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MULTI-STEP PREDICTION IN LINEARIZED LATENT STATE
SPACES FOR REPRESENTATION LEARNING

A. TYTARENKO

Abstract. In this paper, we derive a novel method as a generalization over LCEs
such as E2C. The method develops the idea of learning a locally linear state space
by adding a multi-step prediction, thus allowing for more explicit control over the
curvature. We show that the method outperforms E2C without drastic model chang-
es which come with other works, such as PCC and P3C. We discuss the relation be-
tween E2C and the presented method and derive update equations. We provide em-
pirical evidence, which suggests that by considering the multi-step prediction, our
method — ms-E2C — allows learning much better latent state spaces in terms of cur-
vature and next state predictability. Finally, we also discuss certain stability chal-
lenges we encounter with multi-step predictions and how to mitigate them.

Keywords: representation learning, learning controllable embedding, reinforcement
learning, latent state space.

INTRODUCTION

One of the most challenging problems which the field reinforcement learning fac-
es is learning autonomous agents capable of control in Markov Decision Proc-
esses (MDP) with complex state and action spaces. For instace, complactions may
arise from large action spaces [1], limited ability to interact with an environment
[2], partial observability (POMDP) [3, 4], etc. Optimizing a decent policy takes a
lot of samples, usually requires online interactive learning and neural networks
capable of processing higher dimensional observations with large number of
trainable parameters [5, 6].

There are various algorithms which try to deal with the problem of sample
inefficiency, or limited amount of data. Model-based reinforcement learning
algorithms [7-9] try to achieve sample efficiency by approximating transition
dynamics of an MDP in online or offline mode. Offline reinforcement learning
methods [2, 10] strive to extract as much useful information from limited offline
data as possible, in order to learn a policy applicable to online regimes as well.

Another algorithmic framework — Learning Controllable Embedding (LCE)
— approaches this problem by learning a lower dimensional latent state space and
using simpler control algorithms, like iLQR [11], to perform control in this latent
space. The challenge here is to make sure that the learned latent space has simpler
structure (i.e. next states are easier to predict).

Some particular instances of this framework are described in [9, 12—-14]. The
idea of E2C [12] is to learn a locally-linear latent space, so that algorithms like
LQG could be used for goal-reaching tasks. PCC [13] tries to fix some of the is-
sues encountered in E2C by deriving losses which allow for explicit minimization
of latent space’s curvature. P3C [14] improves upon PCC mainly by replacing
reconstruction loss, needed to make sure the learned state space carries enough
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information to generate (i.e. decode) observations from latent states. P3C uses
predictive coding instead.

In this paper, we seek an alternative approach to enforce lower latent space’s
curvature and predictability. We generalize E2C by considering multiple transi-
tions at a time, making sure the local linearity is not just preserved between
neighbouring states. We inherit the idea of minimization of a joint log likelihood
of a transition, generalize it to multiple transitions, and derive a variational bound
for further minimization. We then compare the results with LCE approaches and
demonstrate a visual representation of learned latent state spaces for a benchmark
common among LCE papers.

PRELIMINARIES

We denote a Markov Decision Process (MDP) M as a tuple (S, 4,r,T), where
S — state space; 4 — action space; r:SxA4—>R — reward function;
T =P(s,,|s,;,a,) — probability of state s,,; given current state s, and action
taken «, .

A state of an MDP is a sufficient statistics for a transition kernel, possessing
a Markov property.

A task of Reinforcement Learning algorithm is for a given MDP M find a

policy m, such that it maximizes the expected return. We are interested in a dis-
counted return objective:

T = argmax £, ZYII”(S, 24;) s
T =0

where T denotes a trajectory (x,,4a,,X;,4;,...) obtained by sampling actions using
a stochastic policy 7.

In particular, we consider a specific class of Reinforcement Learning algo-
rithms — Model Based Reinforcement Learning [7, 8]. Algorithms of this kind
usually posses higher sample efficiency, but they involve some sort of an ap-
proximation of a transition kernel. LCE algorithms involve parametric models
(i.e. neural nets) to learn a good model with desirable properties, like linearity and
predictability. This allows to use even the simplest Model-based control (and RL)
algorithms like iLQR [11].

THE MULTI-STEP EMBED TO CONTROL MODEL

Consider an internal transition dynamics of an MDP M =(S,4,r,T):
S =S (pa)+o, o~ F,.

As we discussed previously, a function f may be highly nonlinear, thus be-

ing tricky to optimize with model-based RL or control algorithms. LCE ap-
proaches therefore try to learn a mapping from a state space S to some latent
space Z such that its latent dynamics

z1 = f(2,0,)+&
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has some desired properties like local linearity, low curvature, predictability, etc.
In order to learn the mapping O, : S — Z, Variational Inference framework

is employed to derive a tractable algorithm of maximization a likelihood of
known data points under the mapping we want to learn.
Optimization problem
As follows from the Fig. 1, we consider a dataset
D = {(8>,55,115 811584255 1 k15514 )i [ £ = 1oty N

containing samples from real trajectories gathered before training. To follow and
generalize [12], we define

Fig. 1. Graphical models for E2C and ms-E2C(K): dashed lines — state reconstruction
process

Oy =Fy(z,|s,)

as a generative model which for a given state s, specifies a distribution over the
latent space Z. Basically, it plays a role of the mapping from S to Z pa-
rametrized with a parameter vector ¢. And

0, :P\|j(2t+1 |Za,)

as a generative model which for a given latent state z, and an action a, predicts
the distribution for the next latest state z,,;. The model is also parametrized with
a parameter vector y . Also, we denote

Q\{; :P\y(ét+j | Zrvic154) -

In order to find ¢ and v, we maximize the likelihood of a dataset of trajec-
tory samples of length K with respect to the aforementioned parameter vectors:

N
£ K TS I Y R i i
¢ Y _argmaXHP(St=at=St+1’at+1’St+2="'ﬂat+K—1=St+K)'
Vo=l
For the sake of readability, we denote s,,...,5,,x as §,,., and a,,...,a,, , as

a Thus our objective is:

t:it+K *
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N
* * [ 1
(I) Vo= argmaXHP(Stl:t+Kﬂatl:t+K—l) .
Vs

A corresponding graphical model is depicted on Fig. 1.

Optimization objective

The objective we defined in a previous subsection is known to be intractable and
difficult to optimize. Therefore, LCE approaches employ Variational Inference to
find a lower bound to the log-likelihood objective. In this section, we derive this
bound for the proposed probabilistic model. Variational lower bound:

—10g P(S;41 k> s k1) <

SE 0, |~ D 10g P(s,y ;12 ) —10g P(s, | z,) |+ Dir[Oy || P(2)]
. il J=L..K
214 j~Qy
j=l,..K

Here Dy, [P | O] denotes Kullback—Leibler divergence functional:

P(x)
Dy, [P||Q]=E, _plog .
0(x)
Proof.
—log P(sX;41 >4 1) = —log _[P(Sz:HKaaz:HK—lazta2t+1:t+K )z, dZy 10k =
Zp Bl K
=—log IP(St:l+K | @i k1020 201k P 0 2k | Gk 1) X

ZtsZt+1it+ K

X Py 1)z, dZ, 40

=—log IP(St:l+K | Grsek 1520 Zpates k VP Zeprpnk | Qg —1) X

ZtsZt+1it+ K

0 .
X P(apys k- )_¢ dz,dz, 140k
Oy

K .
=—log | PCpxl g1z Znsi) [ [(Q)P(z) %

ZE 1l K J=1

0 .
X P(agx-1) = dz,dz 14k
Oy

K .
=—log I P(s; | Zz)H(Q\{;P(SHj |2;+j))P(Zz)P(az:z+K—1)%dztdZAHl:HK =

ZE 14K Jj=1 ¢
K
N P(z
—10gE ., g, | P 12T T(PCstey | 20s DPCage i )02 | <
5 0l J=1 Q¢
t+j '
j=1,...K
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. P(z,)
<E 2,~0 {_ ZIOgP(SHj |Z,+j)—10gP(St |Zz)_10g—tj|=
Y I Oy
1+~ %y
Jj=L...,.K

=E z,~Q l:_ _ ZIOgP(SHj |2,+j)—10gP(S, |Zz)}+DKL[Q¢ | P(2)].

. i Jj=L...,K
20 j~04

Multi-step embed-to-control model (ms-E2C)

In this section we instantiate a model for learning a latent locally-linear state
space. We use a previously derived upper bound for negative loglikelihood over
the multi-step trajectory samples. A graphical models for both E2C and ms-
E2C( K) are shown on the Fig. 1.

First, we instantiate parametric models for encoding and dynamics func-
tion as:

Oy = P(z;|5;) = N(py(s;),Z¢(s,)) — encoder;
My (s;), 24 (s,) = NeuralNet(s;;9) ;
A,,B,,0, = NeuralNet(z,;y)— latent dynamics;

05 =P(¢, ;12 1.a,, ;1) =N(uy,2/y) — dynamics;
wy =Ap’™y +Bay, ;i +o, for j=2,..K;
uy = Ap, +Ba, +o, for j=1;
sy =434l +3, for j=2,..,K;

Sy = 4%, 47 +3y for j=1.

Thus, given an optimal model would imply a locally linear latent space, in
which curvature (i.e. linearity) is explicitly controlled by changing the number of
steps per sample. Choosing a large K would recover a globally linear model and
setting K =1 recovers an E2C model.

As it follows from the figure, ms-E2C is a generalization of E2C, which one
recovers by setting K =1.

We also have to specify a parametrized decoding model, which is needed
to compute the upper bound, and to enforce a “reconstruction” constraint, intro-
duced in [12] and generalized for our multi-step model:

Py = Py(s, |2,) = Bernoulli(p(z,))
p(z,) = NeuralNet(z,;0) ;
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Pej ZPG(SI |2l‘+j) ZBEFI’ZOUIZZ(p(21+J))9

p(Z,,;) = NeuralNet(Z,, ;;9).

Bernoulli distribution is chosen for comparability with E2C model on
shared benchmark MDPs, i.e. Planar, where the original state space consists of
black-and-white images of a grid world with white obstacles and a white circle
denoting the position of the agent.

Loss function. In order to complete the model’s specification, we have to
provide a loss function optimizable via stochastic gradient descent. In msE2C it
consists of three terms: an estimation of the derived upper bound, consistency
term, and stability term.

Lupper(Di;d)’W’e):E 2~0p |~ ZlOgPO(SHj |2t+j)_10gP9(St |Zt) +
N j Jj=1,...K
Zt+j~Q\u

+ Dy [Qy | P(2)]

The expectation is estimated using a one-sample estimate and a reparametri-
zation trick widely used in variational auto-encoders:

K .
Lconsistency (Dz ) d)a \V) = ZDKL [Q\{/ || Q¢] ;
=

Lapitiey (Di3 0, W) = Gersh(4,(z,)) + Gersh(B,(z,)) .

Here Gersh(X) denotes Gershgorin loss [15, 16]:

n
Gersh(X) =) max(0,X;; + )| X ;l+e),

i=l1 J#i
where | X; ;| denotes a minor of a matrix X', and & >0 is a small constant.
According to the Theorem 1 from [15], if the loss value is non-positive, all
eigenvalues of a matrix X are guaranteed to have a negative real part, thus ensur-

ing dynamical system stability. The usage of Gershgorin loss in composite loss
function is mandatory, as ms-E2C( K ) diverges for larger K .

Algorithm

Now, we summarize an algorithm for fitting the instance of ms-E2C model we
described earlier.
1. Sample a dataset of sub-trajectories using a pretrained or random policy:
D = {(St’at’SHl7at+1’St+2""’at+K—17st+K)i | i= 1,,N} .
2. Initialize the weights of neural nets ¢,y,0.
3. Repeat for ¢ epochs:

a) Retrieve a sample D, from the dataset D
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b) Compute updated weights using a stochastic gradient descent step:
(I)': ¢ - 'YV(I) (Lupper (Dl) + leconsistency (Di ) + 7\‘ZLSmbility (Di )) ;
W': N Yvw (Lupper (Dz) + 7\'1Lconsistency (Dz) + )“2l‘stability (Dz )) >
0'=6- yveLupper (D)
¢) Update neural networks’ parameters:
o=¢', v=y', 6=6".

Here A, A, are tunable hyperparameters.

One might notice that unlike [15] we do not introduce an inner optimization
loop to ensure stability of the internal latent space dynamics. Instead, we add the
stability loss to the composed loss function. We found that although the difference
is apparent during a few first epochs, it becomes negligible after a while. Stability
condition does not get violated and the general results are almost the same.

EXPERIMENTAL VALIDATION

Planar system

Following [12—14], we use a Planar benchmark to compare the performance of
the algorithms. In it, a state space is represented as a black-and-white image of a
grid world with obstacles. In order to collect a dataset, we sample a random initial
state and perform a series of random actions to obtain a trajectory of length K .

As in [12, 13], we use a deconvolutional network architecture [17] for image
reconstruction from the latent state. For the sake of comparability, we chose the
same architecture as in other papers on the topic.

The visualizations of the obtained latent state spaces are provided on a
Fig. 2. The numerical results are summarized in a Table.

Comparison of reconstruction and prediction losses

Method State Loss Next State Loss

log By (s, | z,) log P(s;41 | 81,a,)
Non-linear E2C 9.2+4.5 11.7+£8.8
Global E2C 7.6£5.7 10.6+5.2
E2C 7.6£2.3 10.1£2.7
ms-E2C(3) 7.3£1.7 8.7+1.9
ms-E2C(5) 7.6+2.1 7.5%£1.6
ms-E2C(7) 7.7+£2.0 6.3+£0.9

State loss is a regular reconstruction loss. As we observe, ms-E2C( K ) give
only slight average improvements on it, which is entirely expected. The intro-
duced method does not change the architecture of a decoding network nor does it
add any improvements to the algorithm regarding this matter. An important thing
to notice though, is that our generalization does not make the reconstruction per-
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formance much worse, which might be expected as representation is influenced

by addition prediction constraints. Next state is computed by encoding the state
0 . Oy . .

s,—z, , predicting the next latent state z, —z,,;, and decoding the predicted

Py .
regular state z,,; —s,,;. Now, the results for previous methods were reproduced
with slight perturbations, as we used our own codebase for it.

ms-E2C(3) ms-E2C(5) ms-E2C(7) )
Fig 2. A comparison of latent state spaces learned by E2C and ms-E2C methods.

It’s worth noting that E2C results coincide with other papers which involved
reproduction of E2C [13, 14], while the original paper provides better visuals. A
visualization is obtained by transforming all possible environment states with the
network @, . See the scheme on the left for details.

CONCLUSION

In this paper, a novel method had been derived as a generalization over the previ-
ous works on LCEs. We demostrate, how the method improves upon E2C without
drastic model changes which come with other works, such as PCC and P3C. We
empirically show, that by considering the multistep prediction ms-E2C allows to
learn a much better latent state spaces in terms of curvature and predictability, by
adding a simple yet efficient way to explicitly control the desired curvature of a
resulting space. At implementation is available at [18].

Moreover, our work introduces a new dimension to the LCE family of
algorithms. Our future work will focus on using the approaches from the state of
the art LCE methods, like predictive coding to make LCEs applicable to the
higher dimensional real-world MDPs with limited amount of data to learn
dynamics embedding from. We will also explore an intriguing possibility to not
only encode the state, but also the action space, which sometimes has the complex
structure. Lastly, we would like to study various extensions of the method to
imitation learning and model-based reinforcement learning.
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BAI'ATOKPOKOBE ITPOI'HO3YBAHHSI B IIHEAPU3OBAHUX JIATEHTHHUX
MPOCTOPAX JJIsI HABYUAHHS PENNTPE3MHTAIIIN / A.M. Tutapenko

AHOTAaIis. 3anPONOHOBAHO HOBUH MeETOJ, 110 y3aranbHioe miaxoaun LCE, Taki sk
E2C. MeTon po3BHBaE i/icto BUBYCHHSI JIOKAIBHO-JTiHIIHOTO [IPOCTOPY CTaHiB LUIS-
XOM PO3IIIsAaHHsI 0araTOKPOKOBOTO IPOTHO3YBAHHS, II0 [a€ 3MOTY UiTKillle KOHT-
POJIOBATH KPUBHU3HY IIYKAHOTO MPOCTOpY. IIpOIeMOHCTPOBAHO, III0 METOJ MepeBe-
purye E2C 6e3 cyTTeBUX 3MiH 3araibHOI MOJIEINI, Ha BiAMIHY Bifl iHIIUX POOIT, TAKUX
sk PCC 1 P3C. PosrasnyTo 38’5130k Mk E2C i 3anpormoHOBaHUM METOAOM Ta MiX iX
BiJIIIOBIIHUMH PIBHSAHHSIMH OHOBIICHB. [10/1aHO eMIipudHi JT0Ka3M, sSKi CBiq4aTh, IO
ms-E2C no3Bossie HabaraTo kpaie BUBYATH MPOCTOPU MPUXOBAHUX CTaHIB 3 TOUKH
30py KPHBH3HHU Ta MPOTHO30BAHOCTI HACTYMHUX cTaHiB. KpiM TOro, BUCBITICHO Te-
BHI ITpo0JIeMH CTaOLILHOCTI, MOB’s13aHi 3 6araTOKPOKOBUMH MPOTHO3aMH, Ta CIOCO-
O 1X BHpILICHHSI.

KarnouoBi cjoBa: HaBYaHHS pernpe3eHTAllildl, HABYAHHS KEPOBaHUX IPOCTOPIB,
HABYaHHS 3 MIJKPITUICHHSM, JIJATCHTHUI IPOCTIp CTaHIB.
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