual machines is the main motto of our proposed Cost 
Effective Hybrid Genetic Algorithm (CHGA), which works under a user-defined 
deadline constraint. A simple workflow is depicted in Fig. 1, and its correspond-
ing encoding is represented in Fig. 2. 

In a heterogeneous cloud computing environment, variation in the per-
formance of VMs and booting time delays are two main factors that impact the 
makespan of the scientific workflow. That’s why we considered both of the 
above-mentioned parameters in our proposed model. Schedule is illustrated as 

Fig. 1. Example of  Workflow 

Fig. 2. Encoding of workflow depicted in Fig. 1 



Cost effective hybrid genetic algorithm for workflow scheduling in cloud 

Системні дослідження та інформаційні технології, 2022, № 3 125

},,,{ TECTETMapVMS SET , Where VMSET a virtual machine pool, and Map 
denotes the selection of an appropriate virtual machine to perform a task. Total 
Execution Time and Total Execution Cost, respectively, are abbreviated as TET 
and TEC. We generate the value 0%–24% randomly as a performance variation, 
and the acquisition delay is assumed to be 1 minute for each VM. We defined the 
problems to achieve our objectives. If TET violates the deadline constraint, then TEC 
is not computed, otherwise it will be computed. 

THE PROPOSED HYBRID GENETIC ALGORITHM 

Description of the CHGA 

We explained CHGA step-by-step here. 
Step 1. During population initialization, the chromosome is encoded in the 

same way as in the meta-heuristic technique provided by [25]. OrderOfTask, 
Task, VM, and VmType are four fields that are used to encode a chromosome. 

If the total population is N , then )1( N  is initialized using a random tech-
nique and the remaining is using PEFT. PEFT is described in section IV B. 

Step 2.  During the population initialization, we employed a greedy tech-
nique [10] to balance the load among several virtual machines, as illustrated 
through flowchart in this paper. This strategy assigns the new task to those VMi 
which have minimum load at that time. Compute Load Li on a VMi: 
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Step 3.  Now compute the fitness of each candidate. 
Step 3.1: Calculate the execution and transfer times for all of the individual’s tasks.  
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The size of an output data file 
iTDataFile  and the typical bandwidth β may 

be used to compute the communication time 
ijETT : 
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If a task is appear as root task or all parent tasks are on the same VM then 
communication time is zero.  

Step 3.2. Calculate Execution start time 
iTST  and finish time 

pTT F  now. 

iTST  is an estimated time to start the execution.  It is equal to acquisition delay if 

the task is appear as root node, otherwise   
 }}},{{{ 

pippi ETTkT TTFTMaxVMAvailMaxST  .  

Here )( kVMAvail   is the time of VMk when it is ready to execute a new 
task and the VM’s performance variation is denoted by PerVar. 

pTT F  indicates 

completion time of parent’s task. 
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iTFT  is the time indicates to finish the execution. 

 
 

  






















PerVar

TET
STFT

iVM
TT

k
ii 1

 . 

Step 3.3. Now compute  TET and TEC as given below:  

  } { ,    If itFTTETDTET  , 
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Equation (1) to Equation (8) are from literature [19], [20]. 
Step 4. After computing the fitness of the chromosome, the tournament-

based algorithm is used to select the best two individuals for further crossover. 
Step 5. A two-point crossover is used as depicted in Fig. 3. 

Step 6. Apply mutation operations as illustrated in Fig. 4. Now check the 
dependency constraint on it.  

If a new individual follows the dependency constraint, then it is accepted, 
otherwise it is discarded. 

Fig. 3. Crossover Operation 

Fig. 4. Mutation Operation 
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Step 7. If the fittest solution meets our objectives under the user-defined 
constraint, then stop the iteration; otherwise, continue it from step 3 after replac-
ing the least fit candidate with the better new solution. 

A picture is worth a thousand words, that’s why we depict our proposed 
model CHGA through a block diagram and flowchart, as shown in Fig. 5, a and 
Fig. 5, b respectively. 

A Glance on PEFT 

The PEFT [30] consists of two stages: a task prioritization phase that identifies 
priority of task and a VM selection step that determines the optimum VM for exe-
cuting the present job. Both stages are centered on OCT. By computing an OCT 
and retaining quadratic time complexity, this algorithm can forecast. Earliest Fin-

Fig. 5. Block Diagram of Proposed model CHGA (a); flowchart of Proposed model CHGA (b) 

a 

Population initialization 
using PEFT 

Replace worst candidate 
by Best one solution 

b
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ish Time (EFT) of a node n on processor p is sum of earliest start time and com-
putation time of a node n on processor p. Illustrated in Fig. 6. 

PERFORMANCE EVALUATION 

Baseline Algorithm 

In the current era, ACO and PCO are buzzwords. Both meta-heuristic algorithms 
are inspired by the natural process of resolving NP-hard problems like optimiza-
tion. That’s why we used them as baseline algorithms as they contributed to solv-
ing the same problem addressed here. Except these we used CEGA [20] and 
CLGA [10] as baseline algorithms. 

Pheromone-based communication in an ant is to find the best solution. Ini-
tially, all the routes have the same probability of selection, i.e., ‘no bias’ due to 
the same or no pheromone. A local update rule is applied when the ant constructs 
the route, i.e., solution. Longer pathways vaporise or disintegrate more quickly 
than shorter ones do. Shorter pathways therefore accumulate more pheromones 
over time.  Pheromone’s quantity is responsible for indirect communication, 
which is known as ‘stigmergy’ [18]. When all the ants have completed their 
routes, then a global update operation is performed. Now the selection of the path 
is biased and the best ant is allowed to update the pheromone by the pseudo-
random-proportional rule [18]. We can understand ACO from Fig. 7 and PSO 
from Fig. 8. 

Particle Swarm Optimization was first introduced by Kennedy and Eberhart 
[22]. In this instance, swarm stands for the population, and particle for a potential 
solution. Each particle is first assigned a random coordinate. The objective func-
tion, or the distance between the particle’s present position and the food, is used 
to evaluate performance. PBEST indicates the local best position of a particle, 
whereas refers to the velocity constant. By updating the velocity and position of 
the particle, a global optimum solution can be achieved. We keep this process go-
ing until we get our objective or reach our maximum iterations [22]. This is de-
picted in Fig. 8. As  baseline algorithms we used ACO, PSO, CEGA [20] and 
CLGA [10]. 

Stop 

Fig. 6. PEFT Strategy 



Cost effective hybrid genetic algorithm for workflow scheduling in cloud 

Системні дослідження та інформаційні технології, 2022, № 3 129

Experimental Setup 

We used four types of scientific workflows: Montage, Cybershake, LIGO, and 
Epigenomics as benchmarks, where the size of the workflow is 50 nodes, 100 
nodes, and 500 nodes approximately. 

We have implemented the proposed model CHGA in a JAVA-based robust 
environment and concluded the result after executing each type of workflow 30 
times. The accuracy of the obtained result varies by about ±5. As mentioned in 
Table 1, we considered 5 types of VMs as specification [31]. We assumed 20 
kbps average bandwidth as proposed by Amazon Elastic Block Store (EBS) [32]. 
A thorough analysis of the literature [33],[34] is beneficial in deciding on various 
parameters. 

There are 3 levels of deadline constraints: hard, crunch, and soft, which are 
considered in our experiment. 

Deadline  

 iWETD ()min)1(  . 

For hard deadline range of  : 2.10  . 

For crunchy deadline range of  : 8.22.1  . 

For soft deadline range of  : 4.48.2  . 

Here α indicates step length, whose value is 0.4. 

Fig. 7. ACO Algorithm Fig. 8. PSO Algorithm  
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T a b l e  1 . Configuration of VM in our practical approach 

VM Types m1.Small m1.Large m1.Xlarge c1.Medium C1.Xlarge 

Processing Capacity 
(GFLOPS) 

4.4 17.6 35.2 22 88 

ECUs (Speed) 1 4 8 5 20 

Cores 1 2 4 2 8 

Memory (GB) 1.7 7.5 15 1.7 7 

Disk(GB) 160 850 1690 350 1690 

Cost /Hr. ($) 0.04 0.16 0.32 0.2 0.8 
 

RESULT AND ANALYSIS 

Evaluation of Deadline Constraint 

Our suggested CHGA is evaluated and compared using baseline algorithms in 
order to fulfill our goal within a user-defined deadline, as depicted in Table 2 and 
Fig. 9. The hit rate of our proposed CHGA is better than that of other baseline 
algorithms, which represents its robustness. The capacity of PEFT to predict the 
impact of scheduling the all children task of the current parent task reduced the 
makespan of workflow and improved the hit rate of CHGA.  

T a b l e  2 .   Analysis of Hit Rate based on deadline 

Deadline Algorithm Montage Cybershake LIGO Epigenomics 

CHGA 96.3002 94.0645 93.0989 92.3004 

ACO 53.9809 58.2309 52.0051 57.4506 

PSO 69.0989 67.9882 68.0898 69.1216 

CEGA 92.3433 88.4844 88.5034 83.4908 

Hard 

CLGA 95.5022 91.4788 91.4602 88.0223 

CHGA 99.8956 99.8002 99.7444 99.8288 

ACO 72.0989 73.0899 71.9004 74.0112 

PSO 79.0767 80.3503 81.0302 78.9704 

CEGA 99.5011 99.6202 99.5002 99.6055 

Crunch 

CLGA 99.5067 99.7601 99.5676 99.7388 

CHGA 99.8876 99.7909 99.7708 99.8092 

ACO 78.0998 76.0038 77.0902 78.2312 

PSO 83.4534 82.0034 85.7801 86.5709 

CEGA 99.6767 99.7022 99.6081 99.5003 

Soft 

CLGA 99.6878 99.7803 99.7003 99.7099 

 



Cost effective hybrid genetic algorithm for workflow scheduling in cloud 

Системні дослідження та інформаційні технології, 2022, № 3 131

Load-Balance Evaluation 

Greedy strategy plays an important role in load balance. Finding a virtual machine 
with a low load is important before we allocate a task iT  to an individual. In order 

a

b

c
Fig. 9. Analysis under: Hard Deadline Constraint (a); Crunch Deadline Constraint (b);
Soft Deadline Constraint (c) 
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to manage the load balance, we map the task iT  with iVM  using the greedy tech-

nique after identifying iVM  with minimum load. 

The capacity of VMCi can be calculated as given by Equation, where the 
number of processing elements is PEnum: 

 mipsnum PEPEVMC i .  

All VMCi are collectively known as Virtual Machine Capacity (VMC), and 
m is the total number of sVM : 

   m
i i1VMCVMC . 

Load iL  on a iVM  is as Equation. 

Total load TL is as Equation 

   m
i iL1TL . 

Load capacity per unit is puLC  as Equation 

 
VMC

TL
puLC . 

Threshold value iTH  is as Equation  

 ipui LC VMCTH  . 

The threshold value THi is compared with the load of VMi to determine the 
status of VMi, i.e., under-loaded, balanced or over-loaded. The result of our ex-
periment shows that with ACO, VM1 is overloaded by +82% and VM3 is under-
loaded by -58%. In contrast, with PSO, VM5 is overloaded by + 69% and VM4 is  
under-loaded by -63%, as shown in Fig. 10. Our model CHGA exhibited better 
load-balance compare to ACO, PSO, and CEGA, which denotes the robustness of 
CHGA. When we used the proposed CHGA, VM4 was overloaded by +26%, 
while VM3 was under-loaded by –12%. Illustrated in Fig. 10. 

Fig. 10. Comparatively analysis of Load Balance 
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Cost and Makespan Evaluation 

Our holistic comparison between the baseline and   our proposed CHGA is de-
picted in Fig. 11 – 14. The obtained result of our experiment indicates the robust-
ness of our proposed model CHGA. CHGA is 14.58188%, 11.40224%, 
11.75306%, and 9.78841% cheaper than standard ACO, PSO, CEGA, and CLGA, 
respectively. CHGA’s average makespan is 34.73619%, 31.48127%, 5.71553%, 
and 9.73710% lower than standard ACO, PSO, CEGA, and CLGA, respectively. 

Fig. 11. Comparatively analysis of Cost. Began 
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Fig. 12. Comparatively analysis of Cost. Continued 

Fig. 13. Comparatively analysis of Makespan. Began 
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The capacity of PEFT to predict the impact of scheduling the all children 
task of the current parent task reduced the makespan of workflow and improved 
the execution cost in term of minimization in our proposed model.  The obtained 
result of our experiment indicates the robustness of our proposed model CHGA. 
CHGA is 14.58188%, 11.40224%, 11.75306%, and 9.78841% cheaper than stan-
dard ACO, PSO, CEGA, and CLGA, respectively. CHGA’s average makespan is 
34.73619%, 31.48127%, 5.71553%, and 9.73710% lower than standard ACO, 
PSO, CEGA, and CLGA, respectively. 

DISCUSSION 

Because the best schedules take into account both the gain in a sequence of tasks 
as well as the immediate gain in processing time, we observed that the best meta-
heuristic schedules could not be achieved if we adhered to the conventional strat-
egy of selecting processors based only on current task execution time, so we used 
the PEFT strategy during population initialization, which helps to reduce the 
makespan. Its capacity to predict the impact of scheduling all child tasks of the 
current parent task This attribute allows one to make the perfect decision when 
selecting the perfect virtual machine. We also took into account the time it takes 
for a VM to boot up and performance fluctuations, both of which have an influ-
ence on computation time and execution cost. These statements are verified by the 
obtained results of our experiments, which indicate the robustness of our pro-
posed model CHGA. CHGA is 14.58188%, 11.40224%, 11.75306%, and 
9.78841% cheaper than standard ACO, PSO, CEGA, and CLGA, respectively. 
CHGA’s average makespan is 34.73619%, 31.48127%, 5.71553%, and 9.73710% 
lower than standard ACO, PSO, CEGA, and CLGA, respectively. 

We also applied the greedy strategy during the initialization of the popula-
tion, which plays an important role in load balancing among VMs. When we used 
the proposed CHGA, VM4 was overloaded by +26%, while VM3 was under-
loaded by -12%, which shows our model CHGA is better in load-balancing com-
pared to ACO, PSO, and CEGA. 

CONCLUSIONS AND FUTURE WORK 

To schedule scientific workflow, we introduced our meta-heuristic, cost-effective, 
load-balanced hybrid evolutionary method. To balance the load among VMs in a 

Fig. 14.  Comparatively analysis of Makespan. Continued 



Sandeep Kumar Bothra, Sunita Singhal, Hemlata Goyal 

ISSN 1681–6048 System Research & Information Technologies, 2022, № 3 136

heterogeneous environment, an effective encoding approach with a greedy strat-
egy is used. We also employed the PEFT technique to make our algorithm more 
cost-effective. Under a user-defined deadline, we considered three parameters: 
makespan, computation cost, and load balance, and rigorously tested four types of 
scientific workflows with varied task sizes. Our experimental results proved that 
the proposed CHGA algorithm’s performance is better than the ACO, PSO, 
CEGA, and CLGA in minimizing the computing cost and execution time as well 
as balancing the load among virtual machines. CHGA is 17.48570%, 15.30489%, 
11.75306%, and 9.78841% cheaper than standard ACO, PSO, CEGA, and CLGA, 
respectively. CHGA’s average makespan is 34.73619%, 31.48127%, 5.71553%, 
and 9.73710% lower than standard ACO, PSO, CEGA, and CLGA, respectively.  
In the future, we will consider the dynamic nature of workflow with the latest me-
ta-heuristic algorithms like Cuckoo search, Firefly, Lion, and Jaya, etc. 
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ЕКОНОМІЧНО ЕФЕКТИВНИЙ ГІБРИДНИЙ ГЕНЕТИЧНИЙ АЛГОРИТМ 
ПЛАНУВАННЯ РОБОЧОГО ПРОЦЕСУ В ХМАРІ / Сандіп Кумар Бовра, Суніта 
Сінгхал, Хемлата Гоял 

Анотація. Хмарні обчислення відіграють значну роль у способі життя кожно-
го, щільно пов’язуючи спільноти, інформацію та торги по всьому світу. Розпі-
знавання оптимального рішення для планування робочих процесів у хмарі є 
складною сферою через його NP-жорсткий характер. Запропоновано гібрид-
ний метаевристичний економічно ефективний збалансований за навантажен-
ням підхід до планування робочого процесу в гетерогенному середовищі. Мо-
дель ґрунтується на генетичному алгоритмі, інтегрованому з прогнозом 
найбільш раннього часу фінішу (PEFT), щоб мінімізувати makepan. Замість 
призначення завдання випадковим чином на віртуальній машині застосовуємо 
жадібну стратегію, яка відводить завдання на віртуальну машину з найменш 
завантаженим. Після завершення операції мутації перевіряємо обмеження за-
лежності замість кожної операції кросовера, що дає кращий результат. Запро-
понована модель включає в себе дисперсію продуктивності віртуальної маши-
ни, а також затримку придбання, яка поступається мінімальній вартості 
makepan і computing. Одним з найбільш приголомшливих аспектів економічно 
ефективного гібридного генетичного алгоритму ( CHGA ) є його здатність пе-
редбачати, створюючи оптимістичну таблицю витрат ( OCT ), зберігаючи ква-
дратичну складність часу. На основі результатів ретельних експериментів над 
деякими показниками робочого процесу в реальному світі та всебічного аналі-
зу деяких нещодавно успішних алгоритмів планування отримано висновок, що 
продуктивність запропонованої CHGA є мелодійною. 

Ключові слова: хмарні обчислення, економічно вигідні, генетичний алгоритм, 
метагевристичний алгоритм, прогнозування раннього часу оброблення, плану-
вання робочого процесу. 


