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Abstract. The search for an effective and reliable model for predicting accidents on 
water supply networks by determining their exact locations has always been impor-
tant for effectively managing water distribution systems. This study, based on the 
adaptive neuro-fuzzy logical inference system (ANFIS) model, was developed to 
predict accidents in the city of Kyiv (Ukraine) water supply network. The ANFIS 
model was combined with genetic algorithms and swarm optimization (ACO) meth-
ods and integrated into a GIS to visualize results and determine locations. Forecasts 
were evaluated according to the following criteria: mean absolute error (MAE), root 
mean square error (RMSE), and coefficient of determination (R2). Depending on the 
amount and type of input data, ANFIS optimization with genetic algorithms and 
swarm optimization (ACO) can, on average, increase the accuracy of ANFIS predic-
tions by 10.1% to 11%. The obtained results indicate that the developed hybrid 
model may be successfully applied to predict accidents on water supply networks. 

Keywords: ANFIS, ACO, GA, spatial objects, geodatabase, metaheuristics, spatio-
temporal analysis, water loss. 

INTRODUCTION 

Forecasting accidents in water distribution systems is important in the manage-
ment of water resources, as it makes it possible to identify problem areas in the 
network and eliminate them in advance. Intelligent predictive systems are models 
and algorithms that provide valuable information about the future performance of 
a system as a decision support system. With the development of supervisory con-
trol and data acquisition (SCADA) systems, real-time monitoring of pressure and 
data flows is commonly used to detect pipe bursts. Machine learning [5] and clus-
ter analysis models were developed for optimal assessment. Failures in the net-
work can also be analyzed using hydraulic models [6]. 

The techniques mentioned above were successful in detecting accidents, but 
not in pinpointing their exact locations [7]. The model-based approach relies 
heavily on the accuracy of hydraulic models [8] and may not be suitable for larger 
water supply systems. Other methods that utilize pressure/flow measurements and 
GIS have also been proposed. For instance, [9] utilized triangle-based cubic inter-
polation to establish a pressure drop surface during network breaks to locate the 
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source of the problem. In [10] the measuring zone’s rupture location in the water 
supply network was identified by assessing the sensitivity of various pres-
sure/flow measurements in relation to emergency leaks. [11] employed a multi-
variate graphical model that utilized data from multiple pressure gauges to iden-
tify potential accident locations, employing a combination of Gaussian and 
geostatistical methods. Typically, fluctuations in demand can make it difficult to 
detect hydraulic indicators resulting from accidents. Therefore, these methods can 
only provide a general idea of where network breaches may occur, with an error 
range of hundreds of meters and several pipes. Unfortunately, this is not precise 
enough to quickly locate and fix network issues, resulting in delayed system res-
toration. 

A more accurate method is needed to locate pipe bursts, which involves 
gathering detailed information about the water system’s behaviour in potential 
locations to detect anomalies. This can be achieved by placing accelerometer sen-
sors and analyzing acoustic signals, which can automatically determine the loca-
tion of the rupture or leak [12]. However, the reliability of this method depends 
on the characteristics of the leakage conditions, such as pressure and flow rate, 
and the detection range is limited by the clarity and correlation of the acoustic 
signals. Another approach is based on transient processes [13], which analyzes 
characteristic transient waves to determine the location of accidents. However, 
background noise or other activities in the system can interfere with transient sig-
nals caused by discontinuity, especially if the number of channels to be analyzed 
increases [7]. Hence, methods based on transient processes may not be suitable 
for locating pipe breaks with exact precision. 

Many researchers have explored the use of machine learning in water re-
sources research [14], but there is no consensus on the best model for predicting 
water supply network emergencies. To address this, a forecasting model was de-
veloped that can pinpoint the exact location of potential emergencies. Artificial 
neural networks are commonly used in water resource assessment due to their 
computational efficiency [15–17], but they may produce errors in some cases due 
to poor prediction or overtraining [15]. Therefore, it is necessary to optimize the 
ANN and look for new approaches and new classes of neural networks. 

Studies [18–20] have proposed a high-precision hybrid model called ANFIS, 
which combines artificial neural networks (ANN) and fuzzy logic. The hybrid 
ANFIS model has better performance than the two separate models, but it has cer-
tain limitations in finding the best weight parameters, which greatly affect the 
prediction performance [15]. Furthermore, different optimization algorithms yield 
varying results based on the geoenvironmental factors of the area being studied. 
Therefore, developing new hybrid algorithms to determine the best weights and 
produce reliable results is fundamental for flow modeling processes. 

The purpose of this work is the development of a new model of artificial in-
telligence and the study of its effectiveness in the tasks of predicting accidents on 
water supply networks with the determination of exact locations. This research is 
conducted for the first time on the water distribution system of the city of Kyiv. 

MODEL DEVELOPMENT AND TRAINING METODOLOGY 

Data set collection for spatial modeling 

The proposed modeling method is applied to the GIS water supply system of the 
city of Kyiv (Ukraine). The length of the water supply networks in the city is in-
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creasing due to the inclusion of street and intra-quarter networks from enterprises. 
As of 2019, the total length of the networks was 4,284.8 km. 

In the structure of the city’s water supply networks, the main part is street 
networks — 2614.8 km or 61% of the total length of pipes; intra-quarter 
networks — 1275.1 km or 29.8%; water pipes — 394.9 km or 9.2%. The vast 
majority of pipelines, namely 65.9%, are made of cast iron; 30.5% — from steel 
and only 3.6% — from plastic materials. 

21.4% of the pipes of the water supply network have been operated for more 
than 50 years and another 33.2% — about 50 years; the service life of 27.1% is up 
to 35 years, 12.3% — up to 25 years, 4.6% — up to 15 years, and only 1.4% — 
up to 5 years. According to the degree of wear, 50.4% of the pipes are worn by 
more than 90%; 24.3% of pipes — by 50–75%; 15.5% — by 75–90%; 6.3% — 
by 25–50%; 3.5% — less than 25%. 

Pipelines made of cast iron have the longest average age — 46.8 years, 
pipelines made of steel — 45.4 years, the smallest — made of plastic — 15 years. 
According to the pipe depreciation indicator, the water distribution system is 
characterized as follows: the average degree of wear of steel pipes is 90%, cast 
iron pipes are 75%, and plastic pipes are 23%. 

The accident rate, which is determined by the number of accidents per unit 
length of the network, has fluctuated in the range of 2.0–2.2 accidents/km in re-
cent years, and the tendency to increase the number of accidents was observed 
specifically for water pipes. 

The methodology of this study is shown in Fig. 1, and includes the following 
stages: 

1) preparation of input data; 
2) separation of data into training (70%) and test (30%) sets; 
3) training of ANFIS neuro-fuzzy network; 
4) optimization of the ANFIS model by genetic algorithms and the swarm 

optimization algorithm (ACO); 
5) checking the accuracy of ANFIS, ANFIS-GA and ANFIS-ACO models. 

ANFIS 
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 Pipe length 
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Fig. 1. Structural diagram of the development and optimization of the ANFIS model 
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It is important to consider how the problem occurs in relation to other factors 
to make accurate spatial predictions. Table 1 shows the data used in our predictive 
model, with some entered into the GIS and the rest determined through hydraulic 
modeling based on the GIS model. 

T a b l e  1 . Factors and conditions used in the model that impact the emergence 
of issues in the water supply network 

Factors/conditions Units Description 

The degree of proximity  
of the location to railway tracks/

m 
When trains are in motion, the ground 

vibrates, causing pipes to crack and gate 
valves to be damaged. 

Age year Year of laying the pipe 
Length m Length of a  pipe 

Diameter mm Size of a pipe 
Soil type index NA Soil type 

Geoposition NA Geospatial location 
Accident date year Accident date on network 

Pressure bar Pressure from hydraulic calculation results 
Volume of consumption m3/hour Volume of water consumption per hour 
Volume of consumption m3/month Volume of water consumption per month 

Demand NA Water demand 
flow rate NA Flow rate according to hydraulic calculation 

Pipe materials rigidity NA rigidity coefficient 
Consumers NA Individuals and legal persons 

 

It is probable that certain factors may affect the occurrence of pipe ruptures 
or damages in specific parts of the network, while leaving other areas unaffected. 
One such factor could be the presence of railway tracks. The vibrations caused by 
freight trains passing by can lead to frequent failures in the water supply network, 
resulting in pipe ruptures or damage to fittings. Additionally, the type of pipe ma-
terial used also plays a significant role in determining its lifespan. Steel pipes typ-
ically last for 25 years, while plastic or cast iron pipes can last up to 50 years. 

PREPARATION OF DATA SET FOR TRAINING AND TESTING 

In order to check if the model is practical, the data set for analysis should be split 
into two groups: one for building the model (called the training data set) and the 
other for testing it (called the test data set) [21]. To create the training data set, 
70% of locations with and without previous accidents on the network (a total of 
313 locations) were randomly chosen and combined. 

The remaining 30% were then used to create the test dataset. Both data sets were 
originally in vector format but were converted to csv format for further analysis. 
For both data sets, the value 1 was assigned to indicate the presence of an accident 
on the network, while 0 was assigned to indicate the absence of accidents. 

We conducted a statistical analysis to thoroughly examine the data and im-
prove the intelligent model. 

We performed a statistical analysis of spatial data in order to determine the 
parameters of the membership function for training the ANFIS network and its 
optimization (Fig. 2). 
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DEVELOPMENT OF THE ANFIS MODEL AND ALGORITHMS FOR ITS 

OPTIMIZATION 

Adaptive neuro-fuzzy logical inference system 

ANFIS (Adaptive Network Based Fuzzy Inference System) is an adaptive fuzzy 
logical inference system proposed by Sugeno based on IF-THEN rules. It is a 
method that combines artificial neural networks (ANNs) with fuzzy ones. This 
neural network is used for membership function tuning and rule base tuning in a 
fuzzy expert system. Below is the Sugeno model of fuzzy logic inference (Fig. 3). 

The layers of this fuzzy neural network perform the following functions. 
Layer 1. Membership Function Layer 
In this layer, each neuron uses a membership function (fuzzifier) to trans-

form the input signal x or y. The most commonly used functions are the bell-
shaped function or the Gaussian function: 
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Layer 2. Antecedent Layer 
Each neuron is represented by the symbol . It performs an intersection be-

tween sets of input signals, which simulates a logical AND operation. The neuron 
then sends an output: 

 niiyxw
ii BAi ,..,2,1),()(  .  

In fact, any T-norm operator that generalizes the AND operation can be used 
in these neurons. 
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Fig. 3. Sugeno’s fuzzy logic model 
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Layer 3. Normalization Layer 
Each neuron in this layer calculates the normalized strength of the rule: 
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Layer 4. Consequent Layer 
The values of output variables are formed in neurons: 

 )(4
iiiiiii rybxawfwO  .   

Layer 5. Aggregation Layer 
We receive the output signal of the neural network and perform defuzzifica-

tion of the results: 
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The neural network of the ANFIS architecture is trained using the gradient 
descent method. 

OPTIMIZATION OF ANFIS WEIGHTING COEFFICIENTS AND OFFSETS BY 

THE ANT COLONY ALGORITHM 

Ant Colony Optimization (ACO) is a probabilistic method for solving complex 
computational problems that find optimal parameters in a search environment. 
This algorithm, which was proposed by Marcus Dorigo in 1996, imitates the be-
haviour of ants in finding the optimal path from their nest to a food source. In 
[22; 23], the author optimizes the weighting coefficients of an artificial neural 
network using ACO and investigates the performance of the network. In the 
search space, a population of weights is created which is considered as an objec-
tive function and is found according to the formula: 
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where  p
it  and p

io  are the expected and actual value of the output neuron and for 
the template p. 

The terms maxO , and minO  represent the highest and lowest values of the 

output signal from a specific neuron, while on  and pn  refer to the number of 

output neurons. 
The ACO algorithm is a tool for optimizing neural network parameters such 

as synaptic weights, number of layers, and number of hidden neurons. It begins 
by randomly selecting decisions from a predefined set of data, which are then 
evaluated and assigned to the decision space based on their fitness values. New 
solutions are created using information from previous iterations, with a higher 
likelihood of selecting values with a greater concentration of pheromones [23]. 
This process generates a matrix of size M × N, where M represents the decision 
population size and N represents the number of decision variables. 
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where jX j -th solution, xji – i-th solution variable for the j-th solution, and M is 

the size of the number of solutions. The value xji is chosen randomly from the set iV : 

 1 2{ , ,..., , }i i i id i iV v v v v D , 1,2,...,i N ,   

where iV  set of predefined values for the i-th decision variable, idv d -th pos-

sible value for the i-th decision variable, and iD  total number of possible values 
for the i-th decision variable [23]. 

GENETIC ALGORITHMS 

Genetic algorithms develop optimal solutions by sampling from all possible solu-
tions. The best of these solutions are then combined using the genetic operators of 
crossover and mutation to generate new solutions. This process continues until a 
certain termination condition is met [4]. The diagram of the GA process is shown 
in Fig. 4. The first step is the initial state in which we want to find the Hamilto-
nian cycle with the smallest sum of weights.  In the second step, the fitness func-
tion estimates the Hamiltonian cycles, with lower cost functions indicating the 
best individuals. Finally, in the third step, the most adapted individual is 
identified. 

GA can be used to optimize various parameters in water distribution sys-
tems. It uses the following mechanisms: crossover, mutation, selection. The goal 
of training is to minimize the root mean square error: 
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Fig. 4. Scheme of the process of genetic algorithms 
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We set the initial population in which any individual is represented by the 
corresponding weights of N individuals: )]0(),...,0(),...,0([ NiI WWW . 

We calculate the fitness index (Fitness Index) and evaluate the quality of 
forecasting: 

max)()(  ii WECWFI , 

where С — constant. 

IMPLEMENTATION OF THE MODEL 

The technique of forecasting with a combination of GIS and artificial intelligence 
methods were applied to predict accidents on the water supply network of the city 
of Kyiv. The Sugeno method was used, as it shows better accuracy. The optimal 
membership function was chosen by trial and error. The ANFIS method was op-
timized by GA and ACO to improve accuracy. 

The performance of the ANFIS, ANFIS-GA, ANFIS-ACO models was de-
termined from the resulting mean absolute error (MAE), which indicates a risk 
metric corresponding to the expected value of the absolute error loss or the loss 
rate: 
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The mean squared error indicates the risk indicator corresponding to the ex-
pected value of the squared error or loss: 
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The 2R  function calculates the coefficient of determination, which repre-
sents the proportion of variance (y) that was explained by the independent vari-
ables in the model: 
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The function explained variance calculates the estimate of the explained 
variance: 
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RESULTS 

Spatial-temporal assessments and prediction of the occurrence of accidents 
on the water supply network of the city of Kyiv 

Spatiotemporal GIS analysis and modeling are essential for studying and predict-
ing future events. For modeling, we used the ESRI GIS package: ArcGIS Pro 2.7. 
The first step was data acquisition and preparation. The obtained information was 
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summarized in the netCDF data structure, which was used for spatial statistical 
analysis and creation of a space-time cube (Fig. 5) [24] . 

A space-time cube is a well-known model in ArcGIS that combines spatial 
data and time into a three-dimensional data structure of the netCDF (total network 
shape) format, containing an array of bins with absolute location and absolute 
time [24]. So, we aggregated incidents of accidents on the water supply network 
within a grid size of 500 × 500 m2 (distance interval) with an absolute step inter-
val of 1 month. This approach made it possible to investigate cases of accidents 
on the water supply network of the city of Kyiv (Ukraine). 

We applied the space-time cube to a forest-based prediction model, which 
generated a 2D object class indicating the predicted locations within the original 
space-time cube. Each location is predicted individually (as shown in Fig. 5) and 
has its own schedule (as seen in Fig. 6). 

In Fig. 6, the graph displays the input, data gaps restored as a result of calcu-
lations, predicted values and confidence intervals. Confidence intervals are cre-
ated for each predicted time step, which are presented as fields of output objects. 

The upper and lower bounds of the confidence intervals for the first pre-
dicted time step are calculated using quantile random forest regression. To predict 
values for a future time, observations from each leaf of the tree are averaged to-
gether. The confidence interval of the second forecast is calculated in a similar 
way, but is adjusted taking into account the confidence interval of the first fore-

Fig. 5. The result of spatial forecasting 

Fig. 6. Graph of the values of the locations of the space-time cube 
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cast [25]. The real confidence interval of the second forecast is calculated by add-
ing the lengths of the limits of the confidence interval of the two forecasts. Subse-
quent time steps are calculated by adding previous predictions. The real confi-
dence level of these intervals is at least 90%, but in reality the accuracy may be 
higher [25]. 

The result of the assessment of the total accuracy of the forecast in different 
locations, using the forest-based method, is shown in Table 2. 

T a b l e  2 . The result of the overall assessment of forecast accuracy in different 
locations 

Category Min Max Mean Median Mean sq. dev. 
RMSE of the prediction 0.00 1.25 0.26 0.24 0.15 

RMSE of validation 0.00 2.89 0.56 0.48 0.45 
 

This forecasting method is best used for time series with a complex shape 
and trends that are difficult to model using simple mathematical functions. The 
correct selection of time steps during model validation is important. The more 
time steps that are excluded, the less time it takes to evaluate the validation mod-
el. However, if too few time steps are included, the RMSE value will be estimated 
using less data and may be misleading. Also, this tool can produce unstable and 
unreliable forecast results if the same value is repeated too often in time series 
[25]. To optimize and improve the accuracy of the predictive model, we com-
bined GIS methods with hybrid artificial intelligence methods. 

Configuration of hybrid models 

In this study, we integrated the ANFIS model with GA and ACO algorithms, and 
compared the performance of the models. The algorithms are implemented in the 
Spyder environment (Anaconda 3). In order to test the model with different opti-
mization algorithms, the data were organized into separate training and test data-
sets, which were divided into 70% and 30% (Fig. 7).  

Fig. 7. Results of model training 

ANFIS ANFIS-GA ANFIS-ACO 
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Fig. 7 shows the result of model training: change in error frequency during 
training; comparing predicted values with actual data on the training set and com-
paring predicted values with actual data on the test set. 

The first step was to import the training data into the ANFIS, ANFIS-GA, 
ANFIS-ACO models to reveal the hidden relationships between the factors affect-
ing the emergency of the water supply network. As a next step, the validation data 
were used to test the performance and predictive capabilities of the models. MAE, 
RMSE, R2, and explained_variance were used to measure accuracy. Table 3 
shows the result of learning hybrid models (the first 5 iterations in GA and ACO). 

T a b l e  3 . Comparison and performance testing of models 

Test data Train data 
Model 

MAE RMSE R2 Cov MAE RMSE R2 Cov 
0.043 0.094 0.613 0.613 0.062 0.125 0.576 0.578 

ANFIS 
Study time: 0:00:06.19 

0.041 0.097 0.599 0.600 0.061 0.124 0.575 0.574 
Study time: 0:00:08.31 

0.042 0.098 0.583 0.585 0.061 0.124 0.575 0.577 
Study time: 0:00:08.98 

0.041 0.098 0.587 0.589 0.061 0.125 0.575 0.577 
Study time: 0:00:09.09 

0.044 0.098 0.585 0.587 0.062 0.124 0.573 0.575 
Study time: 0:00:08.41 

0.042 0.098 0.584 0.586 0.061 0.125 0.575 0.576 

ANFIS-GA 

Study time: 0:00:08.24 
0.041 0.096 0.593 0.595 0.061 0.124 0.573 0.575 

Study time: 0:00:11.96 
0.042 0.097 0.585 0.587 0.061 0.124 0.574 0.576 

Study time: 0:00:11.86 
0.043 0.098 0.585 0.586 0.062 0.125 0.572 0.575 

Study time: 0:00:12.22 
0.041 0.098 0.586 0.588 0.061 0.125 0.576 0.577 

Study time: 0:00:11.92 
0.042 0.097 0.585 0.587 0.062 0.125 0.573 0.575 

ANFIS-ACO 

Study time: 0:00:12.21 
 

The MAE values for the ANFIS, ANFIS-GA, and ANFIS-ACO models were 
calculated for both the test and training data. The results show that the ANFIS-
GA model had the best performance with a MAE value of 0.042 for the test data 
and 0.061 for the training data. The GA algorithm was found to be more efficient 
than the ACO algorithm, which had a similar performance but required twice as 
much training time. It’s important to note that these results may vary based on the 
input data. Overall, the ANFIS-GA model is stable, efficient, and has a fast con-
vergence rate. 

CHECKING AND COMPARING MODELS 

We used three different optimization models, namely ANFIS, ANFIS-GA, and 
ANFIS-ACO, which were developed and implemented in Spyder (Anaconda3). 
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The results obtained from these models were then visualized in ArcGIS Pro 2.7. 
To train these models, we divided the pointed objects of accidents into two cate-
gories: 30% for training and 70% for testing. We used the training data set to es-
tablish relationships between the occurrence of accidents (1) and the absence of 
accidents (0).  

We checked the accuracy and performance of hybrid intelligent models by 
calculating the mean absolute error of MAE. Fig. 8 shows the membership func-
tions of the input variables of the ANFIS model. Fig. 9 illustrates the graph of the 
change in the loss function depending on the number of iterations. Membership 
functions indicate the fuzziness of the inputs. A comparison of the accuracy 
scores in Fig. 8 shows that the ANFIS network performs well. 

As a result, the accuracy of the ANFIS model was 95.49%. The accuracy de-
creases when the number of inputs increases, so to increase the accuracy, it is 
necessary to improve the network with optimization algorithms. 

The result of training the ANFIS-GA and ANFIS-ACO models was not 
much better than the classic ANFIS, moreover, the ANFIS-ACO model required 
much more time. In ANFIS-GA, the training time was the same as in ANFIS (one 
iteration on average 0:00:06.24), while in ANFIS-ACO the total training time 
took 0:58:19.69 (0:00:12.38 one iteration). Overall, the predictions aligned well 

Fig. 8. Membership functions of the used input variables 

Fig. 9. The graph of the change of the loss function depending on the number of
iterations 
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and matched the experimental data accurately. It’s worth mentioning that the test 
results demonstrate the developed models’ proficiency in forecasting data beyond 
the training range. 

Compared to GIS forecasting methods, developed artificial intelligence 
models provide an opportunity to expand and increase forecast accuracy, and in-
dicate specific problematic pipes. Also, the developed models can be easily inte-
grated into ArcGIS Pro in the form of geoprocessing tools, and published on cor-
porate geoportals. 

CONCLUSIONS 

Adaptive neural fuzzy logic inference system (ANFIS) and its hybrid learning 
methods: ANFIS-GA, ANFIS-ACO were used to predict water supply network 
accidents. This model was integrated into GIS (ArcGIS Pro) to visualize and de-
termine the exact locations of possible accidents and was verified in practice (all 
predicted accident locations for the next three days coincided with accidents that 
occurred on the Kyiv water supply network). The following conclusions can be 
drawn from the forecasting model described above: 

 Performance evaluation and model validation results of selected metrics: 
R2, RMSE, and MAE for both training and testing on a small amount of data 
showed that the hybrid models did not outperform ANFIS model. 

 When the amount of input data increased, the accuracy of the ANFIS 
model decreased and it became necessary to optimize the ANFIS with genetic 
algorithms and the swarm optimization algorithm (ACO). This optimization 
increased the accuracy of ANFIS prediction by 10.1%, 11%. 

 The results of ANFIS, ANFIS-GA, and ANFIS-ACO intelligent models 
combined with GIS indicate a large information potential that can support real-
time operational control of water supply systems. Fuzzy models of emergency 
forecasts have a significant advantage as they require less information about water 
supply systems than conventional probabilistic models. In addition, this informa-
tion may be vague and inaccurate. The ANFIS model is suitable for modeling 
complex problems, especially when the relationship between factors is unknown. 
It is especially useful for identifying threats and providing advance warnings 
about the likelihood of an accident. 
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ГІБРИДНА МОДЕЛЬ ШТУЧНОГО ІНТЕЛЕКТУ ІНТЕГРОВАНА В ГІС 
ДЛЯ ПРОГНОЗУВАННЯ АВАРІЙ НА МЕРЕЖАХ ВОДОПОСТАЧАННЯ / 
Ю.П. Зайченко, Т.В. Старовойт 

Анотація. Пошук ефективної та надійної моделі прогнозування аварій на ме-
режах водопостачання з визначенням їх точних розташувань завжди був важ-
ливим для ефективного керування системами розподілу води. Дослідження, 
засноване на моделі адаптивної нейронечіткої системи логічного висновку 
(ANFIS), розроблено для прогнозування аварій на мережі водопостачання міс-
та Києва (Україна). Модель ANFIS поєднано з генетичними алгоритмами та 
методами ройової оптимізації (ACO) та інтегрували в ГІС для візуалізації ре-
зультатів і визначення їх розташування. Прогнози оцінювали за такими крите-
ріями: середньої абсолютної похибки (MAE), середньої квадратичної похибки 
(RMSE) та коефіцієнтом детермінації (R2). Залежно від кількості та вигляду 
вхідних даних оптимізація ANFIS генетичними алгоритмами та алгоритмом 
ройової оптимізації (ACO) може в середньому збільшувати точність передба-
чення ANFIS на 10,1%, 11%. Отримані результати свідчать про те, що розроб-
лена гібридна модель може бути успішно застосована для прогнозування ава-
рій на мережах водопостачання. 

Ключові слова: геоінформаційні системи, ANFIS, ACO, GA, просторові 
об’єкти, просторово-часовий аналіз, втрати води. 

 


