UDC 004.047
DOI: 10.20535/SRIT.2308-8893.2023.1.11

APPROACH TO POSITIONAL LOGIC ALGEBRA

M. KOVALOV

Abstract. The method of Boolean function representation in terms of positional
logic algebra in compact operator form is offered. Compared with the known
method, it uses position operators with a complexity of no more than two and only
one type of equivalent transformations. The method is less labor intensive. It allows
parallelizing logic calculations. The corresponding way of Boolean function imple-
mentation is developed. It competes with some known ways in terms of hardware
complexity, resource intensity, and speed when implemented on an FPGA basis.
Possibilities open up for creating effective automating means of representing Boo-
lean functions from a large number of variables, synthesizing the corresponding
LCs, and improving modern element bases.

Keywords: boolean functions, positional logic algebra, positional operators, equiva-
lent transformations, logic circuits, FPGA.

INTRODUCTION

The development of information systems involves a significant expansion and
complication of logic calculations. Therefore, the development of new directions
in the study and implementation of Boolean functions (BF), one of which is posi-
tional logic algebra of (PLA), seems promising. It includes principles and
methods that allow BF representing and calculating using equivalent transforma-
tions and positional operators with polynomial complexity [1]. The application of
positionality principles for arithmetic and parallelization of logic calculations is
substantiated in PLA [1, 2]. Therefore, effective application of its apparatus is
possible for artificial intelligence, pattern recognition, cryptography and etc.,
where it is necessary to operate BF from a large number of variables.

However, the following problems might be identified within PLA framework:

e cumbersome apparatus of sequentially performed equivalent transforma-
tions o-, B-, Y-, WU, i-inversions; T-permutations; multi-parametric A-, A -,
® -, o-transformations) and complex positional operators). The known method
of BF representing from » variables [1] actually includes cumbersome analysis of
many n order operators. The operator, which generates the most similar BF and
has identical level, is chosen from them. After that with no less difficulty a se-
quence of multi-parameter equivalent transformations is selected. Therefore, for
large n value, the application of the method is significantly labor-intensive;

e researches within PLA framework were mainly theoretical (solving a
complex systems of logic equations, determining ratios of NP- and P-complete
problem classes, etc.). Its practical application has not been considered enough [2, 3].

In view of these problems, it is reasonable not to idealize PLA and to oppose
it to Boolean algebra, but interaction. Therefore, a less labor-intensive method of
BF representing was proposed. It does not involve enumeration of solutions, but
the formation process of less complex operators, only one type of equivalent

© M. Kovalov, 2023

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2023, Ne 1 129

M. Kovalov

transformations and some Boolean algebra apparatus. Also, prerequisites are cre-
ated for logic calculations parallelization. In accordance with the method hard-
ware implementation of the BF was developed, which competes with some
known methods in terms of hardware complexity, resource intensity and speed.

BF REPRESENTATION

The essence of the offered method is in the following. An arbitrary BF is covered
by its fragments given by the corresponding conjunctions. For each of them, a
simple positional operator can be formed, which generates closed BF of the frag-
ment, which must be corrected to obtain exact BF values:

f;' :(t/;\l)Ncottj/\(f;lori(Xk)v(S;[Xk]/\f;?)ri(Xk)))v (1)

n—k
here X, — input argument vector with & digit capacity; (/\1 X, ’j — (n—k)-rank
1=

conjunction (o, €1,n), which defines f;, fragment; Sj‘ — simple positional

operator (j; — binary vector of operator with dimension (k+1), 0< j <2 —1;
k — operator order, k < n), which generates the BF-prototype (the closest to the
£,). BF-correction f.)

corri

k
has “1” values on those X, vectors, where S ;. has “0”

0
corri

values but f,; has “1” values; BF-correction has “0” values on those X,

k
vectors, where S; has “1” values but f; has “0” values.

The covering process begins with shaping and analysis of great fragments.
With a large number of differences between BF-prototypes and fragments its sizes
should be reduced. For this reason, the BF might be covered by the operator's re-
cords (1) fast enough. If we disjunctively combine records (1) and transform the
resulting expression to the operator form, it will be received a representation of
the original BF in PLA terms. Obviously, it is necessary to minimize complexity
of such representation. There is no general decision of this minimization task.
Larger fragments may have many corrections, but smaller fragments may result in

a large number of fragments and records (1) respectively. Therefore, the follow-

1 0
corri corri

ing rule is developed. If and don’t require large number of operators

(usually two), it is not further defragmentation. And according record (1) includes
in BF representation. On the other hand, the method does not need more complex
transformations of input arguments as inverting. For this reason, from large num-

ber of equivalent transformations it is expedient to use one-parameter A trans-
formation. It inverts binary digits of argument corresponding to “1” in binary w
code. For example, abed = Sii\,[abed]. Tt is obvious that the implementation

of such transformation is trivial. So, the process of BF representing is as follows:

1. The set F of fragment representations in the form (1) that cover BF is as-
sumed to be empty. In set G of conjunctions that define analyzed fragments in-
clude initial BF Z.

2. If set G is empty, then go to step 9.

130 ISSN 1681-6048 System Research & Information Technologies, 2023, Ne 1

Approach to positional logic algebra

3. For each analyzed fragment in the set G generate:
— a binary vector j = (j,...j,) of a simple positional operator Sf.] that gen-

erates the BF-prototype, the closest to f ,(X,). Here j =1 (0<m<k), if

p
the case number when f,=1 on vectors X, with m 1's digits exceeds half of the

total number of such vectors, else j, =0 ;
— estimate the operator number for describing of BF corrections £ (X))

and f. (X,) based on mismatches between f, and Sor (X))

0

4. Select a fragment f, with the simplest records of BF corrections.

5.1 f) (X,) and £ ,(X,) records in PLA terms don’t require large

number of operators (typically two) then go to step 7.
6. Include in set G all conjunctions of the next (7 —k +1)-rank, which de-
fine non-empty f, fragments. Go to step 8.

7. The selected fragment f. written in form (1) include in the set F.

N

8. Exclude from G conjunction defining f, and alternative conjunctions ob-

tained with it in step 7, except the conjunction with which chosen conjunction can
be glued. Go to step 2.

9. Disjunctively merge all records in form (1) of fragments included in the
set F', obtaining a combined original BF representation. It includes positional op-
erators and logic operations of Boolean algebra:

Z=vf. @

where » — number of resulting fragments f; (1<i<r).

10.Open all brackets in (2) and simplify it using Boolean algebra relations.

11.The original BF representation obtained in previous step is finally re-
duced to an operator form using relations between PLA and Boolean algebra, for
example:

a,n..na =S\ [a,..a]; €)
a,v..va =8, [a,.a]; 4)
ay A Ny ASSa..a] = Sz,,_,fHS_ka[an...al]. (3)

Example. Let some BF F' = f(X,) has values “1” on vectors 1-3, 13-15,

19, 21-23 and 25-28. Following the known method [1], BF can be represented by
a complex positional operator and a sequence of equivalent two-parameter trans-
formations like this:

_¢olg4 17 .19 21 .23 16 .16
Z =8,5,,005)0,905, 05,0, 0, [x5x4x3x2x1]. (6)

The BF representation following the proposed method looks like:
s. 1: F={};G={Z}.

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2023, Ne 1 131

M. Kovalov

Cycle 1:
s. 2: G is non-empty, go to s. 3.

s.3-5: for Z form: f,., (x5x4x3x2xl) = S35, [x5x4x3x2x1].
£ (x5x4x3x2x1) has values “1” on vectors 1-3, fo _(x5x4x3x2xl1) has

orrZ
values “0” on vectors 1-3, 7, 11, 29, 30. To record them more than 2 operators are
required, hence go to s. 6.

s. 6,8 G={x1,x2,x3,x4,x5,x1,x2,x3, x4, x5} .

Cycle 2:

s. 2: G is non-empty, go to s. 3.

s. 3-5: the fragment defined by the conjunction x1 requires the simplest cor-
rections. For it fprﬁ (x5x4x3x2) = Sg[x5x4x3x2]. There is no need in

/. ’ _(x5x4x3x2), only one operator is enough for f' —(x5x4x3x2) defining

U}’Vﬁ I(’Opa
on vector 1 (x5x4x3x2=0001), hence go to s. 7.
s.7: write the selected fragment in the form (1) as f;=

= x1(Sg[x5x4x3x2] v x5x4x3x2) . Hence F = {x1(Sg[x5x4x3x2]v x5x4x3x2)} .
s.8: G={xl}.
Cycle 3:
s. 2: G is non-empty, go to s. 3.
s.3-5: for the fragment defined by conjunction x1, form

S (X5x4x3x2) = Sii[x5x4x3x2]. £ . (x5x4x3x2) has value “1” on vec-

tor 1, a fo (x5x4x3x2) — has value “0” on vectors 3, 5, 14. More than 2 op-

erators are required to write them, hence go to s. 6.
s.6,8: G ={x1x2,x1x3, x1x4, x1x5, x1x2, x1x3, x1x4, x1x5} .
Cycle 4:
s. 2: G is non-empty, go to s. 3.

s. 3-5: the fragment defined by the conjunction x1x2 does not require cor-
rection. For it fpr 5 (¥5x4x3) = S:[x5x4x3].Gotos. 7.

s.7: write the selected fragment in the form (1) as

f.5 =x1x28;[x5x4x3]. Hence F ={xI(S;[x5x4x3x2]v x5x4x3x2),

x1x282[x5x4x3]} .
s.8: G ={xIx2}.
Cycle 5:

s. 2: G is non-empty, go to s. 3.
s.3-5: for the fragment defined by conjunction x1x2, form

Foreina (¥5x4x3) = S3[x5x4x3]. f, (x5x4x3) has value “1” on vector 4,

corrx1x2

only one operator is enough for it, there is no need in £ Gotos. 7.

xopxlx2 *

132 ISSN 1681-6048 System Research & Information Technologies, 2023, Ne 1

Approach to positional logic algebra

s.7: write the selected fragment in the form (1) as f ,=

= x1x2(S3[x5 x4 x3]v x5 x4 x3) . Therefore F = {x1(Sg[x5x4x3x2]v x5x4x3x2),
x1x283[x5x4x3], x1x2(S2[x5x4x3] v x5x4x3)} .

s.8: G={xl}.

The set G is empty. Entire original BF is covered with fragments from the

set F,so gotos.9.
s. 9: Get first Z representation:

7 = x1(S§ [x5x4x3x2] v x5x4x3x2) v x1 x283[x5x4x3] v

v x1x2(S2[x5x4x3] v x5x4x3) . (7)
s. 10: Open brackets in (7):
7 = x1Sg[x5x4x3x2] v x5x4x3x2x1 v x1 x2S3[x5x4x3] v

v x1x283[x5x4x3] v x5x4x3x2x1 .

Glue 3rd and 4th conjunctions and select common variables in the 2nd and
5th conjunctions:

7 = xISg[x5x4x3x2] v x4x3x2(x5x1 v x5x1) v x1S2[x5x4x3]. (8)

s. 11: expression in brackets of the second term in (8) might be written as
S2[x5x1], for each conjunction, use (5). It is necessary to use corresponding one-

parameter transformations A, for variable inverting (3):
Z = 8,80 [X1x5x4x3x2] v S SIh,, [x4x3x2x5x1] v 8,82 [x1x5x4x3].
Now apply (4) and finally get original BF representing as:
Z = 8. [S,Sih [x1x5x4x3x2], S;.Soh,, [x4x3x2x5x1], 5,8 [x1x5x4x3]] . (9)

This example shows that the internal operators in complex positional opera-
tors serve to set the BF-prototypes of fragments, and the external ones set con-
junctions that uniquely determine these fragments. Therefore, the complexity of
positional operators in such representing in most does not exceed two, while
maintaining their compactness.

According to representation (9), it is possible to build a flow graph of logic
calculations (Fig. 1). If it is assumed that transformation and operator are per-
formed during the same time, then the calculation of the BF will take 4 steps. The
sequential process of calculating the same BF according to expression (6) lasts 8
steps. It might also be seen that, compared with the known method, the proposed
method also allows parallelize execution of positional operators and equivalent
transformations, reducing the time for BF calculating.

It is difficult to compare the complexities of the proposed and known [1]
methods directly. However, it might be done by evaluating the number of ana-
lyzed fragments in the maximum case and positional operators of order #. In ac-
cordance with the proposed method, first, the entire original BF is considered,

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2023, Ne 1 133

M. Kovalov

then — (2n) fragments depend on (n—1) variables, then — (2°(n—1)) frag-
ments on (n—2) variables, etc. Therefor the maximum number of fragments is
evaluated as NV ;R M Estimating the number of operators analyzed in accor-

dance with the known method reduces to the combinatorial task of partitioning
the number #» into terms. Using the Hardy-Ramanujan formula [4] and consider-

ing that for any complexity and order it might be build (2"*') operators at least,

2rl+] eﬁ\/?
4n\/§

method is significantly less labor intensive.

(%6 [x1x5...x2]| [2y [x4.. x2x5x1]] [S2[x5... x3]

get N, = all types positional operators. Obviously, the developed

5
Sé‘[y4'--y1]> Siy2ym| [s2[x13]]

Sely'5.. y'3t2]

S2[t4t5t6]

Fig. 1. Flow graph of logic calculations Z = f(X5)

HARDWARE IMPLEMENTATION

The BF implementation in accordance with the proposed method is a combina-
tional logic circuit (LC). It should be based on the form (2). For example, hard-
ware implementation of the conjunctions and disjunctions in (1) and (2) is more
efficient directly using logic elements. And BF corrections are implemented in
accordance with their disjunctive normal form. The maximum number of frag-
ments in form (2) is a power of two. Hence the same number of identical func-
tional blocks (FBs) is applicable for its implementation, as well as the correspond-
ing number of other logic blocks and elements. Thus, structure of such LC
(Fig. 2) includes:

(2"*") blocks for determining the number of “1” in the input argument
vector X, ;

(2"7") FBs for fragments f, implementing;

OR logic element 4 for disjunction implementing in accordance with the
form (2).

Each FB contains:

group of logic elements 1, which with the corresponding block for determin-

ing the number of “1” implements a simple positional operator Sf [X,] for cur-

rent fragment;

134 ISSN 1681-6048 System Research & Information Technologies, 2023, Ne 1

Approach to positional logic algebra

S,
XJI
="
=
N,
=
N
M,
2z — FB
N, - 2
S
S, 7
= 4
FB ‘
2" F—g
[Rl==
-
FB
i
X K, P]

Fig. 2. LC for the BF implementation by the proposed method

[correction blocks (CBs “0” or “1”), that implement respectively BF-

corrections £, ;(X;) and £} .(X,) with a group of logic elements 2. Each of

them is a k-input logic element AND with controlled input inverters;
block 3 of logic element AND, one input of which is the f; value. Remain-
ing (n-k) inputs have controlled inverters for the implementation of the conjunc-

n—k
tion (A X t] accordance with (1).
t=1

Input signals of the LC:

input vector of arguments X, (input X);

2" Vectors of positional operators (input .S);
2" control signals for CB inverters (input M);

2" control signals for inverters of block 3 (input N).

The number of BFs, calculable by the LC, is directly determined by thes
number and bit capacity & of FBs, CBs:

g n—k-1

Nprpar z(NBFfr(kal))zn 1T (n-i* (10)
i=0

where N ;. (k,[) — the number of BFs depending on k variables, which, taking
into account / CBs “0” and “1”, are calculated by one FB.

Cucmemni docniodcenns ma ingopmayiini mexnonozii, 2023, Ne 1 135

M. Kovalov

Being a complex combinatorial dependence N, p,, >> 2" (number of all

simple positional operators). Therefore, this LC is capable to calculate a large
number of practically used regular BFs depend on # variables. In addition, many
partially defined BFs might be extended to a form convenient for calculating on
similar LCs.

The following hardware characteristics of the proposed LC were defined:

— complexity as a number of two-input logic elements:

L(n,2)py =2" " 2(3k* +4n+ k8l +5))-1; (1)

— LC depth defined as a number of cascades on signal way from input to
output through the block for determining the number of “1”, groups 1, 2 of logic
elements and block 3:

Tpy =n+k+]log, k[+]log, (n —k)[+1; (12)

— input numbers:

N-nPAL=n+2”7k(2n+k(2l—1)+1). (13)

1

The developed LC allows to simply change the number and bit capacity of
the main logic blocks. It allows flexible change the ratio between its functionality
and hardware requirements, that follows from (10)—(13).

Let’s implement BF considered in the example by this LC. According the
LC structure, it is necessary transform (7) so that all operators have same order 3.

Simple positional operator S;{[X] might be represented with simple operators

of smaller order in the next way:
Sf[xk...x,-...xl] = x,-Sffl[xk...x,-Hxl-,l...xl] vx_ingl[xk...xmx,-,l...xl] . (14
Using (14), represent the first operator in (7) as:
S;[x5x4x3x2] = x2S83 [x5x4x3]v ESj[x5x4x3] .
Transform (7) to the form:

7 = xIx2(S3[x5x4x3] v x5x4x3) v x1x2S3[x5x4x3] v

v x1x283[x5x4x3] v x1x2(S3[x5x4x3] v x5x4x3) (15)

getting 4 fragments described by operators S;,S;,S:,S; . The first and last of

them are corrected by f. = x5x4x3 and £} . =x5x4x3 respectively. There-

corrl
fore, for BF calculating in the form (15) it is suitable LC that includes 3-bit 2
blocks determining the number of “1” and 4 FBs, including one CB per block.
The input variables are inverted according to the input control signals M and N.
Zero values might be entered to the information inputs of unused CBs of FBs 2
and 3. Thus, LC inputs (Fig. 2) are:

blocks determining the number of “1”: Xf = X; =xlx2; X;=X)=
=x5x4x3;

136 ISSN 1681-6048 System Research & Information Technologies, 2023, Ne 1

Approach to positional logic algebra

FB1: S, =1000, M, =111, N, =10;
FB2: S, =0100, M, =000, N, =11;
FB3: S, =0101, M; =000, N, =01;
FB4: S, =0101, M, =011, N, =00.

PRACTICAL RESEARCH

In practical research, in addition to the developed method some known ways of
BF implementation [5] were considered. They implement any BF depend on n
variables with optimal hardware complexity:

— multiplexer with (n—1) selector inputs based on a rectangular decoder [6].
The values of its hardware complexity, depth and number of inputs are:

L(n,2) 0y = 3(2’” +22 - 3} , (16)
3n
2

Ny g =2"" +n—-1; (18)

— LC based on the cascade method [7]:

L(1,2) e = 32" = 1), (19)
Tcasc = 2(” - 1) > (20)
Nipouse =2" " +n-1. (21)

Dependences of hardware complexity, depth, number of LC inputs are based
on (10)—(13), (16)—(21). Also, for the developed LC structure with a different
number of FBs and CBs (/ CB “0” and “1” in each FB) the number of countable
BFs depend on the number of variables » is obtained. The parameters of resource
intensity and speed of the FPGA-based (Field Programmable Gate Array) imple-
mentation of the proposed LC were gotten. Schemes were described on VHDL,
synthesis and modeling were carried out using Intel Quartus Prime and Siemens
Modelsim. Comparative studies are made.

Dependencies on Fig. 3 and 4 (given on a logarithmic scale) show that FB
number increasing (a k decreasing at invariable #) leads to the significant increase
of the calculable BF number and hardware complexity of the proposed LC (de-
pendencies 2, 5 and 7). However, it makes sense to increase, the number of CBs
within the FB. This can increase the functionality of the proposed LC to the level
provided by a large number of FBs, but with lower hardware costs (dependen-
cies 4-6). When n>7 developed LC structure provides an overwhelming
advantage sod.

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2023, Ne 1 137

M. Kovalov

1200
1o FOLD / 1LOOE+80
1000 / / 1,0DE+70
~200
-] o 2 LOOE+60
2800 b : + + =
N 10 6 =
S100 1 1 L 1 — = LOOKE 150
5] e =
F—""if,gg | 1 1 .// ! /5 = .
= / /./ e 4 ELO0E+0
500 P M =
= < - = 1,00E+30
| | - | ;
gue LT ok
2 L L L :
#300 T A =T . - = 100K 120
- - z
200 ! _,._:__ —_ T |
100 &5 e i — LOOE+10
1,00E-+00 T

2 137 14

8 9 10 11 1
Number of BF variab

les

5

6 Nu(?lhcrsnl' Bg \-m!iléllhlelil

12

13

14

Fig. 3. Hardware complexity of LCs Fig. 4. Number of calculable BF’s

The resource intensity of the FPGA-based LC implementations (Fig. 5) at
most corresponds its hardware complexity (Fig. 3). When »n >10 the proposed
LC provides a significant advantage over the known ways also in the LC input
numbers (Fig. 6). From these dependences it is shown that for functionality ex-
panding and equipment minimizing more effectively increase the CB number.

500

350
450

“300
z 400
aEazso
= @ 350
= o
2500 'E 300
- = 250
Lis0 £ 500
= 5
LT
=100 = 150
|-

o
= 100
E 50
. 50
.

0
¥

12 13 14 6

7 8 9 01 11 12
Number of BF variables variables

L [

8 9 1
Number of B

Fig. 5. Resource intensity of the LC integral Fig. 6. LC input numbers
implementations
The depth of the developed LC (Fig. 7) depends mainly on », so the depend-
ences 1, 2, 5 and 7 are close to each other. A similar trend is observed for the per-
formance of LC integral implementations (dependencies 1, 2, 4-7 on Fig. 8). Al-
though the LCs based on multiplexer or cascade method, when implemented on
FPGA basis, have less depth, but the difference in performance is practically lev-
eled. The proposed LC structure may provide higher performance when a large
number of variables (n>11).

CONCLUSIONS
In comparison with the known method the developed method of boolean function
representation in terms of PLA is characterized by the following:

— uses positional operators with complexity no more than two and only one
type of equivalent transformations;

138 ISSN 1681-6048 System Research & Information Technologies, 2023, Ne 1

Approach to positional logic algebra

— less labor intensive and compactness of BF representation;
— allows to parallelize execution of equivalent transformations and operators,
reducing BF calculation time.

35

30

[¥]
n

[¥]
=

=y
wn

Number of levels

7] 9 0 11 12 13 14 =
Number of BF variables

Fig. 7. Depth of the LCs Fig. 8. Performance of the LC integral im-
plementations

1 —proposed LC (n—k=0,/=0);2 —proposed LC (n—k=1,1=1);

3 —proposed LC (n—k=1,/=2);4—proposed LC (n—k=2,1=0);

5 —proposed LC (n—k=2,l=1);6 —proposed LC (n—k=2,1=2);

7 — proposed LC (n—k =3,1=1); 8 —proposed LC (n—k=3,/=2;

9 — multiplexer; 10 — LC based on the cascade method

The developed LC structure, in comparison with some known ways of BF

implementation, has a significantly fewer hardware complexity when n>7. As a
result, corresponding FPGA-based implementation also requires fewer logic re-
sources and input number without losing in performance. To expand its function-
ality, it is more efficient to increase the number of CBs in FBs. The regularity and
scalability of the LC structure provide effective control the involvement in opera-
tion process its parts by using, for example, “operand isolation” technology [8, 9].
This creates the prerequisites to change flexible the ratio between LC functional-
ity, technical and economic parameters of the integral implementation, “bypass-
ing” possible failures, increasing its reliability. In addition, possibilities for creat-
ing effective automating means of representing BF from a large number of
variables, synthesizing the corresponding LCs and modern element bases im-
provement open up.

REFERENCES

1. M. Telpiz, Algebra of positional operators and equivalent transformations. M.: Sci-
entific advice on a complex problem, 1988.

2. C.M. Hamann and L. Chtcherbanski, “Positional Logic Algebra — PLA — A Fasci-
nating Alternative Approach,”’ICSI Technical Report TR-97-039, Sep. 1997.

3. M.L Telpiz, “Sigma-notation and the equivalence of p and np classes,”J. Inf. Organ.
Sci., vol. 29, no. 2, Mar. 2012.

4. T. Jiang and K. Wang, “A generalized Hardy-Ramanujan formula for the number of
restricted integer partitions,”Journal of Number Theory, vol. 201, pp. 322-353, Aug.

Cucmemni docnioxcenna ma ingpopmayiiini mexnonoeii, 2023, Ne 1 139

M. Kovalov

2019. Accessed on: Feb. 6, 2023. [Online]. Available: https://doi.org/
10.1016/j.jnt.2019.02.006

. D. Harris and S. Harris, Digital Design and Computer Architecture: ARM Edition.

Morgan Kaufmann, 2015.

A.N. Borodzhieva, I.I. Stoev, and V.A. Mutkov, “FPGA Implementation of Boolean
Functions Using Multiplexers,” in 2019 IEEE XXVIII International Scientific Con-
ference Electronics (ET), Sozopol, Bulgaria, Sep. 12—14, 2019. Accessed on: Feb. 6,
2023. [Online]. Available: https://doi.org/10.1109/et.2019.8878504

AN. Borodzhieva, 1.I. Stoev, I.D. Tsvetkova, S.L. Zaharieva, and V.A. Mutkov,
“FPGA Design of Boolean Functions Using a Cascade of Decoders and Logic
Gates,” in 2020 43rd International Convention on Information, Communication and
Electronic Technology (MIPRO), Opatija, Croatia, Sep. 28—-Oct. 2, 2020, IEEE,
2020. Accessed on: Feb. 6, 2023. [Online]. Available: https://doi.org/10.23919/ mi-
pro48935.2020.9245448

A.A. M. Bsoul, S.J.E. Wilton, K.H. Tsoi, and W. Luk, “An FPGA Architecture and
CAD Flow Supporting Dynamically Controlled Power Gating,”/EEE Transactions
on Very Large-Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 178-191, Jan.
2016. Accessed on: Feb. 6, 2023. [Online]. Available: https://doi.org/10.1109/
tv1si.2015.2393914

C. Ashok Kumar, B.K. Madhavi, and K.L. Kishore, “Enhanced Clock Gating Tech-
nique for Power Optimization in SRAM and Sequential Circuit,”Journal of Automa-
tion, Mobile Robotics and Intelligent Systems, pp. 32-38, Jan. 2022. Accessed on:
Feb. 6,2023. [Online]. Available: https://doi.org/10.14313/jamris/2-2021/11

Received 09.02.2023

INFORMATION ON THE ARTICLE

Mykola O. Kovalov, ORCID: 0000-0002-2590-4052, National Technical University of
Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine, e-mail: kovua@yahoo.com

MIIXII A0 NO3ULIIHOI AJITEBPH JIOTIKH / M.O. KoBaibos

140

AHoTamisi. 3anpornoHOBaHO METOJ MOJAAHHS OyneBHX (YHKIIH y TepMiHAaX IMO3H-
LiifHOI anreOpwu JIOTIKK B KOMIAKTHi# omepaTopHiii ¢opmi. [TopiBHsIHO 3 Bimomum
METO/IOM Y HbOMY 3aCTOCOBYIOTHCS TIO3UIIIHHI ONEPaTOPH 31 CKIAJHICTIO HE OiIbIe
JIBOX 1 JIMILIE OHOTO BUAY EKBIBAJICHTHUX IEPETBOPEHb. MeETOoJ Bilpi3HAETHCS MEH-
[IOI0 TPYIOMICTKICTIO 1 PO3KpHBAE Mapajelni3M JOTiYHUX OOYMCIICHb. 3amponoHO-
BaHO BIINOBITHUH crioci6 peamnizanii OyneBux QyHKmid. BiH craHOBUTE KOHKypeH-
IO JISSIKMM BiIOMHUM CIIoco0aMu 3a anapaTHOIO CKJIAJHICTIO, PECYPCOMICTKICTIO Ta
MIBUAKICTIO i3 3actocyBaHHsM Oasucy FPGA. BigkpuBaroTbesi MOMIMBOCTI JUIst
CTBOpPEHHS e()eKTHBHUX 3ac00iB aBToMaTu3auii nojanHs OyneBux (yHKLiil Bix Be-
JIMKOT KITBKOCTI 3MiHHHX, CHHTE3Y BiAMOBIAHMX KOMOIHAI[IMHUX CXeM Ta BIOCKOHA-
JICHHS CYy4acHHX €JIEeMEHTHUX 0a3.

Kurouosi ciioBa: Gynesi ¢yHkuii, mo3uiiiiHa anredpa Joriky, MO3ULIHHI ornepaTo-
pH, EKBiBAJICHTHI IIepEeTBOPEHHs, KoMOiHawiitHi cxemu, FPGA.

ISSN 1681-6048 System Research & Information Technologies, 2023, Ne 1

