AUGMENTED SECURITY SCHEME FOR SHARED DYNAMIC DATA WITH EFFICIENT LIGHTWEIGHT ELLIPTIC CURVE CRYPTOGRAPHY

DIPA D. DHARMADHIKARI, SHARVARI C. TAMANE

Abstract. Technology for Cloud Computing (CC) has advanced, so Cloud Computing creates a variety of cloud services. Users may receive storage space from the provider as Cloud storage services are quite practical; many users and businesses save their data in cloud storage. Data confidentiality becomes a larger risk for service providers when more information is outsourced to Cloud storage. Hence in this work, a Ciphertext and Elliptic Curve Cryptography (ECC) with Identity-based encryption (CP-IBE) approaches are used in the cloud environment to ensure data security for a healthcare environment. The revocation problem becomes complicated since characteristics are used to create cipher texts and secret keys; therefore, a User revocation algorithm is introduced for which a secret token key is uniquely produced for each level ensuring security. The initial operation, including signature, public audits, and dynamic data, are sensible to Sybil attacks; hence, to overcome that, a Sybil Attack Check Algorithm is introduced, effectively securing the system. Moreover, the conditions for public auditing using shared data and providing typical strategies, including the analytical function, security, and performance conditions, are analyzed in terms of accuracy, sensitivity, and similarity.

Keywords: ciphertext, user revocation, data sharing, CC, ECC, security issues.

INTRODUCTION

Innovative developments have made it possible to implement progressive solutions to improve the nature of human existence. In order to gather information and address challenges relating to wellbeing, analysts who are thinking about the growth of innovation have collected and evaluated wellbeing data from these sources. Accordingly, the development of integrated medical care innovation has the potential to improve efficiency and results comprehension at every level of the medical care framework [1]. By utilizing robust patient well-being controls, pervasive information access, remote patient checking, quick clinical intervention, and decentralized electronic-medical care records, new electronic health (e-Health) application frameworks are being developed that can address specific issues related to traditional medical care frameworks [2]. These systems can manage patient and well-being data, boost individual satisfaction, foster teamwork, enhance outcomes, cut costs, and generally improve the effectiveness of e-medical care administrations [3].

© Dipa D. Dharmadhikari, Sharvari C. Tamane
Системні дослідження та інформаційні технології, 2023, № 3
IoT usage and the advancement of wireless communication technologies enable real-time streaming of patients’ health conditions to caregivers [4]. Additionally, a number of readily available sensors and portable devices may measure particular human physiological parameters with a single touch, including blood pressure (BP), respiration rate (RR), and heart rate (HR) [5]. Although it is still in the early stages of development, businesses and industries have quickly incorporated the power of IoT into their current systems and seen gains in both user experiences and production [6]. However, the use of IoT technology in the healthcare sector poses a number of difficulties, including those related to data management, storage, and transmission between devices as well as issues with security and privacy. Among the potential answers to these is Cloud Computing technology [7].

Cloud Computing is incredibly beneficial since it has many distinctive characteristics. Cloud computing makes a variety of services easily available [8]. Some advantages of this technology include suppleness, cost consumption, pay-as-you-go, increased effectiveness, and nimbleness. Through dedicated CS, cloud computing services offer client-specific applications and data storage [9]. Through the use of the cloud, businesses are able to avoid upfront framework costs and investments, allowing them to launch their applications more quickly, more intelligently, and with less maintenance. To provide the best services to mobile clients, portable distributed computing combines cloud computing and mobile devices [10].

Cloud Computing becoming increasingly important for the rapid growth of technology, particularly in the industry of the health care system [11]. Cloud storage is many times less costly than server storage, storage, equipment materials, and HR training to strengthen required operations [12]. Because in the cloud all the information of patients is stored, and retrieve the prescription from the cloud at any time and from any location. Because the data is stored in the cloud, healthcare professionals and identified patients will be able to access it via mobile devices such as smartphones and PDAs [13].

Cloud Computing enables internet-connected devices to access healthcare information from anywhere in the world. Furthermore, medical practitioners may exchange their resources and medical knowledge with other famous researchers in the same area from across the world [14]. Healthcare organizations, medical medication producers, pharmacists, medical insurance providers, researchers, and patients must all exchange EH records [15]. This presents a significant challenge in terms of keeping sensitive patient data secure. While there are numerous benefits, there are also some risks, particularly with regard to data security in the cloud, which is the most difficult issue at all times. It becomes more difficult in cloud computing because the actual data is stored in another location. As a result, providing security for data in the cloud is a time-consuming task for cloud computing organizations [16].

The current healthcare sector is beset with computational and processing challenges. Inherent issues in the traditional healthcare sector [17; 18]. Patients’ records include sensitive information that must be kept secure at all times. The current method has several irregularities in securing patient data. Medical data takes up more memory space, which is inefficient [19]. As a consequence, the purpose of this study is to enhance the performance and strengthen the operations of the existing cloud system in the healthcare industry. The proposed solution’s key contributions include security and privacy, low-cost access policies for SHRs (Smart Health Records), a lightweight IoT detection system, rapid detection of Sybil attacks to reduce their impact on the network, and Sybil node identification using node properties. The proposed system in the given paper includes:
A reversible and efficient no-pairing data-sharing technique for cloud storage systems based on Elliptic Curve Cryptography (ECC) with Identity-based encryption (IBE) approach.

- Cipher text Based Encryption (CBE), which presents an encryption access control (EAC) technique to satisfy User revocation that includes both user revocation and attribute, is seen here as a means of ensuring data security.

- A threat detection model to identify resource depletion attacks and Sybil attacks detection in the cloud system ensuring the safe storage of data.

LITERATURE SURVEY

In their study, Yan et al. [20] created the retrieval and storage-based indexing framework (RSIF) to enhance concurrent user and service provider access to healthcare data stored in the cloud. Concurrent access to stored data was made possible through continuous, replication-free indexing and time-constrained retrieval. Deep learning is used for all storage instances to categorize the restrictions for data augmentation and update. The learning process determines the approximate indexing and ordering for storage and retrieval, respectively, through conditional assessment. As long as the processes are independent, this helps to shorten the time for access and retrieval occurring at the same time. This data analysis should be carried out using various indexing techniques and storage and processing techniques.

PRCL, a privacy-aware, and resource-saving collaborative learning protocol was proposed by Hao et al. [21]. They created a unique model splitting technique that divides the network into three pieces, which offloads the intensive center half for CS to decrease the overhead. The original data, labels, and model parameters are all kept private by PRCL through the use of a mild perturbation of data and filled partly homomorphic encryption. Additionally, they examined the suggested protocol’s security and showed how PRCL performed better with correctness and effectiveness. Future work will need to focus on developing adaptive data perturbation techniques, lowering the system’s overhead of communication.

For a system of exchanging personal health records, Zhang et al. [22] suggested an effective identity-based distributed decryption technique. They may easily share their data with different parties without having to reassemble the decryption private key. They demonstrated the scheme’s resistance to chosen-ciphertext attacks (CCA). Additionally, they used an Android phone and a laptop to implement the plan using the Java pairing-based cryptography (JPBC) package. The outcomes of the trial demonstrated the system’s viability in an electronic personal health record system. In the future, it will be necessary to look into some more effective strategies, such as removing the zero-knowledge proof from the scheme and dispersing the secret without the need for a secret channel.

Using JavaScript-based smart contracts, Singh et al. [23] proposed a patient-centric architecture for a decentralized healthcare management system with a blockchain-based EHR. Additionally, a functional prototype based on the composer and Hyperledger fabric technology has been put into place, ensuring the security of the suggested paradigm. Performance metrics including latency, throughput, resource usage, and others are measured in experiments using the Hyperledger calliper benchmarking tool under various situations and control parameters. The outcomes support the effectiveness of the suggested strategy. The authors want to expand their work based on fault tolerance in the future.
For cloud-based WBANs, Yang et al. [24] suggested a brand-new effective and anonymous authentication technique. The security study demonstrated that the system could fix the flaws in earlier ones and satisfy all security criteria. They also demonstrated the benefits of the suggested plan via presentation analysis of functionalities, computing transparency, storage overhead, and communication overhead demonstrating that the plan is better suited for real-world applications in the healthcare industry. The authors intended to create a universal authentication system that may be used in a variety of application scenarios in the future.

Son et al. [25] use blockchain to ensure data integrity and cipher text-User attribute-based encryption (CP-ABE) to create access controls to store data on CS. They used automated validation of internet security protocols and applications to do informal analysis, Burrows-Adabi-Needham (BAN) logic analysis, and formal validation of the proposed protocol to verify its robustness (AVISPA). As a consequence, they proved that the proposed protocol is more secure and performs better than comparable protocols. Future work will include modelling the full network as well as the security protocol in order to develop a new, more practical solution.

From the survey it is observed that for [20] data analysis should be carried out using various indexing techniques and storage and processing techniques, [21] need to focus on developing adaptive data perturbation techniques and lowering the system’s communication overhead, for [22] it is necessary to look into some more effective strategies, such as removing the zero-knowledge proof from the scheme and dispersing the secret without the need of a secret channel, [23] work has to be expanded based on fault tolerance, for [24] the authors intended to create a universal authentication system that may be used in a variety of application scenarios and [25] requires simulation of the entire network and the secure protocol in order to build a new and more workable. Hence order to achieve the abovementioned necessities it is essential to develop a model.

AUGMENTED SECURITY SCHEME FOR SHARED DYNAMIC DATA WITH EFFICIENT LIGHTWEIGHT ELLIPTIC CURVE CRYPTOGRAPHY

This paper takes into account a system for auditing cloud storage that consists of the cloud, users, a group, and proxies. The company can host and share data to the cloud. Users who produce data and exchange it with one another make up the group. Users in the group are able to govern the group collaboratively since they trust one another. Here initially a container is created to store Cloudlets in the CloudSim library. The Data centers and Brokers are created in which the VMs and Cloudlets are loaded. Hosts with specific IDs are created and the simulation is run (Fig. 1).

![Augmented Security Scheme for Shared Dynamic Data with Efficient Lightweight Elliptic Curve Cryptography](image)

Fig. 1. Framework of the proposed model
Data sharing scheme

Traditional encryption techniques consume a lot of storage space since they require duplicates for all cipher text in every particular user through a unique key. To create a secure, reliable, and accurate model sharing data, the dispute must consider, importantly the key distribution among new users necessitates that data owners remain online constantly. Initially, the system must allow data owners to add or delete users. Then, the system must allow data owners to guarantee that data confidentiality is protected from CS, attribute authorities, and unauthorized users. Consequently, consumers should confirm the data correctness they have received. At last, users have to have mobile access to shared data. Hence, considering the above-mentioned requirements this research presented a reversible and efficient no-pairing data-sharing technique for cloud storage systems based on ECC with Identity-based encryption (CP-IBE) approach. Cloud computing, smart grids, the Internet of Things, and other distributed systems may all benefit from the one-to-many encryption technique known as CP-IBE, which is based on public keys and enables flexible and fine-grained data access management. Unfortunately, because they rely on pricey bilinear pairing algorithms and have large encryption and decryption computation overhead costs, the majority of modern data-sharing approaches are ineffective for cloud systems with limited resources. The paper here proposed an effective data-sharing scheme for cloud storage systems based on the fact that the ECC algorithm has stronger bit security than exponential-based public key cryptographic algorithms like RSA and can achieve the same level of security with smaller key sizes and higher computational efficiency. The four entities in the proposed system model are a trusted expert, a cloud source, senders, and users which are depicted in Fig. 2.

![Entities of the system model](image)

Fig. 2. Entities of the system model [31]

Trusted Expert (TE). The TE is generate both master secret keys and global public parameters, which produce and share out users’ matching private keys. Additionally, it is in charge of blocking users. The TE is expected to be trustworthy but inquisitive, which means refuse service for authorized users provide adhere to established procedures appropriately, if interested in the data’s substance, and want to learn as much as it can about its customers’ private information.
Cloud Source (CS). Data from the owners are gathered and stored by the CS, a potent computing entity with limitless resources. Additionally, computing a sizable amount of decryption overhead aids users in decrypting the cipher text. Like the TE, the CS is expected to be sincere but curious.

Data owner. A data owner is a group that needs to outsource a data file to the CS. Data is encrypted initially under a set of characteristics before transmitting it.

User. It is an entity with unrestricted access to the ciphertext of the cloud server. To achieve this, it first creates a token using its key, and then it asks the CS for access to the data by giving the CS the token.

Proposed CP-IBE-based ECC approach. The algorithms utilized in the data-sharing system are discussed in detail below.

- **Setup** \((S_p, A) \rightarrow (M_K, P_G)\)
 The setup procedure takes a security parameter \(S_p\) and an attribute universe \(A\) as inputs and produces global public parameters \(P_G\) and a master key \(M_K\) for the system as outputs.

- **Encryption** \((P_G, M, a) \rightarrow CT\)
 The encryption method is given a message \(M\), a collection of descriptive qualities, and the global parameters \(P_G\). It generates cipher text \(CT\).

- **KeyGen** \((P_G, M_K, T) \rightarrow SK\)
 The global parameters \(P_G\), the master secret key \(M_K\), and an access tree \(T\) are sent into the key creation method. For each authorized user, it produces a private key \(P_K\).

- **TokenGen** \((P_G, D) \rightarrow TK\)
 The user executes this procedure to create a decryption token \(TK\).

- **Partial Encryption** \((P_G, TK, CT) \rightarrow CTPartial\)
 The partial decryption algorithm accepts the global parameters \(P_G\), the user token, and the ciphertext as input. It returns ciphertext that has been partly decrypted.

- **Decryption** \((CTPartial) \rightarrow (M, AC_M)\)
 The user executes the decryption algorithm, which uses the partly decrypted ciphertext. It displays the message \(M\) as well as the message authentication code \(AC_M\).

- **Elliptic Curve Cryptography**
 ECC is public key cryptography. Assume \(p\) is a prime number and \(F_p\) is the field of integers modulo \(p\). A cubic equation \(y^2 = x^3 + ax + b\) defines an elliptic curve (EC) over a finite field (Galois Field) GF and each elliptic curve is formed by a distinct value of \(a\) and \(b\). The collection of all locations \((x, y)\) that satisfy the above equation, as well as a point in infinity, lies on the elliptic curve. The private key in the ECC is a random number, while the public key is a point in the curve formed by multiplying the private key by the generator point \(G\) in the curve.
Based on the preliminary results and system model, this paper presented a CP-IBE scheme in detail in this section owner \(O \) develops a collection of expressive qualities before encrypting a message \(M \) with an algorithm and sending cipher text to the CS provider. This work employs lightweight operations of ECC in conjunction with an algorithm of symmetric encryption. If user \(U_s \) gets provided authority and wishes to get data stored on CS, user \(U_s \) must construct and deliver a decryption token to the CS. When the CS receives the token, it partly gets back the saved cipher text, and transmits consequential communication to the \(U_s \). Ciphertext can then be readily decrypted by the user.

Setup, Encryption, KeyGen, TokenGen, Partial Decryption, and Decryption are the six function modules of the proposed data-sharing method. These are their descriptions:

- **Setup** \((S_p,A_u) \rightarrow (M_K,P_G)\)

 The trusted attribute authority executes the setup procedure, input as security parameter \(S_p \) and the attribute universe \(A_u \). It generates Global Public Parameters \(P_G \) as well as the Master Key \(M_K \). To do this, the authority first chooses a random integer \(R_i \) from \(Z P^* \) and computes \(PK = R_i G \). Let \(A_u = \{1,...,n\} \) be a collection of all attributes in the system; the authority selects a random number \(s_i \in Z P^* \) and computes the public key of each attribute \(I \) as \(P_i = s_i G \). The CS chooses a random number \(\mu \) for its secret key and calculates \(PKCS = \mu G \) for its public key. The authority does not know \(\mu \), and the CS proves the authority’s knowledge of \(\mu \) using a zero-knowledge proof procedure. The authority assigns the secret key \(M_K = \{R_i,\{s_1,...,s_i\} i \in A_u\} \) and publishes the global parameters \(P_G = \{M_K, M_K CS, \{P_1,...,P_i\} i \in A_u\} \).

- **Encryption** \((P_G,M,\omega) \rightarrow CT\)

 As input, the encryption method receives a message \(M \), a collection of descriptive qualities \(\omega \), and the global parameters \(P_G \). When the owner \(O \) wishes to encrypt a message using the set of characteristics, he or she selects a value at random from the set of values \(Z P^* \) and computes \(K \) and \(F \) as follows:

\[
K = d \cdot PK = (k_1, k_2); \quad F = d \cdot PKCS = (f_1, f_2).
\]

If \(K = O \), the authority re-selects \(d \) at random from \(Z P \) to compute \(K \) until \(K = O \). Then use the points \((k_1, k_2) \) as the encryption and integrity keys, and construct ciphertext \(C \) and \(AC_M \) for message \(M \) as follows:

\[
C = ENC(M, k_1); \quad C' = ENC(C, f_1); \quad AC_M = HAC_M(M, k_2).
\]

\(ENC() \) in Equation (1) is a symmetric encryption method such as AES. The message \(M \) is encrypted with key \(k_1 \) and then re-encrypted with key \(f_1 \), obscuring the ciphertext \(C \) from the authority’s view. \(HAC_M() \) is a cryptographic hash function.
function in Equation (2) that creates the hash-based message authentication code for message M based on the integrity key k_2. Finally, the owner O computes $C_i = d_iP_i$ for all of the attributes in ω and uploads $CT = (\omega, C', AC_M, \{C_i\} i \in \omega, H = d \cdot G)$ to the cloud service provider.

- **KeyGen** $(P_G, M_K, T) \rightarrow SK$

The keyGen algorithm calculates the decryption key for a user's request, U_B, in the manner shown below. In the access tree, it selects a polynomial q_x for each node x. Starting with the root node R, these polynomials are selected from top to bottom. The authority determines the degree dx of the polynomial q_x for each node x in the tree to be one less than the threshold k_x of that node, that is, $dx = k_x - 1$. In order to fully fix q_R, it first sets $q_R(0) = R_i$ for the root node R (keep in mind that R_i is the authority's secret value). The remaining points are then set at random. It sets $q_x(0) = q_{\text{parent}(x)}(\text{index}(x))$ for every other node x and picks dx additional random locations like $q_R(x)$. The unique index number assigned to x by its parent is called $\text{Index}(x)$.

Let Y represent the collection of leaf nodes in the tree, and $\text{att}(y)$ represents the attribute related to leaf node y. The KeyGen method produces the following values once the polynomials are finished for all leaf nodes y:

$$D_y = q_y(0) / s_i, i = \text{att}(y).$$

Finally, the authority sends (ω, D) as the private key for U_B.

- **TokenGen** $(P_G, D) \rightarrow TK$

At this phase, a user U_B generates a token TK_B based on his/her private key and sends it to the CS to convey most of the decoding computational load to the CS. For this purpose, U_B first selects a random number b from \mathbb{Z}_p^* and computes $D' = \{D_x; b = (q_x(0) / b) / s_i, i \in \omega\}$. After that, the user U_B computes the point $Q = b \cdot PK = b \cdot G = (q_1, q_2)$ and $B = b \cdot G$ and sets the token TK_B as follows:

$$TK_B = \{B, TB = ENCy_1(D') i = \text{att}(x), i \in \omega, T\}.$$

To protect against a DOS attack in this case, a timestamp T is employed. The CS examines the time stamp T and decrypts TB after receiving the token. The CS continues the partial decryption step if it is valid. An symmetric encryption function like AES is $ENC(.)$.

- **Partial Decryption** $(P_G, TK_B, CT) \rightarrow CTPartial$

When the CS receives the token TK_B, it uses its secret key to compute the decryption key q_1 as $Q = B = \beta \cdot b$, $G = (q_1, q_2)$ and then decrypts TB. The CS declines the request for partial decryption if the timestamp T's validation is unsuccessful. Otherwise, the partial decryption process is carried out by the CS as follows. Let x be a node of tree T, first this algorithm defines a recursive algorithm Decrypt Node (CT, D', x)). Let $i = \text{att}(x)$, if x is a leaf node, then Decrypt Node (CT, D', x) is computed as follows:
\[D'x.Ci = Dx.b.Ci = q_s(0).s - \text{li}.b.d.s_j.G = q_s(0).b.d.G. \]

This recursive procedure returns an element from the ECC group or \(\perp \).

The algorithm DecryptNode\((CT, D', x)\) searches for all nodes \(z \) that are offspring of \(x \) if \(x \) is a non-leaf node, and the result is saved as \(F_z \). Let \(L_x \) be a random \(k_x \)-sized collection of child nodes \(z \) that satisfy \(F_z \neq \perp \). DecryptNode\((CT, D', x)\) returns if there is no such \(L_x \), indicating that the node was not fulfilled. Otherwise, assuming \(i = \text{index}(z) \) and \(L'x = \{\text{index}(z), z \in Lx\} \) it is possible to calculate DecryptNode\((CT, D', x)\) as follows:

\[
\Sigma z \in Lx \Delta i, L'_x(0).\text{DecryptNode}(CT, D', z) = \sum_{z \in L'_x} \Delta i, L'_x(0).q(z(0)).b.d.G = \\
= \sum_{z \in L'_x} \Delta i, L'_x(0).\text{parent}(z)(\text{index}(z))b.d.G = \\
= \sum_{z \in L'_x} \Delta i, L'_x(0).q_z(i)b.d.G = q_z(0).b.d.G. \quad (3)
\]

The outcome of DecryptNode\((CT, D', R)\)\(=qR \) for the root node \(R \) of the access tree \(T \) is based on the information given \(qR(0), R, b.d.G = R, b.d.G \) The CS calculates \(F = \) after computing the DecryptNode\((CT, TK_B.R)\).\(C = \text{DEC}(C', f_1)\) and \(H = d.G = (f_1)(f_2) \). The CS then gives the user \(UBCT_{\text{Partial}} = C, AC_M, N = \text{DecryptNode}(CT, D', R) \). Equation (3) demonstrates that the cloud service provider cannot decipher the ciphertext since they are unaware of the value of \(b \) and can only assist the receiving users in doing so.

- **Decryption** \((CT_{\text{Partial}}) \rightarrow (M, AC_M)\)

 The user \(UB \) may quickly determine the decryption and integrity keys after receiving the \(CT_{\text{Partial}}, N = R, b.d.G \) means that the decryption method just needs to divide \(b \) to retrieve the keys as Equation

 \[
 C'_1 = N / b = a.b.d.G.b^{-1} = \alpha.d.G = (k'_1, k'_2). \]

 The points \((k'_1, k'_2)\) serve as the message \(M \)'s integrity key and decryption key, respectively. When the user enters \(M' = \text{DEC}(C, k'_1) \), the message \(M \) may be decrypted. If \(HAC_M(M', k'_2) = AC_M \), the message \(M \) is accurate.

 In order to revoke a user \(UB \), the authority securely transfers all of the revoked user \(UB \)'s attributes to the \(CS \). When the \(CS \) receives the token, it first determines if it has all of the \(UB \)'s properties, and if so, it rejects it.

Secrecy Revocation Algorithm

The system has the power to cancel a user’s access if they leave the system. In other words, the authority securely transmits to the \(CSP \) all of a user’s \(UB \)'s revoked characteristics. When the \(CSP \) receives the token, it first determines if it has all of the \(UB \)'s properties, and if so, it rejects it. Even if the user still possesses a working secret key after the revocation procedure, they will not be able to
access the saved data. The revocation procedure is effective since no need to be updated. Cipher text Based Encryption (CBE), which presents an encryption access control (EAC) technique to satisfy User revocation that includes both user revocation and attribute, is seen here as a means of ensuring data security. The authorized users should be updated right once if the data owner modifies one of the attributes in an access User since the revoked users who had previously received access to the User can see the ciphertext. Four different sorts of update User levels are established, specifically for data owners. All secret token keys are uniquely produced at all levels by categorizing those levels. As a result, the secret token key is hashed to create a new secret key (Fig. 3).

![Flow chart encrypting User algorithm](image)

Fig. 3. Flow chart encrypting User algorithm

The proposed method has four basic algorithms to handle user secrecy revocation. They are, in order, the encrypting User algorithm, re-encryption algorithm, update key generation algorithm and decryption algorithm.

Encrypting User algorithm. Each access User is represented by a distinct identity, which stands for the traits that are crucial for identifying authorized individuals. The data owner’s (DO) present User identity is documented in the algorithm for updating policies as $User_{id}$, and the new User identity the DO wants to modify is marked as $New\ User_{id}$. The four status numbers are specified for each level of the individual updating User. The status number should be. The identification of the material for plaintext is recorded in the system and is specified as α in accordance with each Upd_{level}.

Input: $User_{id}$, $New\ _User_{id}$.
Output: Upd_{level}.
Augmented security scheme for shared dynamic data with efficient lightweight elliptic …

1) perform one of four User levels for updating;
2) recognize Upd_level based on choice in step 1;
3) obtain \(\alpha \) by formative all Upd_level;
4) locate New_User\(_{id}\) as a present User identity and cancel the old User\(_{id}\);
5) go again Upd_level.

Re-Encryption Algorithm. The plaintext message \((M)\) related to new_User\(_{id}\) is was re-encrypted using a special method. The Upd\(_{SK}\) is the encryption key used by the DO. The generated cipher text is \(C\).

Update Key Generation Algorithm. TA generates a default key string () and uses \(M\)’s unique identity, which is to be accessible as, in the update key creation procedure. The status number (\(\alpha\)) is originally determined by TA using the Upd_level. The TA then changes the numbers for both strings. The TA then joins the strings of the key with the other keys. As a secret token key, this concatenation is transformed into the Base64String format (SK\(_{token}\)). By obtaining the hash code from the MD5 function for the SK\(_{token}\), the TA then constructs Upd\(_{SK}\). The Base64String format output is likewise consistently applied to the final Upd\(_{SK}\).

According to each user’s request identification, the TA also creates \(\$\) for them.

Decryption Algorithm. The data user (DU) uses his User\(_{id}\) to prove his identification as a User holder in the decryption procedure to decode \(C\). The TA will offer the DU the Upd\(_{SK}\) and if his User\(_{id}\) is acceptable to the New User\(_{id}\) of
the DO. In order to obtain the original ciphertext C, the DU uses it to decode the proxy ciphertext (C’) from the cloud. The DU can then use this Upd SK to decode the C.

Input: C, $, Upd SK, User _User id .
Output: M
1) DU enters the system by demonstrating his abilities;
2) the system records his User _User id according to his attributes;
3) DU needs the Upd SK and $ to the TA;
4) the system records his User _User id based on this attributes;
5) DU requests the Upd SK and $ to the TA;
6) DU verifies inbox and acquires the Upd SK, $ from TA;
7) DU obtains the C’ from the cloud;
8) C=Decrypt (C’, $,User _User id);
9) M = Decrypt (C,Upd SK,User _User id);
10) return M .

Threat detection model

Resource depletion attack detection algorithm. In order to distinguish between legitimate and illicit sources, first specify a set of parameters (or rules) for a source S j (y ≤ j ≤ x). The first argument is at j (atj ≤ h), which stands for the active time of a source S j . This field demonstrates that source S j has not delivered any attack traffic to the system while acting as a cloud provider, in addition to indicating how long a source has been connected to a cloud service. As a result, atj is regarded as a crucial factor in making informed choices about attack detection. The second parameter, N in , indicates how many incoming flows have been established to a cloud service and is the number of flows from a source S j , where N in ≥ 1. Whenever return traffic constantly takes a different route for a better service response or for other objectives, it is fair to just take into account request flows. In the Internet protocol suite, the ICMP protocol is referred to as a supporting protocol and is only used to determine whether a requested service is unavailable or whether a host or router could not be reached. As a result, a typical source S j typically transmits a small number of request packets to a destination, and each source S j only creates one flow in an SDN switch’s flow tables. A malicious source S j , on the other hand, can produce one or many flows in an SDN switch. In order to distinguish an abnormal source S j from its regular counterparts based on the aforementioned studies, define the third parameter, Pf (the average number of packets per flow of the source S j), as follows:

\[Pf = \text{tpktj}; \text{AttackTypeI} ; \]

\[Pf = \frac{\text{tpktj}}{n\text{conj}}; \text{AttackType II} . \]
Where $tpkt_j$ represents the source S'_1's transmitted packets to the cloud and Nin represents the source S'_1's flow number. The source S'_1's traffic protocol is a crucial factor in dividing the two primary assault methods. The following assessed parameter is the priority of a source S_1, indicated as $Prij$, which makes a distinction between reliable ($Prij=1$), typical ($Prij=2$), and unidentified ($Prij=3$) sources. The $flag$, $Flag_j$, which displays the status of the source S_1, is the final parameter introduced. Source S_1 has two statuses: attack and normal, which correspond to $Flag_j = -1$ and 1, respectively. At first, a new source is designated as a standard source. It should be noted that the Update Agent updates a database after collecting values from each active source $S'_1 atj,Nin,Pf,Proj,$ and $Prij$ at each observation. The tuple of parameters for a source S_1 is constructed using the definitions given above and is an entry in the database. $S_1 = (atj,Nin,Pf,Proj,PrijFlag)$. The search engine uses S_1 and $Proj$ matches to separate the IP sources for each search operation. Then examine the effective classification of normal and attack sources using the IP-based technique utilizing a history of IP database ($HIP Database$). Based on the statistics gathered at each observation, first extract and update all active source IP addresses by protocol to the IP Database using the Update Agent when the system is functioning. Utilize the Ini sets to categorize normal and abnormal sources for each sort of traffic protocol for our first observations and keep the Ini sets separate until the proposed system picks up any attack sources. The IP Database could provide some more sources for the observation t. Using pre-made Ini sets, these sources are further validated to determine their Flag. The suggested Algorithm will replace the value of the associated Ini set for the subsequent observation $(t+1)$. Then, using the $B(tC_i)ICMP$ comparison, identify these sources as either regular sources or attack sources using the Anomalous Source Detection Algorithm.

Step 1: $B(t+i) = \{ (atj; wli); (Pf; w2i); (nconi; w3i) \} \leftarrow e$ The boundary set of the protocol I have given at the i^{th} observation

Step 2: $(atj,Nin,Pf,Proj,PrijFlag)$ A set of attributes of a source S_1 that is collected at the (tC_i) observation

Step 3: $X_i Dati * wli + C Pf_i * w2i + C nconi * w3i$

Step 4: $X_j Dafj * wli + C Pf * w2i + C Nin * w3i$

Step 5: if $X_i \leq X_j$ then

Step 6: $Flag_j = -1 \{ Attack source \}$

Step 7: else

Step 8: $Flag_j = 1 \{ Normal source \}$

Step 9: end if

Step 10: return: $Flag_j$

Normally attacks create a large number of flows to the target with a small number of packets. In order to counteract this attack, the Mitigation Agent notifies the SDN controller's forwarding engine to ignore packets in messages from
attacking sources that demand the installation of new flows at the Open Flow switch and sends a flow mod message with a delete action to the edge Open Flow switch. In the event of an assault, this strategy eliminates all anomalous flows and stops fresh attack flows. As a result, it prevents the system from being overloaded and guarantees efficient cloud operation. Additionally, the attack flow deletion from the switch will result in a considerable drop in the number of collected flows at the time of the subsequent observation. Therefore, this approach can conserve as many computing resources as feasible from the cloud control plane.

Sybil attacks detection. Sybil Attack Check employs encryption in order to offer secure communication, and it also safeguards the data against Sybil assaults by utilizing a detection algorithm. The cluster’s nodes are given secure communication during the secure phase. Utilizing one-time authentication (OTA), the secret key and the node id provide authentication. A node needs a one-time authentication from the Cluster head (CH) in order to communicate, and the CH node only sends the OTA following a successful verification. The CEA cryptography algorithm is a novel one that is suggested to offer secrecy (Cipher encryption algorithm). Traditional encryption techniques are resource-intensive; they use a lot of storage space, power, and processing time.

CEA is a straightforward encryption algorithm with promising security. It just requires a small number of rounds and basic operations. The precise stages of the CEA algorithm are shown in the algorithm below. It accepts 64-bit plain text as input, and 32-bit random keys, and outputs a 64-bit encrypted text. Either eight or sixteen rounds of operation can be used to implement CEA. Four fundamental operations—**XOR, pair swap, encoding, and 1s complement**—are carried out in each round. In the encryption procedure, the plaintext is divided into the left plaintext \((L_i)\) denotes the round, and the right plaintext \((R_i)\), and an **XOR** operation is performed with two 32-bit random keys. On the resulting \(L_i\) and \(R_i\), a paired exchange is performed in the second phase. Two-bit pair swapping is done after the plain text has been divided into two-bit pairs. These two-bit pairs are then substituted in the following phase with the equivalent encoding bits. As an illustration, the bit 00 is encoded as 01, 01 as 10, and so on. The final step involves performing a 1s complement operation to obtain the necessary 64-bit cipher text. The operations are carried out backward throughout the decryption process; the first stage involves doing the 1s complement. The next phase involves decoding using the decoding bits followed by a pair swap operation. To obtain the necessary plain text, an **XOR** operation is performed in the last stage.

The cryptographic symbols used in Sybil Attack Check include: \(G_g\) — Group generator of prime order; \(G_g\) — a bilinear group output; \(A\) — set of all features; \(SK_s\) — secret key; \(CA\) — cipher text with access User. Set of integer integers \(A\) and \(Z_p\). While security typically rises, composite-order group pairing performance sharply declines. Since the assault, in this case, is selective, there is a need to utilize a prime-order group since it is less difficult and more affordable. Prime-order groups can only provide selective security in their respective security models. Definition: Assume that \(G_g\) operates on the input variable as a bilinear prime order group generator. \(G_g\) 1, and \(G_g\) 2, which have additive and multiplication properties, are cyclic groups of prime order.
The output of G_g is defined as $(p, G_g, G_g^2, G_g^T, e)$.

Key generation $(PK, M_K, S) \rightarrow SK_s$: The secret key SK_s are produced using the key generation algorithm using the inputs of the public key PK, master key M_K, and set of characteristics S, as illustrated in Fig. 4.

$SK_s = (S, K, K', \{K_i\}, i \in Is)$, where $S = (Is, S)$ with $Is \subseteq Z_p$ and $S = \{S_i\}$, $i \in Is$, $K = g^a g^d R$ choose $tRZ_p, R, R', Ri \in RG2, K' = gt R'$ and $K_i = (Ui \cdot h) tR_i$.

Setup $(\lambda) \rightarrow (PK, M_K)$: The setup algorithm takes the input parameter λ as input and runs the group generator $G(\lambda)$ to get $(p, G_g, G_g^2, G_g^T, e)$. It outputs the Master Key M_K and Public Key PK of the system. The master key is $M_K = (h, \ldots)$ where $RG2$ and the system public key is $PK = (p, g, U_1, U_2, \ldots, U_p, ga, Y)$ where Y is defined as $e(g, g), H = YZ_g, h, U_1, U_2, \ldots, U_p$ and an RG_p.

SW. Encryption $(PK, M, A) \rightarrow CA$: The message M, the access structure A, and the system’s public parameters PK are all inputs to the encryption method (A, P, T). The cipher text CA is produced.

$$CA = (A, P, C', \{TI\}, i \in S)$$

where

$$C' = SW.LEA(M) . Y^S \text{ and } \{TI\} = g^{t_1}, g^{t_2}, \ldots, g^{t_{|a|}}.$$

SW. Decryption $(PK, CA, SKS) \rightarrow M$ or \perp: the decryption algorithm takes the public key, plain text, and secret key as inputs and produces M if the access structure is satisfied otherwise. The real SHR is only decrypted if the characteristics match the access structure defined for that specific SHR; otherwise, access is denied to that particular user. This is done at the initial stage of the decryption process. From (A, P) derive IA, P, where IA, P stands for the minimal subset of
1,...,l that meets the \((A,P)\). Here, examine the possibility of a \(IIA,P\) satisfying \(C_l = e(SKS,J)\) over \((A,P)\).

Where \(\Sigma \omega_i, A_i = (1,0,...,0)\) otherwise it returns ⊥. Here \((A,P,T)\) is hidden, and in which \((A,P)\), is revealed. If \(i \in x\) satisfied the plain text \(M\) is given as output. \(M = SW.\text{LEA}(C_1)/Y^S\), where \(M\) is in plain text, and \(C_1\) is \(M\)'s encrypted form.

PERFORMANCE ANALYSIS

This section addresses the results of the implementation and the performance of our proposed system. The proposed system is implemented using the Cloud Sim framework. The fundamental goal of the suggested technique is to ensure security and privacy. Novel algorithms are employed to accomplish this goal of policy concealing and the performance of the model is discussed here (Fig. 5).

The user’s terminal will return and decrypt a variety of matching files using a data sharing scheme. There are 0 to 10 files that have been matched. Tenants range in number from 10 to 40. The value of recovery time, which ranges from 100 to 300, is discovered to remain constant for any number of renters.

The amount of time a user must wait after making a keyword token query in order to receive the retrieved health records must be carefully considered. All the data are calculated for 10 tenants. The test time of 1800 ms is observed for 10 tenants. The trace of the system is range from 50 to 500 ms. The time for token generation is observed to be constant at 30 ms. The decryption time for the model was found as 25 ms. and the encryption time for the model is estimated as 50 mil-
liseconds. The key generation time for the model is nearly 25 ms and it increases to 140 ms for 10 tenants (Fig. 6).

![Graphs showing computation efficiency](image)

Fig. 6. Computation efficiency

To evaluate the storage and transmission overhead, there is a need to identify the performance based on public and private keys and the token size in Fig. 7. The research found that for the public parameter 7, a requires substantially limited space and communication expenses. The key parameter size is 5000 bits, regardless of how many tenants are allowed in the system. For b secret key size is increasing from 1000 to 10000 bits with an increase in the number of tenants.

It is shown that 7, c requires the least amount of ciphertext storage, which is especially useful for saving money under the pay-for-use cloud model. Additionally, by transferring the ciphertext to the public cloud using less battery power, the data owner may increase the lifespan of the user’s mobile devices. The token size obtained in 7, d illustrates that the size remains constant as still figure of tenants rises.
The performance of the scheme in terms of accuracy, similarity, sensitivity, error, and false positive rate is depicted in the above graph. A heterogeneous, time-series set of data with ten classes of data was utilized. It is observed that the accuracy is obtained to be 90%. The similarity range is obtained as 21%. The sensitivity of the system for any input change is depicted to be 98% for any given number of attributes. The calculation of the false positive rate (FPR) with the following formulae. The error is determined to be low as 10% and the FPR was found to be 1% for the proposed system (Fig. 8).

\[FPR = \frac{FP}{FP + TN} \]

Fig. 7. Storage and transmission efficiency

Fig. 8. Metrics obtained from validation
Comparison Metrics

In this part, the validity of the recommended methodology is assessed with the working of various traditional methodologies (Fig. 9).

The data retrieval and recovery time of the proposed method is evaluated with other existing methods like LIST [30] and SABPRE [27]. For all the other methods the value of time with respect to the increase in tenants is observed to be comparatively high. The maximum time observed for 10 tenants is 710 ms for the LIST model whereas for the proposed model it is 100. The recovery time for 20 tenants is found to range from 500 to 1000 ms for the other methods and for the proposed method it is found to be 300 ms. The time is constant for 30 tenants for LIST as 700 and for SABPRE it is ranging from 500 to 1500 ms. For 40 tenants also the proposed method achieved less recovery time comparatively which is 350 ms.

The computation time for the model is compared for test time, trace time, token generation time, decryption time, encryption time and key generation time with existing models like LIST [30], SABPRE [27], ABKS [26], TCPABE [29] and LUCP ABE [28] etc.

For test and trace time the comparison is with LIST, SABPRE and ABKS. It is observed that the test duration from 1 to 1750 ms and trace duration from 1 to 200 ms which is minimum for the proposed model. The maximum values for the
test time ranges from 1 to 2500 for the ABKS method and for trace the value ranges from 1 to 5000 ms for LUCPABE (Fig. 10).

The token generation time for the proposed method is minimum when compared with others. The maximum values for the same with 10 tenants are found to be 50000 ms for the SABPRE method whereas for the proposed method it is 1 ms. The encryption and decryption times are compared in which the encryption and decryption time for the proposed method is constant for any number of tenants for other methods it linearly varies. The maximum value is obtained as 30000 ms whereas for the proposed method it is 1 ms. For the key generation time, the value is 1 ms for any tenant value. But for other methods, it is constantly increasing with the increase in tenant number. The maximum value is 4500 ms for the ABKS method.

Storage and transmission overhead is compared with existing models in which the proposed model makes constant size irrespective of the tenant number, whereas all other methods vary with tenant size. The proposed method has the least size for all the storage and transmission sizes. All the size values range from 1 to 300000 bits with the proposed system (Fig. 11).
CONCLUSION

This study presented a data-sharing and revocation system based on ciphertext and ECC. Without giving any personal information to the cloud service provider, the majority of the decryption computational burden was transferred. Each authorized user employs a one-time password to decode the ciphertext and a private secret key to decode the original ciphertext. Thus, only an authorized user’s secret key and session key may be used to view the plaintext communication. To tackle Sybil and resource depletion threats in a cloud context, another novel methodology was presented. This method not only prevents Sybil attacks within the planes of control and data from overwhelming cloud infrastructure, but it in turn enhances the level of service delivered to cloud users. Identification of Sybil nodes created as a result of the Sybil attack is done, and all authorized entities detected in the smart health system are informed of the updated revocation list. The system performed 90% accurately, according to the results with 21% of similarity found. The sensitivity of the system for any input change is depicted to be 98% for any given number of attributes. The error is determined to be low as 10% and the false positive rate is found to be 2% for the system and the system performance was compared with other existing techniques.

REFERENCES

3. Tuan Minh Nguyen Dang, Nhan Nguyen Thanh, and Loc Le Tuan, “Applying a mindfulness-based reliability strategy to the Internet of Things in healthcare—A busi-

INFORMATION ON THE ARTICLE

Dipa D. Dharmadhikari, ORCID: 0000-0001-7206-5573, CSIT Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India, e-mail: scholar.dipaddharmadhikari@gmail.com

Dr. Sharvari Chandrashekhar Tamane, ORCID: 0000-0001-9350-1549, MGM’s Jawaharlal Nehru Engineering College, MGM University, Aurangabad, India

РОЗШИРЕНА СХЕМА БЕЗПЕКИ ДЛЯ СПІЛЬНИХ ДИНАМІЧНИХ ДАНИХ З ЕФЕКТИВНОЮ ЄЛЕПТИЧНОЮ КРИПТОГРАФІЄЮ / Діпа Д. Дхармадхікарі, Шварварі Чандрашеккар Тамане

Анотація. Технологія хмарних обчислень прогресує, тому Cloud Computing (СС) створює різноманітні хмарні сервіси (CS). Користувачі можуть отримати простір для зберігання від постачальника, оскільки послуги хмарного зберігання досить практичні; багато користувачів і компаній зберігають свої дані у хмарному сервісі. Конфіденційність даних стає більшим ризиком для постачальників послуг, коли більше інформації передається CS. У роботі підхід до шифрування тексту та еліптичної криївої (ECC) із шифруванням на основі ідентифікації (CP-IBE) використовується у хмарному середовищі для забезпечення безпеки даних у середовищі хмарного сервісу. Проблема відкликання стає складною, оскільки характеристики використовуються у створення шифрованих текстів і секретних ключів, отже, вводиться алгоритм відкликання користувача, якого секретний ключ маркера уникально створюється для кодового розгляду, що забезпечує безпеку. Початкова операція, включаючи підпис, публічні перевірки, динамічні дані, частини до атак Sybil, для подолання цього вводиться алгоритм перевірки атак Sybil, який ефективно захищає систему. Крім того, умови для публічного аудиту використовуються у використаннях спільних даних і тіпових стратегій, включаючи аналітичну функцію, імітації та умови продуктивності, аналізуються щодо точності, чутливості та подібності.

Ключові слова: зашифрований текст, відкликання користувача, обмін даними, СС, ECC, питання безпеки.