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GUARANTEED ROOT-MEAN-SQUARE ESTIMATES OF THE
FORECAST OF MATRIX OBSERVATIONS UNDER CONDITIONS
OF STATISTICAL UNCERTAINTY
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Abstract. We investigate the problem of linear estimation of unknown mathematical
expectations based on observations of realizations of random matrix sequences.
Constructive mathematical methods have been developed for finding linear guaran-
teed RMS estimates of unknown non-stationary parameters of average values based
on observations of realizations of random matrix sequences. It is shown that such
guaranteed estimates are obtained either as solutions to boundary value problems for
systems of linear differential equations or as solutions to the corresponding Cauchy
problems. We establish the form and look for errors for the guaranteed RMS quasi-
minimax estimates of the special forecast vector and parameters of unknown aver-
age values. In the presence of small perturbations of known matrices in the model
of matrix observations, quasi-minimax RMS estimates are found, and their guaran-
teed RMS errors are obtained in the first approximation of the small parameter
method. Two test examples for calculating the guaranteed root mean square esti-
mates and their errors are given.

Keywords: matrix observations, linear estimations, guaranteed RMS estimates,
guaranteed RMS estimate errors, quasi-minimax guaranteed vector estimates, differ-
ence equation, small parameter method, matrix perturbation.

INTRODUCTION

This article examines estimates of unknown mathematical expectations based on
observations of realizations of random matrix sequences. Scientific publications
[1-14], in which estimates of distribution parameters were studied, are devoted to
the problems of matrix sequence statistics. We formulate and solve new problems
of estimating the mean values of random matrix sequences. Under the condition
that the mean values belong to sets of a special form, we have developed con-
structive algorithms for guaranteed root-mean-square estimates of the mean val-
ues. It is shown that such estimates can be obtained either as solutions of bound-
ary value problems for a system of linear differential equations, or as solutions of
the corresponding Cauchy problems. In the case of the dependence of the average
values on a small parameter, asymptotic distributions were obtained both for the
guaranteed estimates and for the guaranteed root mean square errors of such esti-
mates.
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STATEMENT OF THE PROBLEM

We consider matrix observations of the form:

Y, =pp(x(k) +n, k=0,N—-1, (1)
where p;(x(k)) =2\, 4,(k)x,(k), k=0,N —1,
A(k) e H,ypy 5= I,_m, k=0,N -1 are known matrices;

H,,, Iisthe space of matrices nx p dimensions;

x(k) = (xy (k). x,, (), —0,N are unknown vectors, belonging to a
limited set
0 - SN 2 2
G = {x(h),k = 0,N - 5| f () g <1,

fk)y=x(k+1)—x(k), k=0,N—-1,
(to simplify the calculations, we assume that x(0) is known vector and, without
limiting the generality, we put x(0)=0);
q,%, k=0,N—1 are known positive real numbers;
T is a transposition symbol;

nyeHd k=0,N -1 is asequence of random matrices.

nxp>
It is assumed that the average value of the random matrices n;, k =0, N -1

is equal to the null matrix, i.e. £n; =0 (£ is a symbol of mathematical expecta-

tion), and correlation matrices R, € H k =0,N —1 are known and determined

nxn>

by relations

EMZ1 XMk Z2) =Ry 21,27),V Z; € H

i=12, k=0,N-1,

nxp>
where (n;,Z;)=sp(n kZl-T) is a scalar product of matrices.

Let’s introduce linear operators that act from space R’ into space H,,,:

PeUz)=2I Uyz;, k=0,N-1,

U,eH Uy =Uyt..Up), z=(z000z), i=LL k=0,N—1,

nxp o
and operators conjugated to them 5: Uy
Pr(U)T) = (U YU X))

i=11, k=0,N—1.

1

U-k EHnXp’ Yk eH

nxp

It is necessary to evaluate the vector Vx(N), where V € H,,,,.

Definition 1. A vector Vx (N) of the form
Ve (N) =235 pe (U)X ) +e =
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:z;cv:_()l(<U1k5Yk>9~'~9<U]kaYk>)T+ca CERI

is called a linear estimate of a vector Vx(N).
Definition 2. The value

2
2 WUgs..;Uy_y) = max E[Vx(N)— ;;(N)}

is called the guaranteed root mean square (RMS) error of the linear estimate

Tx (N).

SOLVING THE PROBLEMS OF LINEAR ESTIMATION OF THE FORECAST
OF MATRIX OBSERVATIONS.

I. Let’s introduce vectors z(k)e R™ , k=0,N , which are solutions of the differ-

ence equation:

2(ky=z(k+1)—pps U )a), k=N-1,0, z(N)=V"a, aeR', (2)

where pz, k=0,N —1 are operators conjugated to p; .
Denote by (k) i= 1,_1 the solutions of the difference equation (2) at a = e,

where ¢’ ,I= 1,_1 are the base vectors of space Rl, and also enter the matrix Z:
Z=(z), g 7y = koo (& k4 D.2 (R D)gis i j=LL Q)
The vectors z/(k+1), i=1,/ finds from the difference equations:
Z' (k) =2 (k+D)+b'(k), z'(N)=V), 4)

where b (k)= ({4, (k),Uy )s.... (4, (k), Uy >)Ta

Viy=seoVi)" s i=L1, k=0,N-1.

There is a formula
. N—(k+1) .
z’(k+1)=V(i)+ Z b'(N-j),i=L1l k=0,N-1. 5)
j=1

Statement 1. Let x(k), k= 0,N € G, then the following equality holds:
0% Uy Un-) =max((Za,a)'? +[(e,a))” + ZiZ0 Tio (R Uy, Uy )

jal
Proof. Fair equality:

2 2

N-1
V(N)) = X B U) (e (x(k)) = ¢ +
k=0

e~

Vx(N)— Vx (N)

E
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+E‘2k pk(Uk)nk‘ =

2
N-1
—max[(VTa x(N))—{a > B U Py (P (x (b))~ (a, c)D

jal=1 k=0

+ 300 Do (R Uy Uy ) =

N-1 2
—maX((V a,x(N) = . (x(k),ppx (U @) — (a, C)j
al=1 k=0

Jrzljcv;o1 Z§:1<Rk Ui - Uy )-

Since

(7" a,x(N)) = (2(N),x(N)) = 230 (2(k +1),x(k + 1)) = (2(k), x(k))) =

200 (2K +1) = 2(k)), x(k)) + X0 (2K +1), £ (K)),

then, considering that z(k +1)—z(k) =p kﬁk (Up)(a) we get that
2

—

6 (Uy,....Uy_) = max E[Vx(N)— Vx (N)
G

=maxmax (X35 (2(k + 1), £(0) = (a,0)” + X350 TR U Uy ) =

Jaf=1

2 _
—I‘n‘ax«ziv o |2+ D )P + (@)D + Zi0e T (R Uy Uy .

From the fact that equalities are fulfilled
(Zzlcvol|2(k+1)|2 ) =20 (T (k+1).27 (k+ D) (a.¢')a.e/)g; ) = (Za,a)

we conclude that the statement 1 is correct.

Corollary 1. There is an equality:
2

minmax EV(V) =V (V) =Dy (2)+ Z25 Zhoy (R Uy Ui, &

i jii» Zif = z--(U )y Amax (2 ) is the maximum eigenvalue of

the matrix Z, and U weH

where Z =Z = (z;),

np o _l k=0,N —1 are found from the condition:

(Uik,izﬂ, k=0,N—l;c)eArg min GZ(UO,...,UN_l).
U Hi=1,1,k=0,N-1

Corollary 2. Let /=1. The estimation error (V,x(N)), where ¥ € R is an

arbitrary vector, is as follows:
2

—

6 (Uy,....Uy_;) =max E|[Vx(N) - Vx (N)
G
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- 2 -
=310 |2k + D[ g + X0 (R Uy Uy ) + ¢,
where z(k), k =O,_N is a solution of the difference equation z(k)=
=z(k+1)—p,(Uy), k=N-10, z(N)=V, for this case &=0.

Statement 2. Let’s put the parameter / =1 in the statement 1, then:

1) guaranteed root mean square estimate for ¥{;)x(N) has the form:

V() = S8 sp (@ ¥

2) the guaranteed root mean square error of the linear estimate V{;)x(V) has

the form:
2 N N
o (U10,..,Ui,n-1) = (p(N),V 1) »

AN [
where Uir = R p,(p(k)), k=0,N—1; R isapseudo-inverse operator;

p(k), k=0,N are vectors that are determined from the system of equa-
tions:

z2(k)=z(k+1)—p; (Ulk) k=N-10, z(N)=V,

. (6)
plk+1)=p(k)+q;*z(k+1), k=0,N -1, p(0)=0,

Proof. Let’s define U, + k=0,N—1 from conditions:
dicz(Uo +T§O ,...,UN_l +T§N—1)T=O =0 N for ng, k ZO,N—I .
T

There is an equality:

li(32(U0 + r§0 e Uy + T§N71)1:0 =
2dt

=YV k+1),Z(k +1)g P+ R ULLS,Y,
where Z(k)=Z(k+1)—p, (S, ), Z(N)=0, k=0,N—1.
If input the vectors p(k)e R", k= 0,N , which are solutions of difference
equations
plk+1)=p(k)+q;° z(k +1), k=0,N—-1, p(0)=0,
then we will get:
i (z(k +1),Z(k +D))g;” = T35 (E(k +1),(plk +1) - p(k))) =
= S (G (k) = Z(k +1)), p(k)) =
=30 (pr (81, pU) ==X =0 (P (p(K)), G ).
As a result, we get equality:

S i0 {(=pr (pU) + R Uy ), 8y ) =0,
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from which the representation derives
Up = R pi(p(k)), k=0,N 1,
which had to be shown.

Solution of the boundary value problem (6)
One of the options for solving the boundary value problem (6) is the possibility of
reducing it to the solution of the Cauchy problem for vectors p(k), k=0,N.

This requires solving the Cauchy problem for the first equation of system (6).
Then, after substituting the result into the second equation of the system, solve the

Cauchy problem for the required vectors p(k), k =0, N.
It is also possible to use the homogeneity of the considered problem for the
required vectors p(k), k =0, N . This requires the use of a base e', i =1,m of the

vector space R" . Expansions of vectors z(k), p(k), k = (),_N in this basis have
the form:

2(k) =X xz,(k), p(k) =2 x,p;(k), k=0,N, (7)

where the vectors p;(k), z;(k), k =0,_N, i=1,_m are defined as solutions of m
boundary problems:

z(k+1)=z,(k)=F, p;(k), k=0,N—1, z;(0)=¢';

{pi(k+1):p[(k)+q,:22i(k+1), k=0,N-1, p,(0)=0, i=1m,

where
sp(A R 4) - sp(4] R 4,,)
Fy =piRi pye =| P :
P(ApREA) - sp(AuRiA,,)

Unknown coefficients x;, i=1,m in the expansions (7) are found as solu-
tions of the system of linear algebraic equations that ensure the fulfillment of the
boundary condition z(N)=V":

2Lz (N)x; =V.
According to the distribution of vectors p(k), k :(),_N (formula (7)), the

expressions for the matrices Uy, = R p; (p(k)), k=0,N—1 of the required es-

timate I//;(N ) are obtained.

Another possibility of solving the boundary value problem (6) is to reduce it
to a difference boundary value problem of the second order with respect to vec-

tors p(k), k =0,N and to find a general solution to the obtained problem. Arbi-

trary constants of the general solution are determined from the boundary condi-
tions of problem (6).

II. Let’s introduce vectors p(k), x(k), k=0,N, that are the solutions of
the system of difference equations:

plk) = p(k+1)+pyRE (Y, —pi (R(K)), P(N)=0;
hk+1)=x2(k)+q 2 pk+1),  %0)=0, k=0,N—1.

®)
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Remark 1. If we take into account that the equality holds

iR (Ve —pr (R(K))) = (sp (A REY)eeessp (AL REY) — Fii(K),

then we can find the solution of linear differential equation system (8) according
to the solution scheme of linear differential equation system (6).
Statement 3. The following equality holds

Vx(N) = (R(N), D). ©)
Proof. For a guaranteed estimate, the following relations are fulfilled:
Vi(N) = 2350 U Yie) = E020 (Ri i (k). Yi) = 225 (p(k),pi (R{Y,) - (10)
Let’s denote A, = p(k)— p(k+1), k=0,N —1. Then
Pk (R Y) = Ay + pi (R py (3(K)) -
Hence

(P(k). i (R X)) = (p(K),Ag) + (p (k). i (R P (R(K))))
Now we sum up both parts of the last equality:

N-1 N-1 N-1
>, (k). pr(REY)) = X (p(k), A + Y (p(k), o (REp (3(K0))) (1)
k:o k=0 k=0

and calculate the first term on the right-hand side:

N-1 N-1
> (p(k),A) = Y (p(k), p(k) = plk +1)) =
k=0 k=0

N-1

N-1
= > (plk+1), p(k+1) = p(k)) = D (X(k +1) = F(k),z(k +1)) =
k=0 k=0

N-1
= > (&(k),z(k) — z(k +1)) + (X(N),V) =
k=0

N-1
= RN = X ok (Ripi (p(K))), 5(K)) =
k=0

N-1
= (X(N), V) = 2. (p(k),pi (REpy (R(K)))) - (12)
k=0
The required equality (9) follows from formulas (10)—(12).
Remark 2. The system of equations (8) can be obtained by solving the min-
imization problem of the function

J(f(0),... f(N=1) =

= Zi0 CRY (Y = pi (). Yy = pr (kD) + 2520 g /2 (k).
III. Below we consider the case when the set G is in the space of possible
values (x(0),...,x(N)), x(k) = (x;(k),...,x,, (k))T , k= O,_N is unbounded and has
the form:

G = {(x(0),....x(N)): T2 |x(k +1) = x(k)| g2 <1, x(0) eR"},
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where q,f , k=0,N—1 are known positive real numbers.

It is necessary to determine the guaranteed root mean square error:

2

6*(Uy,...,Uy_1) =max E[Vx(N) - Vx (N)
G

b

where Vx (N) :Z;{V:_Ol(<U1k,Yk>,...,<Ulk,Yk>)T +c, CeRl .

Let’s introduce vectors z(k) e R k=0,N—1, that are solutions of differ-
ence equations

2(k) = z(k + 1) = pepr (Up)(@), z(N)=a, k=0,N,

andtheset U ={U;, i=1,/, k=0,N—-1:z(0)=0}.
Statement 4.

D IfUy,i=1,l, k=0,N—1€U, then

2

—

Vx(N)— Vx (N)| =

cz(U) =max £
G

max (Za,a)'"? + (@) + 4 Ziot R Ui U ) (13)

2)If Uy,i=1,1, k=0,N—-1¢U, then

2

—

o’ (U) = max E|Vx(N) = Vx (N)

= 00,

Proof.

D If Uy, izﬂ, k=0,N—-1€U , then we obtain the formula (13) simi-
larly to the statement 1;

2)If Uy, ¢ U, then there may exist a such that

Z(0)=z(0),_, #0 by YU, , i=Ll k=0,N—1.
Therefore, given unbounded of the set G, we obtain the relation:
o> (U)2 max (X35 (Z(k +1), f () + (2(0),x(0)) = @,)” +
+ Zl]c\:()l zf=1<RkUikank> =©.

IV. We present a guaranteed linear RMS estimate of the scalar product
(a,x(N)) according to matrix observations of the form

Yp =pp(x(k) +my, k=0,N-1,

through the solutions of the Cauchy problem for linear differential equations

Denote by V., k=0,1,2,... the sequence of linear operators of the form:
Ve =Ry + P Bipi)Pk P
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where matrices P, are solutions of difference equations:
Py =Py + Vi (R +piPeopi Wi + O
Or=qi° 1, P1=0, k=0,12,.
Statement 5. The equality holds
(@x(N) =225 UpY), U=V z(k+1),
where z(k), k= LN are the solutions of difference equations:
z2(k)=z(k +1)=V,z(k +1)=(I,, - V;)z(k +1), k=N,1, z(N)=a.
Moreover
max £((a,5(N)) = (a,5(N)))” = (Py-14,)

Proof. Let’s solve the problem of optimal system control:
z2(k) = z(k+1) = py(Uy), z(N)=a, k=N-1,0
with the criterion
TUgsresUn1) = X220 (Qpz(k + 1), 2(k + 1) + L5 (R U U)

by the method of dynamic programming.
Let’s introduce the Bellman function

-----

for which the Bellman equation holds

Be()=(Quxx)+ min [B(x0)(x = pi (u)) + (Rew)], Bi(x)=0.

S pxp
k=-1LN-1
(by definition we consider that Y1, = 0).
We find the function B (x) in the form B;(x)=(Fx,x). Let’s choose the

matrices P, k =—1,N —1 so that the Bellman equation holds true. After appro-
priate transformations (similarly as it is done, for example, in [15]) we obtain the
expressions for Uy, V., B, k=0,N—-1.

It is obvious that By _;(x) = (Py_ja,a) = max(E((a,x(N)) - (a,x(N)))z.
G
Statement 6. For a guaranteed linear RMS estimate of the scalar product the
following representation takes place

(a,x(N) = (@, 5(N)),

where the vector x(N) is a solution of difference equations

2k +1)=2(k)+V; (Y, — pp (R(k)), k=0,N—1, %0)=0. (14)
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Proof. Since equalities are fulfilled:

U, =V,z(k+1), k=0,N—1,
then X0 (U.. V) = g (z(k +1),7,Y,) .
Expressions take place:

Vi = 5k +1) = 5(k) + Vy pr(R(5));
S0 (2 + 1,7, = S0 (2(k +1),2(k +1) - &(k)) +
+ XN 2+ 1),V p (R(K)));

S ico (2(k +1),3(k + 1) = %(k)) = = X0 (2(k + 1) — 2(k), 2(k)) + (a, #(N)) =

N-1
=(a,%(N)) = Y. (pg Vz(k +1)),%(k)) =
k=0

= (@, 2(N) = 25 (2(k + 1,V p (2(K)) -
From here we get the necessary equality.

Remark 3. The vector x(N) is found as a solution of the linear difference
equation (14). It is possible to obtain the vector Xx(N) even if the vectors

f(k)=x(k+1) —x(k), k=0,N—1 are random and uncorrelated (Ef(k)=0,

Ef(k)f T (k)= q,%, k=0,N —1. The given estimators are such that minimize the
root mean square error in the category of linear estimators.
V. Definition 3. The vector

P (N) =220 (U)o Ug X))
which components are calculated according to formulas

Uy = REpi (b)), i=11, k=0,N-1,

and p(;)(k) are vectors that are determined from the systems of difference equations

2)(k) = 2()(k + D= px (Uy).  z)(N) =V,
Pk +1) = po(k) = g’z (k+D. p(0)=0,

i=Ll, k=0,N-1.

is called the quasi-minimax guaranteed estimation of the vector

Vx (N) =222 (Ui YU TN

Statement 7. For the guaranteed root mean square error of quasi-minimax
estimates there is equality:

*Ugs s Un-1) = Anax (Z) + Zocg ZE (R U, U,

where Z=(% 2= Y00 Gk +1),2,(k+ 1)z, i j=Lm, and ele-

i )i’j:g ’

ments z;(k+1), i= 1,m are found as solutions of difference equations:
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2:(k)=2;(k +1)+b;(k), k=N - L1, 2,(N)=V),
by (k) = (A, (), U )y (A (), U )

Viy=Woo Vi)' i=LL k=1L,N-1.

Finding elements Z;, i,/ = L,m of the matrix Z is carried out according to

the algorithm for calculating elements of matrix Z (formulas (3)—(5)).

Quasi-minimax RMS estimates for small matrix perturbations.
Assume that the known matrices of model (1) have the form:

A, (k)= AV (k) +eAV(kye H s=lm, k=0,N—1,

nxp
where g€ R! is small parameter; and the operators are as follows:

P (x(k)) = Py (x(k)) + e} (x(K))
where p{¥ (x(k)) = 2™, A (k)x, (k), p (x(k)) = X7y AD (h)x, (k), k =0,N —1.

We determine the effect of small perturbations of the matrices on the esti-
mates, as well as on their errors, using the results presented in statement 3.
Statement 8. Quasi-minimax guaranteed estimation of the vector Vx(N)

within the framework of the first approximation of the small parameter method
has the form:

N-1 .
Vx (N)= 3 (U Y ) UL YN,

k=0
where U[E,f) = U[.(,?) + SUI-(]? +0(e) s
Ly, € H,,, 1sthe matrix, all elements of which are equal to one,

Uy = Rip (p(f) (k).

U = REp () () + R (p) (k). i =11, k=0,N ~1,

and vectors p((l.o)) k), i =1,_l, k=0,N are defined as solutions of boundary value

problems:

2y (6) =2 ke + ) = p® (BRI () (R), 20 (V) =Wy,

PO k+)=p )+ gz (k+1), pP(0)=0, i=11 k=0,N-1,
20k =z (k+ 1= p” (Rfp” (p{}) (k) —

o0 (RO (O o - (R (D), (W) =0,

PG+ = pO (k) + g2z +1), pB©)=0, i=11, k=0,N 1.
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Statement 9. There is the equality for the guaranteed root mean square error
of quasi-minimax estimates within the framework of the first approximation of
the small parameter method:

A UE,...UD ) = ke CO) + EVA T (RUD, T,

Here Ul.(,f) = Ul.(,?) +8Ul.(,? +o(e)]

nxp»

=1,Z, k=O,N—1, and the expres-
sion for the matrix Z® has the form

26 220 420 4 o)1

mxm >

where 2@ = (2% ), . 20 =305 (2,.“” (k+1), 20 (k +1)g;>
(1
l

D =23V GO +1),20 (ke +1))g;2

20 (20

w3 jtm
The vectors 2,(0)(k + 1), i =1,_m, k=0,N —1 are found as solutions of zero-
approximation difference equations:
50k = 20 (ke + D) +6 (k). 2V (N)=V,); (15)
- T
O (k) =| (A" (), US).... (4 (k). U

I/(l'):(Vl,'--,Vm)T, i:L_lak:OaN_l’

1 1

and vectors 251)(k+1), i =1,_m, k=0,N—1 are found as solutions of first ap-

proximation difference equations:
Wy = 20k 4+ n+6W ), 2Dy =o; (16)
B (k) = (AL (), TD),...045) (0,0 9" +
(A ®OD.. (AL @D, j=11, k=0N -1

Finding the solutions of differential equations (15), (16) is carried out ac-
cording to the algorithm for calculating elements of matrix Z =(z;). i (formu-

las (3)(5)).
Example 1. Let the matrix observations have the form:

=pP (x(k)) + My, k=0,N; (17)

p;”(x(k)):p&”(x(k))mpﬁj)(x(k)), (18)

where pi” (x(k))=AVx(k),  p{” (x(k)) = AV (k)x(k),
(©) m k0, o= -
AV =1, AV (k)= 0 of k=0,N, eeR isasmall parameter;
x(k) eR', k=0,N-1and belong to a bounded set G :
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G = {x(k), k=0,N : T |xtk +1) = x(k)* < g2}

Ny € Hyyn, k=0,N is asequence of random matrices.

It is assumed that the average value of the random matrices n;, k =0, N —1
are equal to the zero matrix, and is the correlation matrices R, = qé[ 9,
k=0,N-1.
The guaranteed RMS estimate x(N) has the form:
W) =25 U Y, (19)
where U(®) = g?p® (p© (k)), k=0,N-1;

p(g)(k), k=0,N are values that are determined from the system of differ-

ence equations:
290 = 2+ D) =g (AT (0. AU P (R). k=N -LL 20N =1 )
pP ke +1)=p (k) +qiz® (k+1), k=0,N -1, p®?(0)=0.

Applying the small parameter method for solving problems (19), (20), we in-
troduce the following notation:

0 =Up(0) + ey () + 0@y, k=0N-1,

U0 -5 (0O k). U)=a52 0 (0P k)4 (0 ())),
POy = p ) +epV k) +o(e), 2 (k) =20 (k) + ez (k) + o(e),

where p(o)(k), k =O,_N are the values of the zero approximation of the small
parameter method, which are defined as solutions of the boundary value problem:

2Oy =z0 %k +1)-pp P (k), 2V V) =1,
POk +1) =200 + ¢z Ok +1), pP(0)=0, 20
B=2¢y%, k=0,N-1,

and p(l) (k), k =0,N are the values of the first approximation of the small pa-
rameter method, which are defined as solutions of the boundary value problem:

200 =20k +1)-pP ) -pk p k), 2V (W)=0,
PP+ =pV k) +qizVk+1), pP(0)=0, k=0,N-

(22)

Solution of the boundary value problem (21) of zero approximation

The boundary value problem (21) reduces to a boundary value problem for values
pO%k), k=0,N:

POk +2) -2+ p Ok +1)+ p V) =0, pP0)=0,

PO - pO(N-1D=¢f, (23)
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k=0,N-2, ¢=2qq,"

The general solution of the corresponding homogeneous system has the

form:
POy = vk, =(2+q+1/q2 +4q)/2.

Taking into account the boundary conditions, the solution of the boundary
value problem (23) is as follows:

P () =G =275), G =gt (=D 1)),

Therefore, in the zero approximation of the small parameter method, expres-
sions are obtained:

U (0) =432 p k), k=0,N—1. (24)

The guaranteed RMS estimate in the zero approximation of the small pa-
rameter method has the form:

FO(N) = g2 Cp T (AP 0k —ahy, (25)
and the error of this estimate is as follows:

mgx{E[x(N)—ﬁ(N)]z}“ ={p O (V)}"?, (26)

gi (L —1/32N
=D +1/22V1)

The representation of the estimation error in the zero approximation by for-
mula (26) allows one to notice a decrease in its value with an increase in the

where p(o)(N) =

quantity of observations, as well as to establish a limit value p(o) (N):

—1+41+2¢,%q3
lim p(o)(N):qlz( 4 CIO).
N —o 2

Solving the boundary value problem (22) of the first approximation
The boundary value problem (22) is reduced to a boundary value problem for
values p(k), k=0,N :
PV k+2)= pV k4D + pV (k) =pr(S 275, 27)
PP@=0, pPN)-p(N-1)=0, k=0,N-2.

The partial solution of the inhomogeneous equation (27) is represented by
formulas with undefined coefficients:

P (k) = (Bik* + Byk + BN +(Dik* + Dok +D3) %, k=0,N,
which have the form:
B, =B/(A*—1), By =—B,(3\* =1)/(A\* 1), B; =0,
D,=-B,, D,=B,, D;=0.
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The general solution of the inhomogeneous equation (27) has the form:
POy =F M + B, +(Bik? + By (W —27%), k=0,N,

where arbitrary constants are determined from boundary conditions (27).
The solution of the boundary value problem (27) is as follows:

PV (k) =[F +(Bik* + Byk)1(0F =27, k=0,N,
A—(1/22Vh
where F‘l Zﬂ{[Bl (N - 1) + Bz](N— 1) - (BlN + BZK)NW} .

Thus, expressions are obtained for the corrections of the first approximation
of the small parameter method:

U () =g5> (A9 pV (k) + AV (k) p O (k)), k=0,N—1,

1

FO(N) =250 .Yy,
PO W) =[F +(BN? + B, -a™). (28)
The guaranteed root mean square error in the first approximation of the
small parameter method is represented by the formula:
o2 (e) =62 (0) + &5 (1) + o(e),

2 2N-1
h 20)= 1 (A =1/2""7)
where c”(0) -1 (L2 (/23T

(1) = pN) = (F + (BN + BN~ 07,

Remark 4. It is worth noting that when using formula (28), it is necessary to
take into account the specific values of the model parameters of the observation
problem ¢,,q;,9,A, as well as the number of observations N , namely: order of
magnitude £c” (1) a smaller than order of magnitude c%(0).

The extended possibilities of applying the small parameter method can be
seen in the following example for other small perturbations of the known matrices
in the model of the observation problem.

Example 2. Let the matrix observations have the form represented by for-
mulas (17), (18), but with other matrices of small perturbation:

Oy =o' Ol kcovoa
AV(k)=a (o Oj,k 0,N —1. (29)

Let’s find the decomposition for the small parameter of the guaranteed value
estimate x(N), as well as its errors.

As in example 1, the guaranteed RMS estimate x(N) has the form:
2N =250 ), (30)

where U,ES) =q62p§f)(p(8) k), k=0,N—1; p®(k), k=0,N are the values

that are determined from the system of difference equations:
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{z“) (k) =z (k +1) - g2 (A9 k), 4 (k)) p© (k), k=N -1,1, z&(N)=1, G31)

PEUh+D)=p P (k) +¢zD(k +1), k=0,N-1, p?(0)=0.

Applying the small parameter method to solve problems (30), (31) we obtain

a guaranteed root mean square estimate in the zero approximation and its error in
the formulas form (24)—(26).

First approximation corrections of the small parameter method for the

guaranteed RMS estimate require the definition of matrices U,(1)=

=qaz(pg))(p(l)(k))+p§(1)(p(0)(k))), where p(O)(k), k=O,_N are the values of

the zero approximation of the small parameter method, and p(l)(k), k= O,_N are

the values of the first approximation of the small parameter method, which are
defined as solutions of boundary value problems

Pk +2)- pVk+ 1)+ pPk)y=Ba™ OF -17), (32)

PP =0, pYN)- pP(N-1)=0, k=0,N-2.

The partial solution of the inhomogeneous equation (27) is represented by
formulas with undefined coefficients:

k
Ppan (k) = B{%j +By(ar)*, k=0,N,
where these coefficients are calculated by formulas:

B, =PBa’/(0\* —ha+a’), B, =—Pa’\/(a*)} —ha+1).

The general solution of the inhomogeneous equation (27) has the form:
k
PV =R+ Bk + B{&j +B,(an)*, k=0,N,
a

and arbitrary constants F, F, are determined from the boundary conditions (32):

F=-(F,+B+5B,),

_ 1 NR-a) “Ny—2n+1 (Ra=1)
F,= —(1 + 1/7C2N+1) {B{a —(7» D IJ + Bz(a A —(k D + IH

Thus, expressions are obtained for the corrections of the first approximation
of the small parameter method:

Ur(1) = o> (A9 pO (k) + 4V (k) p @ (k)), k=0,N -1,
(V) =205 U ()Y,

N
PO WNy=FA +F, N + B, (&J +By(an)™ .
a

The guaranteed root mean square error in the first approximation of the
small parameter method is represented by the formula:

o2 (e) =02 (0)+ec? (1) +o(e),
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gt (=/22N)

here o”(0) =
where 67(0) ) (1+(1/7»2N_1))’

N
o’ = pP(N)y=FrY + KN + B, [ﬁJ +B,(ha) ™.
a

Obviously, that at certain values of the parameter a in model (29), the de-
sired accuracy of the small parameter method can be achieved with a larger num-
ber of observations.

CONCLUSIONS

The article develops constructive mathematical methods for finding linear guaran-
teed root mean square estimates of unknown non-stationary parameters of average
values based on observations of realizations of a sequence of random matrices. It
is shown that, under certain conditions, such estimates are expressed in terms of
solutions of the boundary value problem for the system of difference equations.
Formulas are presented that allow obtaining recurrent estimates of unknown parame-
ters. In the case of the dependence of the average values on a small parameter, the
corresponding asymptotic formulas are given. Asymptotic distributions of linear
parameter estimates and their root mean square errors are given for partial cases.
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IT'APAHTOBAHI CEPEJHBOKBAJIPATHUYHI OIIHKHK TIIPOIHO3Y
MATPUYHHUX CIHOCTEPEXKEHbD B VYMOBAX CTATHCTHYHOI
HEBU3HAYEHOCTI / O.I'. Hakoneunutii, I'.I. Kynin, I1.M. 3iasko, T.I1. 3inpK0

AHoTamisi. J[ociikeHo 3a7a4y JIiHIHOTO OILIHIOBAHHS HEBIOMHUX MaTEMaTHYHHX
CHOMAiBaHb 33  CIOCTEPESKEHHSAMH  peaji3aliii  BHIIAQIKOBUX  MaTPHYHHX
HOCIiZIOBHOCTEH. P03p0o0ICHO KOHCTPYKTHBHI MaTeMaTH4HI METOIM I 3HAXO[-
JKEHHS JIHIMHUX TapaHTOBaHMX CEpPeNIHBOKBAAPATUYHUX OIIHOK HEBIJOMHX
HECTAIllOHAPHHUX TapaMeTpiB CEpeAHIX 3HAYCHb 3a CIIOCTEPEKECHHAMH peaizamiit
MOCTITOBHOCTI BUMIAIKOBHX MaTpuib. [loka3aHo, 10 TaKi TapaHTOBaHI OLIHKH
OJIEpPKYIOTHCS 200 K PO3B’SI3KM KPalOBUX 3a/1ad IJIsI CUCTEM JIIHIHHHUX Pi3HUIEBUX
piBHSHB, a00 SIK po3B’sI3KK BiAmoBigHMX 3ana4 Komi. YcTaHoBIeHO BUTIS HO-
XHOOK MJIsI TapaHTOBAHMX CEPeIHbOKBAJPATUUYHHMX KBa3iMIHIMAKCHHX OLIHOK
CIEL[iaJbHOr0 BEKTOpa MPOTHO3Y Ta MapaMeTpiB HEBIJOMHX CEpelHIX 3Ha4deHb. 3a
HAsBHOCTI Majux 30ypeHb BiIOMHX MaTpHIb Y MOJENI MAaTPUYHHX CIHOCTEPEKESHb
3HAIIEHO KBa3iMiHIMaKCHI CepeIHOKBAAPATUYHI OWIHKY i B MEPIIOMY HaOIMKEeHH1
METO/ly MaJoro napamerpa OTPHUMaHO iX rapaHTOBaHi CepeAHbOKBAIPATHYHI IIO-
xuOku. HaBeneHo nBa TecTOBI NMpUKIAAN OOYMCIICHHS TapaHTOBAHUX CEPeIXHBOK-
BaJpaTUYHUX OLIHOK Ta iX MOXHOOK.

Kio4oBi ciioBa: MaTpuuHi CHOCTEpE)KEHHs, JiHIHHE OLIHIOBaHHS, rapaHTOBaHA
cepeIHOKBAPATHYHA OLiHKA, TOXWOKA TapaHTOBAHOI CEPeIHbOKBAAPATUIHOI OLli-
HKH, KBa3iMiHIMAaKCHa TapaHTOBaHA OI[IHKA BEKTOpA, PI3HUIIEBE PIBHSHHS, METOJ
MaJIoro napamMerpa, 30ypeHHs! MaTPHIIb.
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