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Abstract. A method of mathematical modeling of multidimensional quasi-static 
processes, a generalization of quasi-static processes of equilibrium thermodynamics, 
is proposed and substantiated. The authors obtain a generalization of the first and the 
second law of thermodynamics in the form of Carathéodory to multidimensional 
quasi-static processes. The idea of generalization is to construct an orthogonal sys-
tem of functionals similar to the work and heat functionals of classical thermody-
namics along families of phase trajectories corresponding to different types of influ-
ences on a multidimensional quasi-static system. The representation of quasi-static 
processes by systems of ordinary differential equations containing control variables 
is substantiated. The obtained results make it possible to use a wide arsenal of meth-
ods of the theory of control of dynamical systems to solve problems of control of 
quasi-static processes. 
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INTRODUCTION 

The concepts of “quasi-static system” and “quasi-static process” owe their ap-
pearance to the fundamental branch of physics – thermodynamics. Thermody-
namics originated and was further developed on the basis of the phenomenologi-
cal approach, i.e. considering only the observed properties of thermodynamic 
systems (TS) without a detailed analysis of the mechanisms of their manifesta-
tion. As a result of this approach to the formation of thermodynamics, its main 
provisions: terminology, axiomatics and logical constructions in the form of 
physical laws have not changed significantly over the past few centuries. In the 
same time real practical results confirming theoretical backgrounds with a suffi-
ciently high degree of accuracy have made thermodynamics, along with mechanics, 
a model of applied science. The quasi-static nature of processes in TS is one of 
the main postulates of thermodynamics, along with such concepts as reversibility 
and equilibrium. From the standpoint of thermodynamics, a quasi-static process is 
an infinitely slow process consisting of a sequence of equilibrium states infinitely 
close to each other. An essential limitation of the thermodynamics of equilibrium 
processes is the exclusion from consideration of the time coordinate and the rep-
resentation of processes in the form of segments of trajectories in the phase space. 
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The mathematical support of thermodynamics is based on two postulates: the first 
and second laws, on the basis of which mathematical models of the main thermo-
dynamic processes are introduced.  

Despite the apparent limitation of the object of study in the form of quasi-
static TS, a number of concepts and approaches of thermodynamics can be 
adapted to a relatively wide class of technological systems similar in external 
properties to TS. In this regard, the problem of constructing a mathematical the-
ory of quasi-static processes arises, covering both the TS and other systems with 
the quasi-static property. In this article, an attempt to propose the mathematical 
foundations of the theory of quasi-static processes with a focus on the control 
problem is made. 

REVIEW AND ANALYSIS OF INFORMATION SOURCES 

The classical substantiation of thermodynamics as a system of knowledge is al-
most completely described in the works of Carnot, Clausius, Boltzmann, Planck 
[1–3] and other “classics” of thermodynamics [4, 5]. This branch of thermody-
namics has survived without fundamental changes to the present day. 

One of the principal ways to involve mathematical methods in thermody-
namics and generalize the latter to other physical and technical processes can be 
considered the approach outlined in [6]. A feature of Gukhman’s ideas is the sub-
stantiation of the uniformity of the components of the differential equation of the 
first law of thermodynamics in the form of products of certain potentials and a 
change in the corresponding coordinate of the state of the TS. At the same time, 
the thermal effect was included as a particular type of the set of effects on the TS, 
and the concepts of energy and amount of effect received a generalized interpreta-
tion suitable for any similar processes. The versatility of the ideas presented in [6] 
is clearly demonstrated in studies in the field of ecosystems [7]. 

Summarizing the results of thermodynamics related to the first law or the 
law of conservation of energy, we can conclude that the mathematical methods 
that allow adapting classical equilibrium thermodynamics to a wide range of simi-
lar processes in nature, technology and society are limited. The fundamental dis-
advantage of the considered approach is the absence of any time dependences 
linking changes in the state of the TS with the intensity (power) of actions. 

In this regard, the authors of this work previously obtained some results of 
the “dynamization” of quasi-static processes. This made it possible to obtain 
mathematical models in the form of ordinary differential equations relating the 
change in time of the state vector of a quasi-static system to changes in the power 
of control actions. The results obtained in [8–10] require further generalization. 

The greatest difficulty in the formation of thermodynamics was caused by its 
second law, and in particular the concept of entropy. For instance, in [4] there are 
18 formulations of the 2nd law, each of which ultimately has the same meaning of 
the impossibility of obtaining mechanical work using only one source of heat. 
Unfortunately, the abundance of formulations and interpretations of the 2nd law 
of thermodynamics has led to some conservatism in the mathematization and 
formalization of thermodynamic methods and their adaptation to quasi-static 
processes of a different nature. The works of Schiller, Carathéodory, Afanasieva-
Ehrenfest, Belokon were a qualitative shift in the direction of axiomatization in 
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thermodynamics, where a generalized theory of quasi-static processes was formu-
lated in the language of mathematical formulations. Among the studies in this di-
rection, the article by Carathéodory [11] should be especially singled out, where 
he elegantly formulated the 2nd law of thermodynamics in the language of Pfaf-
fian forms. This article gave impetus to the wide application of the axiomatic ap-
proach in the thermodynamics of multidimensional processes [12–15]. 

MATHEMATICAL MODEL OF A CONTROLLED QUASI-STATIC PROCESS 

We will consider multidimensional quasi-static processes in terms similar to the 
terms of classical thermodynamics: state, action, phase trajectory, work, energy, 
etc. The fundamental difference from thermodynamics will be the inclusion of the 
concept of heat in the category of works, as proposed in [6]. Thus, in our further 
constructions, heat or other effects will not take any priority position among the 
many possible effects on the system under consideration. 

Let the state of the system under consideration   is given by the state vector 
nx R . State change over time ( )x t  represents a trajectory   in ( 1)n  -

dimensional space. Any change of the vector x  in time is associated with the 
presence of one or more actions from a given set W . In the absence of actions on 
a quasi-static system, the latter remains in the state in which all actions were inter-

rupted. That is any condition nRx  of a quasi-static system is an equilibrium 
position, in contrast to dynamical systems, for which the set of equilibrium posi-

tions is a subset of the space nR . 
Associate with each m n  of the types of actions kW  a vector field )(xk , 

mk ,1 . We will assume that the system of vector fields )(),...,(),( 21 xxx m  at 

every point nRx  is linearly independent. For k -th action the trajectory   in phase 
space can be represented as a solution to the system of differential equations 

 )()( tux
dt

dx
kk , (1) 

where ( )ku t  is a scalar function of the parameter t , which has the meaning of the 

action intensity kW . Absolute value ( )ku t  determines the speed of movement of 
the representative point along the phase trajectory, and its sign determines the di-
rection of movement. 

Let now several actions be simultaneously applied to the system. They cor-
respond to the vector field )(x . Let’s decompose the vector )(x  at some point 

x  along linearly independent vectors )(),...,(),( 21 xxx m . We get 

 



m

k
kk uxx

1

)()( ,  

where ku  are decomposition coefficients. 

Then the movement of the system along an arbitrary phase trajectory corre-
sponding to the complex action will correspond to the system of differential equations 

 



m

k
kk tux

dt

dx

1

)()( , (2) 
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and the coefficients ku can be interpreted as the intensity of the corresponding 
actions. 

If time t  is chosen as a parameter, and values ( )ku t  are considered as con-
trols, then the mathematical model of the quasi-static process in the form (2) is a 
controlled system linear in controls. Since the vectors  are linearly independent, 
then the equilibrium of system (2) is )(),...,(),( 21 xxx m  achieved only in the 

case 0...21  muuu . That is, the effects cannot compensate each other. 

The proposed mathematical models of quasi-static processes with single (1) 
and complex action (2) give a qualitative model of behavior  . The point is that 

the vector fields )(xk  ( 1, )k m  specify only the directions of the corresponding 

fields and can be normalized arbitrarily. In this case, the form of phase trajectories 
will remain unchanged. At the same time, the trajectory   in time will depend 
both on the normalization of the vector )(xk , as well as on the size ( )ku t , form-

ing the speed of movement   along the phase trajectory defined by the vectors 
)(xk  and some starting point 0x  of the specific process. 

ENERGY MEASURE OF THE ACTION 

The previously introduced concept of the action intensity, which has the meaning 
of controlling a quasi-static process, requires a quantitative measurement. To do 
this, as an analogy, we use the classical thermodynamic approach for thermal de-
formation systems, i.e., TS subject only to mechanical and thermal effects, the 

phase trajectories of which have the form constpV  and constp   respec-

tively, where ,p V  are the pressure and volume of the gas in relative units and   

is adiabatic exponent )5.13.1(  , depending on the chemical composition of 
the substance. 

It is known from thermodynamics [5] that the first law of thermodynamics is 
valid for a thermal deformation system, which is formulated as follows: 

 dU L Q    , (3) 

where dU  is an increment of internal energy, L is a deformation work, Q  is a 

supplied heart. In (3) internal energy ( )U x  is a function of state and quantities 

L  and Q  are functions of trajectories in a state space. 

For ideal gases [5] the internal energy U  has the form 

 pVU
1

1


 , (4) 

and the mechanical work and heart are calculated as curvilinear integrals along 
the phase trajectory l : 

 
( )l

L pdV    ; (5) 

  














)( 11

1

l

pdVVdpQ . (6) 
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Thus, ratio (5) and (6) can be interpreted as a quantitative measure of the ac-
tion on the TS in the form of the mechanical work (5) and heat (6). For fixed ini-
tial 0x  and final fx  process points 0( ) ( ) constfU x U x   for any trajectories 

connecting 0x  and fx , the sum L  and Q  in accordance with (3) will be con-

stant for various ratios L  and Q . 

Let us generalize the thermodynamic approach (4) as applied to finding simi-
lar quantitative measures of actions for an arbitrary n -dimensional quasi-static 

process with m n  actions. Let us introduce nR  the scalar continuous function in 
static space – the energy: 

 1 2( ) ( , , , )nU x U x x x  . (7) 

The energy increment (7) in some point nx R  will look like: 

 1 2
1 2

n
n

U U U
dU dx dx dx

x x x

  
  
  

. (8) 

Denoting )(xg
x

U



 — the gradient ( )U x , write down (8) as 

 ( , )dU g dx , (9) 

and along the trajectory of the solution (1), or along the phase trajectory of the 
k -th action, the (8) takes the form 

 dtgdU k ),(  .  (10) 

Ratio (10) will also be valid for any phase trajectory generated by an arbi-
trary vector field )(x  

 dtgdU ),(  . (11) 

Let us denote the set of possible phase trajectory kl  corresponding to k -th 

type of action as kL , and the set LLk  . The set of all feasible trajectories cor-

responding to an arbitrary composition of actions is denoted by *L . Then there is 
the system of inclusions 

 *, 1,kL L L k m    . 

We will call the energy measure ( )J l  of any phase trajectory l  the value 

 
( )

( ) ( , )
l

J l g dx  . (12) 

Due to (9) the energy measure (12) depends only on the initial 0x  and final 

fx  points of the curve l : 

 0 0( ) ( ) ( ) ( , )f fJ l U x U x J x x   . (13) 

The energy measure (13) satisfies the following axioms: 

 1) ( , ) 0J x x  ;  

 2) ( , ) ( , )J x y J y x  ; (14) 
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 3) ( , ) ( , ) ( , )J x y J x z J z y  .  

Axioms 2 and 3 in (14) differ from the symmetry and triangle axioms known 
from the theory of metric spaces: 

 ( , ) ( , )J x y J y x ; 

 ( , ) ( , ) ( , )J x y J x z J z y  . 

By analogy with first law of thermodynamics, we will look for the quantities 
of each type of actions in the form of functionals ( )kA l , calculated along phase 

trajectories similar to the mechanical work and heat for the simplest thermody-
namic system (5), (6): 

 
( )

 ( ) ( ( ), ), 1,k k

l

A l q x dx k n  . (15) 

Functionals ( )kA l  we will call the works of action kW . Vectors ( )kq x  we 
will be chosen so that following conditions are satisfied: 

 








,if,0

,if),(
)(

i

k
k Ll

LllJ
lA   ., 1, , kk n ii    (16) 

Requirements (16) will by met under the following conditions to choose 
from ( )kq x : 

 nkigq iikik ,1, ),,(),(  , (17) 

where ik  is the Kronecker symbol. 

The conditions (17) are essentially conditions for the quasi-biorthogonality 
of vector systems ),( 21 n  and 1 2( , )nq q q . 

Rewrite the last equation in matrix form: 

  diag TQ g   , (18) 

where the rows of matrix Q  are desired vectors 1 2( , )nq q q  and the columns of 

the matrix   are vector fields ),( 21 n  of actions on the system. 

Since vectors )(xk  are assumed to be linearly independent for nx R  , 
matrix   is non-degenerate, therefore the solution (18) can be written as 

 1)(diag  gQ T . (19) 

Let us now show that for the system of works 1 2, nA A A  with vector fields, 

defined in accordance with (19), *l L   the following relation in true: 

 )()(
1

lAlJ k

n

k



 . (20) 

To prove (20), we sum relations (17) over k . As a result, we get: 

 nigq iik

n

k
ik

n

k

,1),,(),(
11

 


;  
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 nigq iik

n

k

,1),,(,
1












.  

It follows directly from the latter: 

 
1

n

k
k

U
q g

x


 

 . (21) 

Let us sum over k  the values ( )kA l , determined in accordance with (15). As 
a result, we get 

 
11

( ) ( , )
n n

k k
kk l

A l q dx


   . (22) 

Taking into account relations (12) and (21), and from (22) we get (20), i.e. 
the sum of the work calculated along an arbitrary trajectory is equal to the incre-
ment in the energy of the system at the ends of this trajectory. 

As an example consider thermodynamic system with actions in the form of 
mass transfer, deformation, and heat transfer The vector fields of such actions are 
well known [5] and are represented by the matrix ( , , )p V m , looking like 

 



















 



001

010

1
V

p

m

p

, (23) 

where mVp ,,  are pressure, volume and mass of the system. The columns of the 
matrix (22) are vector fields of mass transfer, deformation and thermal effects, 
respectively.  

Let us introduce the energy of system in the form of a known relation for 
ideal gases (3), then 

 ),,(0,
1

1
,

1

1
321 gggpV

x

U















. (24) 

Substituting the (23) and (24) in the formula (19), we get a matrix 

 




































m

pVpV
p

m

pV

Q

111

00
1

00

,  

the rows of which are the components of the vectors of the quantities  of the cor-
responding actions  

  



)(

1 1l

dm
m

pV
A ;   

)(
2

l

pdVA ;  

 ,
111)(

3  


















l

dm
m

pV
pdVdp

V
A   

where 1A  is a work of mass transfer, 2A  is a mechanical work, 3A  is a heat. 
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It is easy to verify that sum of the rows of the matrix Q  coincides with the 
internal energy gradient, and 

 )()()()( 321 lJlAlAlA  .  

The considered approach to constructing a system of functionals satisfying 
the additivity condition (20) can also be extended to the case when the number of 
actions m  is less than the dimension of the system n . In this case, the matrix   
in the system of equations (18) is rectangular, and, consequently, constructions 
(19)–(24) lose their meaning. A way out of this situation can be obtained as a re-
sult of redefining the system of actions with the missing n m  dummy actions. 
These dummy actions are chosen so that the square matrix )( 21   , where 

1 ( )n m    – the matrix given actions, and ))(( 2 mnn   – the matrix of 
dummy actions will be nondegenerate. Substituting the matrix  obtained this 
way in relation (19) we get the matrix of works, which will depend on an arbitrary 
matrix 2  . 

INVERSE PROBLEM 

The performed analysis showed that if the laws of change of the phase coordi-
nates of the thermodynamic system depending on the type of influences are 
known, then for an arbitrarily given state function ( )U x , a system of functionals 

can be chosen that satisfies the structure of the energy conservation law. The 
question arises, is it possible to solve the inverse problem: for a given functional 
corresponding to the work of some action, construct the corresponding function 
 ( )U x , which has the meaning of the energy of the thermodynamic system. This 

approach is quite pragmatic, since it allows to “join” various physical processes 
that have the same types of external influences. For example, in mechanics and 
thermodynamics, such an action is deformation, and the corresponding work in 
both cases is calculated by similar functionals: 

 
)(

 
l

fdsA  is mechanics;  

 
)(

 
l

pdVL  is thermodynamics.  

So, let’s formulate the problem as follows. Let some reference action be 
given, which corresponds to the phase trajectories of the system of differential 
equations 

 nRxxx  ),(  ,  

where )( x  is a known vector function. 

Let the known functional correspond to the standard action, with the help of 
which the work of the standard action is calculated: 

 1 1 2 2
( ) ( )

( , )( ) ( ) ( )n n
l l

L q dx q dx q dx q dxx x x     .  
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Then, due to relation (17), the vector functions )( x , ( )q x  and  ( )g x  must 

satisfy the condition 

 ),() ,( gq  .  

The last equation can be interpreted as a linear differential equation in partial 
derivatives with respect to the function  of the energy of the thermodynamic sys-
tem ( )U x : 

 ),(, 





 



q
x

U
.  

To solve it, we use the method of characteristics. The system of differential 
equations of characteristics in symmetrical form can be written as 

 
))(),(()()()( 2

2

1

1

xxq

dU

x

dx

x

dx

x

dx

n

n











. (25) 

Since all )(xk  included in (25) do not depend on the desired function 
( )U x , then the set of first integrals of the subsystem of differential equations (25) 

 
)()()( 2

2

1

1

x

dx

x

dx

x

dx

n

n








 (26) 

will also be a subset of the set of integrals of the complete system (25). 
Let 

 kk Cx  )( , 1, 1k n   (27) 

be the first integrals of the system (26). Based on (27), we express the first 

1 2 1, , , nx x x   through nx  and 1 2 1, , , nC C C  : 

 

),,,,,(

............................................

;),,,,(

;),,,,(

12111

12122

12111













nnnn

nn

nn

CCCxx

CCCxx

CCCxx







 (28) 

and substitute the obtained relations into the last of equations (25) 

 
))(),(()( xxq

dU

x

dx

n

n





. 

As a result of such a substitution, we obtain a differential equation with 
separable variables nx  and U  

 
)),(),,((),( CxCx

dU

Cx

dx

nnnn

n





,  

where n ,  , q  are the functions of the vector nx  and the vector of constants 

 1 2 1, ,..., nC C C C   obtained after substituting (28) into the expressions for 

n ,  , q  respectively. 
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Integrating the last differential equation, we obtain the n -th first integral of 
the original system of differential equations of characteristics (25) in the form 

 nnn CCxU  ),( . (29) 

Substituting into (29) the expressions for the components of the vector of 
constants C  in the form (27), we finally obtain 

 ( )n nU x C  . 

As is known from the theory of partial differential equations, the general so-
lution ( )U x  satisfies the equation 

  1 2 1( ), ( ), ( ), , ( ) 0n nU x x x x       , 

where   is an arbitrary function of its arguments. 
Solving the last equation with respect to the first argument, we finally obtain 

 ,)](,),(),([)( 1210 xxxxUU n   (30) 

where )()(0 xxU n , and   is an arbitrary function of its arguments. 

Let’s analyze the result. As can be seen from (30), the function ( )U x  that 
satisfies the differential equation for the operation of a given action consists of 
two terms. The first term 0( )U x  is determined both by the type of the phase tra-
jectory of the system subject to the reference action and by the type of the stan-
dard functional (vector ( )q x ). The second term depends only on the phase trajec-
tories and is an arbitrary function of the first integrals of the system of differential 
equations that model the behavior of the thermodynamic system under the 
reference action. 

Thus, all ( )i x  1, 1i n   that are arguments of an arbitrary function   are 

constants, and therefore ],,,[ 121  n  also an arbitrary constant. Thus, 

 CxUxU  )()( 0 ,  

i.e. the energy of a quasi-static system is determined up to some constant C . 
Consider an example of finding the internal energy ),( VpU  for the simplest 

thermodynamic system subjected to a standard deformation effect, the work of 
which is defined as 

 
2

1

V

V

L pdV   .  

The system of differential equations modeling the deformation effect, as fol-
lows from [5], has the form 

 ,
V

p

dt

dp
   ,1

dt

dV
 

and differential equation (24) for ( , )U p V  can be written in the form 

 .p
V

U

p

U

V

p









   
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The corresponding system of ordinary differential equations of characteris-
tics can be written as 

 
p

dUdV

V

p
dp




 1
. (31) 

The first integral 1( , )p V , which is the equation of the adiabatic phase 
curve, is obtained by integrating the differential equation 

 
1

dV

V

p
dp




 

and has a well-known form 

 1CpV  . (32) 

Expressing p  through 1C  and V , and substituting the result into (31), we 

obtain a differential equation for determining the energy ( , )U p V . Thus  

  VCp 1 , dVVCdU  1 ,    dVVCU 1 , and  C
V

CU 





1

1

1 . 

Substituting expression (32) for 1C  into the last relation, we finally obtain 
the expression, well known from thermodynamics for the internal energy of an 
ideal gas,  

 CpVU 



1

1
. 

It should be noted that this result was obtained only on the basis of the 
known experimental adiabatic curves without involving the results of the well-
known experiment of Gay–Lussac and Joule, which showed the invariance of the 
gas temperature during its expansion into a vacuum. 

Let us now return to the original mathematical model of the thermodynamic 
system (2) and find the physical meaning of the quantities ku  – an action intensi-

ties of kW . To do this, we proceed as follows: let the work jA  be given by an 

integral of the form: 

 
 

( , )j j

l

A q dx  , (33) 

where jq  is previously defined vector of j -th work. Multiply the left and right 

parts of (2) scalarly by the vector jq , as a result we get 

 



n

k
kkjj uqxq

1

),(),(  . (34) 

Taking into account the conditions of orthogonality of works (12), from rela-
tions (33)–(34) we get 

 jjj
j uq

dt

dA
),(  . 
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From the last expression, and also from (17) it follows 

 .,1,
),(

1

),(

1
njA

g
A

q
u j

j
j

jj
j 





   (35) 

Let us substitute (35) into original differential equation (2). As result we get 

 k

n

k k

k A
g

x

dt

dx 
 



1 ),(

)(
. (36) 

From (36) it follows that if the column vectors )(xk  of matrix ( )x  divide 

accordingly into dot products ),( kg  , then each of the controls ku  will match the 

intensity of the corresponding work kA , i. е., using electromechanical terminol-

ogy, ku  with this normalization corresponds to the action power kW . In addition, 

the original system of equations (2) can be immediately normalized in accordance 
with (36), which will in no way affect the form of phase trajectories correspond-

ing to certain types of action and the corresponding work vector ( )kq x . 

Thus, without loss of generality, we can assume that the right side of the sys-
tem of equations (2) is normalized in accordance with (34), and the control vector 

ju  corresponds to the power vector jA . Therefore, any of the works can be cal-

culated both in the form of a curvilinear integral (33) and in the form of an inte-
gral over the time 

 dttuA
t

t
jj )(

1

0

 . 

QUASI-STATIC CONTROL SYSTEM OF GENERAL VIEW 

Let us consider an empirical approach to the construction of mathematical models 
of quasi-static systems, given by families of phase trajectories 1 2, ,..., nL L L , corre-

sponding to the impacts 1 2, ,..., nW W W . Let kL  it look like 

 

,),...,,(

..................................

;),...,,(

;),...,,(

1211

2212

1211

 




nnn

n

n

Cxxxf

Cxxxf

Cxxxf

 (37) 

of ( 1)n  -parametric family of lines in n -dimensional phase space. The set of 

constants 1 2 1, ,..., nC C C   set a specific phase trajectory k kl L , and a change in one 

of the variables (for example, nx ) determines all the coordinates of the points of 

the selected phase trajectory as a result of solving system (37). Let’s associate the 
change nx  with some parameter 1t R , which can be taken as time. Then all kx  

will also be functions of time due to equations (37). To find the vector field corre-
sponding to trajectories from kL , we differentiate (37) with respect to t . As a re-

sult, we get 
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x

f
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x

f
x

x

f





 (38) 

Complementing (38) with the equation 

 1nx  ,  

we obtain n n  a linear system of algebraic equations with respect to 1 2, ,..., nx x x   , 
the solution of which gives the vector field of the k -th action or the correspond-
ing system of differential equations 

 ),...,,( 21 nk
k xxx

dt

dx
 , 1,k n . (39) 

Thus, from a family of phase trajectories of some process (37) we can get a 
quasi-static model of the same process, which has the structure of a system of dif-
ferential equations (39). 

The transition to the environment of differential equations allows us to use a 
wide arsenal of modern methods of control theory for solving all kinds of control 
problems for technical systems. 

REACHABILITY, CONTROLLABILITY, AND ENTROPY OF QUASI-STATIC 

SYSTEMS 

In the previous sections, the concepts of energy and work of various action were 
formalized and substantiated, which made it possible to interpret quasi-static sys-
tems as controlled dynamic ones. One of the central concepts of control theory is 
the concepts of reachability and controllability [16], which qualitatively charac-
terize the fundamental possibility of solving a control problem, i.e., the existence 
of a certain control law that implements the transition between two reassigned 
points of the phase space. Let us extend these concepts to controlled multidimen-
sional quasi-static processes. 

If the system of actions on the TS is complete, i.e. m n , then it is obvious 
that it is always possible to choose such a sequence of actions that the phase tra-
jectory will pass through any predetermined point of the state space. So the whole 

space nR  is achievable, and the TS is fully controllable. In another limiting case, 
when all controls except ku  are identically equal to zero, i.e. 1m  , the reachable 

set is some isolated phase trajectory k kl L , on which the represented point is 
currently located, and the system becomes uncontrollable. Bellow the obtain a 
criterion for the controllability of quasi-static systems for the general case 
1 m n  , relying, as before, on the methods of equilibrium thermodynamics. 

It is easy to see that the concept of controllability of quasi-static systems is 
closely related to the concept of adiabatic inaccessibility introduced by 
Carathéodory [11] when formulating the second law of thermodynamics. Accord-
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ing to Carathéodory, in the vicinity of an arbitrary state of the TS, there are adia-
batically inaccessible states. In other words, in the absence of thermal action, the 
phase trajectories of the TS belong to some hypersurfaces, which are a one-
parameter family 

 ( )f x c .  

To curry out to the transition of the representative point from a hypersurface 

1( )f x c  on a hypersurface 2( )f x c  it is necessary to involve thermal action. 
Carathéodory proved that in this case the differential form included in the inte-
gral (15) for the elementary amount of heat dQ  is holonomic, i.e must have an 

integrating factor )(x : 

 )()()),()(()),(( xdSxdxxqxdxxqdQ  .  

Function ( )S x , which remains constant in the absence of thermal interac-
tion, corresponds to the entropy of the TS. In [17], general criteria for the holon-
omy of differential Pfaffian forms are formulated.  

Thus, the second law of thermodynamics in the formulation of Carathéodory 
from the point of view of control theory is a criterion for the controllability of a 
n –dimensional dynamical system of the form (1) under a 1n   control action. 
Since this paper presents an abstract approach to equilibrium thermodynamics, the 
authors consider it fundamental to extend the Carathéodory method to an arbitrary 
number of control actions. In other words, below we will analyze the controllability 
of dynamic systems of the form (1) with the ( 1)m n   numbers of actions. 

To solve the formulated problem, we study the structure of the set of phase 
trajectories of solution of differential equations corresponding to m  action 

 )(),...,(1 x
dt

dx
x

dt

dx
m . (40) 

Regarding the set of phase trajectories of m  systems (40), we assume that it 
belongs to some invariant one-parameter manifold  

 ( )S x c , (41) 

i.e. all points ( )x t  of phase trajectories of the set of systems (32), satisfy the con-
dition  
 ( ( ))S x t c ,  [0, )t   ,  

where the constant c  is determined from the initial condition  

 0( ( ))c S x t .  

In this case, the set of states, that do not satisfy condition (41) will be inac-
cessible for a given set of actions, and from the point of view of control theory, 
such a system will be uncontrollable.  

To find the surface ( )S x  we compose the system of differential equations in 
partial derivatives, which it must satisfy 

 0)(,,...,0)(, 1 





 









 



x
x

S
x

x

S
m . (42) 
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The system (42) the conditions of orthogonality for the gradient vector of the 
function ( )S x  and for all vector fields that determined the TS trajectories for a 
given structures of actions. Thus the problem of inaccessibility of a TS of an arbi-
trary set of actions is reduced to the analysis of the solvability of the system of 
equations (42), which is the system of linear differential equations in partial de-
rivatives with respect to the function ( )S x . 

The theory of linear partial differential equations is quite well developed and 
contains a solution algorithm, including an analysis of the conditions for the exis-
tence of a solution [18]. This condition can be represented as  

 nv mmm   }...]],[,[],,[...][],,[,,...,,{rank 32112121 , (43) 

where ],[   is the commutator of the vector fields   and  . 

 








xx

],[ .  

Thus, this fulfilment of the condition (43) indicates that there is an invariant 
surface ( )S x c , to which all possible trajectories of the TS motion belong, i.e. (43) 
is a criterion for the uncontrollability of the generalized thermodynamic system. 

THE DISCUSSION OF THE RESULTS 

The thermodynamic approach to mathematical modeling of multidimensional 
quasi-static processes is generalized. The concepts of energy and work corre-
sponding to each of the feasible actions on the controlled system are introduced. 
The conditions for the orthogonality of the vectors of the coefficients of the dif-
ferentials of work made it possible to formulate the law of conservation of energy, 
similar to the first law of thermodynamics, in the most general form without in-
volving any physical laws. 

The axiomatic approach to the formation of the 2nd law of thermodynamics 
has been further developed as applied to multidimensional quasi-static systems. 
The concept of controllability of a quasi-static system is introduced. 

Conditions for the existence of an invariant set of states of a quasi-static sys-
tem are obtained for the number of actions less than the dimension of the system. 
It is shown that the existence of an invariant set is equivalent to the criterion of 
uncontrollability of a quasi-static system. 
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УЗАГАЛЬНЕННЯ ТЕРМОДИНАМІЧНОГО ПІДХОДУ ДО БАГАТОВИМІРНИХ 
КВАЗІСТАТИЧНИХ ПРОЦЕСІВ / О.С. Куценко, С.В. Коваленко, С.М. Коваленко 

Анотація. Запропоновано і обґрунтовано метод математичного моделювання 
багатовимірних квазістатичних процесів, які є узагальненням квазістатичних 
процесів рівноважної термодинаміки. Отримано узагальнення першого, а та-
кож другого закону термодинаміки у формі Каратеодорі на багатовимірні ква-
зістатичні процеси. Ідея узагальнення — побудова ортогональної системи 
функціоналів, аналогічних функціоналам роботи і теплоти класичної термоди-
наміки уздовж сімей фазових траєкторій, що відповідають різним видам впли-
вів на багатовимірну квазістатичну систему. Обґрунтовано подання квазіста-
тичних процесів системами звичайних диференціальних рівнянь, що містять 
керувальні змінні. Отримані результати дозволяють залучити широкий арсе-
нал методів теорії керування динамічними системами до розв’язання задач 
керування квазістатичними процесами. 

Ключові слова: квазістатичні процеси, рівноважна термодинаміка, математи-
чне моделювання, робота, енергія, керованість, ентропія. 


