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Abstract. Our current study extends previous work on motion-based biometric veri-
fication using sensory data by exploring new architectures and more complex input 
from various sensors. Biometric verification offers advantages like uniqueness and 
protection against fraud. The state-of-the-art transformer architecture in AI is known 
for its attention block and applications in various fields, including NLP and CV. We 
investigated its potential value for applications involving sensory data. The research 
proposes a hybrid architecture, integrating transformer attention blocks with differ-
ent autoencoders, to evaluate its efficacy for biometric verification and user authen-
tication. Various configurations were compared, including LSTM autoencoder, 
transformer autoencoder, LSTM VAE, and transformer VAE. Results showed that 
combining transformer blocks with an undercomplete deterministic autoencoder 
yields the best performance, but model performance is significantly influenced by 
data preprocessing and configuration parameters. The application of transformers for 
biometric verification and sensory data appears promising, performing on par with 
or surpassing LSTM-based models but with lower inference and training time. 

Keywords: biometric verification, transformers, variational autoencoder, trans-
former autoencoder. 

INTRODUCTION 

The usage of various deep learning algorithms boosted and enabled various AI 
and machine learning fields and applications. The biometric field was no excep-
tion, specifically with the growth and significant adoption of various electronic 
devices such as smartphones, bracelets, watches, etc. One of the important areas 
where biometric data is utilised is security, verification and authentication. Much 
research was conducted in this field to discover and provide deep learning archi-
tectures that will be able to build efficient and reliable systems feasible for usage 
in real life. 

Traditional methods, such as passwords and PINs, are prone to breaches and 
hacking, as well as are challenging to manage, which lead us to the exploration of 
more secure and user-friendly alternatives. However, the effectiveness of biomet-
ric verification is contingent on the ability to process and interpret complex bio-
metric data accurately. Deep learning approached, which can generalize over 
large data samples and be high-performant, is a solution to solve the problem. 
Specifically, combining autoencoders and transformer attention layers, a novel 
deep learning approach, has shown promise in enhancing the performance of bi-
ometric verification systems. However, this approach is still not widely presented 
in biometric verification and continuous authentication research. 

The relevance of this research lies in developing more secure and efficient 
user authentication methods. By enhancing the performance of biometric verifica-
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tion systems, we can provide a more secure and convenient alternative to tradi-
tional authentication methods. 

The object of this research is the application of autoencoders combined with 
transformer attention layers in biometric verification and continuous authentica-
tion. 

This study investigates the effectiveness of autoencoders combined with 
transformer attention layers for biometric verification and continuous authentica-
tion. We aim to assess whether this novel approach can improve the performance 
and efficiency of biometric verification systems, thereby contributing to the de-
velopment of more secure and user-friendly authentication methods.  

LITERATURE REVIEW  

In [1], the authors convey an in-depth survey on which deep learning and machine 
learning models are used for biometric verification. There is extensive research on 
hybrid models, such as extracting features with the CNN model and conducting 
authentication with some machine learning models, such as SVM or One-Class 
SVM or LSTM block with further Stochastic Gradient Descent (SGD) classifier. 
Another quite popular solution is using LSTM model architecture, which is self-
explainable as biometric in many cases is sensory data with a sequential structure. 
Specifically for the motion or gait patterns, the hybrid architecture LSTM + CNN 
is popular, which outperforms the LSTM or CNN separately [1; 2]. Overall it is 
noticed that hybrid architectures provide a boost in performance and are widely 
adopted in biometric authentication. It is worth noting that there is no clear dis-
tinction between supervised and unsupervised approaches in the paper, and all of 
them are compared altogether, which is essential for the context of the constraints 
and limitations of the implemented verification system. Our interest is in unsu-
pervised approaches as they provide a solution in real cases when there is no ac-
cess to other users’ data (as it will be due to data privacy), contrary to supervised 
models. 

The data nature causes the popularity of LSTM applications for sensory data, 
but not only recurrent architectures can handle sequences. The transformer archi-
tecture [3] was initially adopted in natural language processing (NLP) tasks and 
almost replaced the recurrent neural networks in that field [4]. 

Transformers’ way of consuming sequences provided faster training and in-
ference and better generalization capabilities for sequences as it does not have an 
issue of forgetting input in case of long input, as the sequence was consumed as a 
whole instantly and not chunk by chunk. On the other hand, the architecture re-
quires fixed sequence length and sequences with lengths higher than the model 
support will not be processed. As the transformers were great with sequence data 
— they slowly started being used in other fields, such as CV and time series. In 
the [5; 6], authors review the effectiveness of transformers for time series data 
and compare various transformer types, which show pretty decent results. 

Nevertheless, RNNs are still holding their place in the time series field, as 
they are better at capturing the autoregressive nature of time series signals. Both 
models have pros and cons, and at the end of the day, each can bring something to 
the table. In [7], authors show that LSTM with attention layer outperforms the 
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transformer-based model for time series tasks, which supports the idea that hybrid 
models create more performant and robust deep learning systems.  

In biometric fields, transformers were used for human activity recognition 
(HAR) problems [8; 9]. The authors proposed a HAR transformer, which solves 
the time series classification problem.  

The choice of the approach and model architecture for biometric verification 
depends on which type of authentication system we want to build. Authentication 
can be implicit and explicit, as well as continuous or more discrete. We are inter-
ested in implicit continuous authentication, generally the unsupervised approach. 
The overall model architecture used for such tasks is autoencoder. We have re-
viewed and experimented with the usage of autoencoders for biometric verifica-
tion tasks in our previous research [10]. In another paper, we reviewed which sen-
sor data signal contributes the most to creating a distinctive user pattern [11]. 

In [12], the VAE-based system was proposed to solve the text keystroke au-
thentication when the training is done on the English typing data and evaluating 
the Korean typing data from the same users. This may show that the model learns 
the pattern of the user uniqueness and not the different patterns related to activi-
ties. A deep LSTM-based autoencoder is proposed in [13] for anomaly detection 
in ECG signals. In contrast, in [14], adversarial autoencoder [15], which is the 
combination of autoencoder with generative adversarial networks (GAN), was 
used for the health monitoring of ECG and for detecting abnormal data points, 
which by the authors outperformed LSTM and VAE architectures. The autoen-
coder with attention mechanism, placed between encoder and decoder blocks to 
learn relations on the latent space feature representations, is proposed in [16] for 
ECG data anomaly detection. 

However, the LSTM-based architecture still was more performant and better 
at capturing time series data. In [17], the authors proposed the attentive adversar-
ial autoencoder for user authentication. Compared to approaches like one-class 
SVM, LSTM and HMM, the autoencoder-based solution achieved the highest 
performance in terms of qualitative metrics and time performance. In [18], the 
purely transformer-based architecture is used for detecting anomalies in ECG se-
ries, which is also shown to be a viable option. 

Autoencoder and its various modification of it are widely used and re-
searched in the area of intelligent fault diagnosis and prognosis for industrial sys-
tems [19]. In this area, autoencoders help to prevent system failure processing, 
like wind turbine equipment or other complex systems, processing the multiple 
modality data, such as acoustic and vibration signals [20]. Stacked autoencoder 
architecture is quite famous for fault diagnosis, where multiple encoders and de-
coders are stacked on top of each other, which may help the neural network to 
recognize data trends and patterns better. 

We want further review and experiment with various autoencoder-based ar-
chitecture sand specifically review the possibility of incorporating elements from 
other architecture to see whether it will impact the performance. As the trans-
former-based architecture is still state-of-the-art in many fields, though it was 
proposed some time ago, and multiple other research incorporate it for various 
biometric-related tasks, such as health monitoring – we would like to experiment 
with how it will impact metrics in biometric verification tasks, and whether it will 
reduce the inference time, as a transformer, due to the way how they process se-
quence should be faster than RNN. 
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MATERIALS AND METHODS 

As a baseline model with which we will compare other experiments, an LSTM 
autoencoder will be used.  The autoencoder is an artificial neural network for 
learning hidden internal representations and features of input data. It consists of 
two main parts: an encoder that compresses the input into a latent-space represen-
tation and a decoder which reconstructs the input from the latent space. During 
training autoencoder learns to minimize the difference between the input and the 
reconstructed output. The optimization task objective is to minimize this differ-
ence, called the reconstruction error: 

 

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where nxx ,,1   is data rows, and the functions d  and e represent the encoder 

and decoder, respectively, with some parameters   and  . 

Autoencoder can be considered as a high-level neural network architecture, 
as it does not limit what architectural elements should or should not be in the en-
coder and decoder. However, there are some types of autoencoders that specify 
some limitations on the architecture of the autoencoder or some of its configura-
tions. For example, a sparse autoencoder should have a dimension of latent space 
higher than the input dimension; the denoising autoencoder puts the requirement 
for adding noise to the input data; the contractive autoencoder specifies the opti-
mization loss. 

Variational Autoencoder (VAE) is somewhat different from other autoen-
coder types, as it maps the input data not to the fixed latent space representation, 
but the Gaussian distribution with some parameters (mean and variance). Thus, it 
allows us to present our input data points in probabilistic manner. This model ar-
chitecture is close to the generative AI algorithms we reconstruct our data sam-
pling it from out latent distribution, so in fact generating it [21]. 

The encoder part of the VAE is defined as: 
1. Encoder: 
   bhW * ; 

   bhW *)log( 2 . 

2. Reparameterization Trick: 

 z   , where ),0(~ IN . 

3. Decoder: 

 )()|( dec zfzxp  . 

4. Loss Function: 

 ))(||)/(()]/([log zPxzQDzxpEL KL , 

where h is the output of the encoder’s hidden layer; W , W , b , and b  are the 

weights and biases for the mean and log-variance, respectively; μ and σ are the 
mean and standard deviation of the latent variable z ; ε is a random variable sam-
pled from a standard normal distribution;   denotes element-wise multiplication; 
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decf  is the decoder function; )/( zxp  is the probability of the data given the la-
tent variable; )/( xzQ  is the approximate posterior distribution; )(zP  is the prior 

distribution (standard normal distribution in the case of VAEs); KLD (...) is the 
Kullback–Leibler divergence, which measures the difference between two prob-
ability distributions; ][E  denotes the expectation; L is the loss function that the 
VAE aims to minimize. 

These formulas represent the core of the VAE. The encoder generates the pa-
rameters of the latent variable’s distribution, the reparameterization trick is used 
to sample from this distribution, and the decoder generates the data from the sam-
pled latent variable. The loss function consists of the reconstruction loss (the first 
term) and the regularization term (the second term). 

Neural network building blocks. As autoencoder is a high-level architec-
ture – it may be constructed from any neural network units which are suitable for 
the given problem and data input. 

Long Short-Term Memory (LSTM). LSTM is a type of recurrent neural 
network (RNN) that can learn and remember over long sequences and is not that 
by the vanishing gradient problem, as just RNN. It achieves this by using a series 
of “gates”. These blocks collectively decide what information should be kept or 
discarded. 

The LSTM cell can be defined by the following set of equations: 
Forget gate:  

 )),(*( 1 fttft bxhWf   . 

Input gate:  

 )),(*( 1 ittit bxhWi   . 

Cell update:  

 )),(*tanh( 1 cttct bxhWC  


. 

New cell:  

 ttttt CiCfC


** 1   . 

Output gate:  

)),(*( 1 ottot bxhWo   . 
New hidden state: 

 )tanh(* ttt Coh  . 

Where   is the sigmoid function, ),( 1 tt xh   denotes the concatenation of the 

input vector tx  and the previous hidden state 1th  , and W and b are the weight 
matrices and bias vectors. 

Transformers (attention unit). Transformers are a type of model that uses 
self-attention mechanisms and are particularly effective for tasks involving se-
quential data. Unlike RNNs, transformers do not require that the sequence data be 
processed in order, thus allowing for parallel processing of the data. 

The self-attention mechanism in transformers can be defined as: 

 XWVXWKXWQ vkq *,*,*  . 
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Where Q, K, and V are the query, key, and value vectors, and kd  is the di-
mension of the key vector. The softmax function ensures that the weights of the 
different positions sum to 1. 

EXPERIMENTS 

Dataset. Open-source dataset [22–24], a large-scale user study with 100 volun-
teers to collect a wide spectrum of signals about smartphone user behaviors, in-
cluding touch, gesture, and pausality of the user, as well as movement and orien-
tation of the phone. Data from three usage scenarios on smartphones were 
recorded: 1) document reading; 2) text production; 3) navigation on a map to lo-
cate a destination. 

The dataset contains multiple modalities input from various sensors. For our 
experimentation, we selected the accelerometer, gyroscope and magnetometer 
inputs in the dataset. 

The dataset contains multiple activities, such as read and walking, read and 
sitting, write and walking, write and sitting, navigate the map and walking and 
navigate the map and sitting – overall 6 activity types. We have trained our models 
on some selected activity type, as well as on activity pair, like reading, navigating 
the map or writing and activity triplet, like sitting or walking. 

For deep learning models, we split data in overlapping on 50 percent win-
dows with a sampling of 100Hz and a length of 1s. 

The original dataset is split into a 20% share for the test set and the rest for 
the train. 

We preprocessed data in 2 ways: standart dcaling and min-max normalizing. 
 Sensors description. An accelerometer measures changes in velocity along 

one axis. The values reported by the accelerometers are measured in increments 
of the gravitational acceleration, with the value 1.0 representing an acceleration of 
9.8 meters per second in the given direction. Depending on the direction of the 
acceleration, the sensor values may be positive or negative. A gyroscope meas-
ures the rate at which a device rotates around a spatial axis and is used to detect or 
measure direction. The magnetometer measures the strength of the magnetic field 
surrounding the device, allowing us to detect the device’s orientation correctly 
[25; 26].  

Metrics. The threshold formula was used as in [10]: 

 



N

i
i

i MAEstdN
MAET

1

)( , 

where MAE is the mean absolute error between ground truth and predicted 
sample; std – standard deviation; and N is the number of samples in the training 
dataset. 

As model evaluation metrics [27], the EER (equal error rate); FAR (false ac-
cept rate) and FRR (false reject rate) were chosen, which are typical for assessing 
the biometric system quality: 
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 TNFP/FPFPRFAR  ; 

 FNFN/TPFNRFRR  . 

Equal error rate is obtained by adjusting the system’s detection threshold to 
equalize FAR and FRR. The EER is calculated using the following formula: 

 FRR/2FAREER  , 

where |FRRFAR|   is the smallest value [27]. 

The models were coded and trained in Python using Keras library with Ten-
sorflow backend. 

All models were trained in 20 epochs with Adam optimiser on the GeForce 
RTX 2070 GPU.  

The architecture of transformer-based hybrid autoencoder used for experi-
ments illustrated in Fig. 1.  

The LSTM autoencoder architecture with which the transformer-based auto-
encoder was compared is illustrated on Fig. 2. 

Fig. 1. Architecture of transformer-based hybrid autoencoder: a — the high-level 
autoencoder architecture with transformer encoder; b — the internal structure of 
transformer-based encoder with attention units 

a b

Fig. 2. LSTM autoencoder architecture
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RESULTS 

The experimentation results can be reviewed in the tables below.  
The results for the single activity with standart scaling data preprocessing 

and variational-based autoencoders can be reviewed in Table 1. In Table 2 we can 
view the model performance for activity pairs, and results for acitivy triplet in 
Table 3. For the deterministic models the data was processed with min-max nor-
malization. 

As well we can view the performance time for training and inference for 
models in Table 4.  Overall in each exeperiment for each chosen activity set data 
100 model were trained. 

T a b l e  1 . Average EER, FAR, FRR for 100 users for single activity 

Model architecture  Average EER Average FAR Average FRR 

Single activity — write and sitting 

LSTM VAE 5.10% 14.25% 3.28% 

Transformer-VAE 4.20% 12.95% 1.72% 
 

T a b l e  2 . Average EER, FAR, FRR for 100 users for activity pairs 

Model architecture  Average EER Average FAR Average FRR 

Activity Pair — write and walking, write and sitting 

LSTM AE 5.21% 13.30% 3.37% 

Transformer AE 4.22% 13.93% 1.76% 

Activity Pair – map and walking, map and sitting 

LSTM AE 6.74% 14.39% 5.00% 

Transformer AE 5.87% 13.24% 3.42% 
 

T a b l e  3 . Average EER, FAR, FRR for 100 users for activity triplet 

Model architecture  Average EER Average FAR Average FRR 

Activity Triplet — read and sitting, write and sitting, map and sitting 

LSTM AE 1.26% 12.38% 0.06% 

Transformer AE 1.61% 10.97% 0.14% 

Activity Triplet – read and walking, write and walking, map and walking 

LSTM AE 9.10% 12.66% 9.51% 

Transformer AE 6.47% 12.37% 4.81% 
 

T a b l e  4 . Average training and inference time for 100 users for sitting activity 
triplet 

Model architecture  Training Time (s)  Inference Time (s) 

LSTM AE (MSE loss) 90.67 43.32 

Transformer-AE (MSE loss) 82.22 29.61 

Difference 9.32% 31.65% 
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DISCUSSION 

The obtained experiments results showed us that transformer architecture, specifi-
cally its central architectural unit as attention, provides performance improvement 
for the biometric verification task in the case of deterministic model version or 
generative (variational). The transformer-based autoencoder outperformed the 
LSTM based one in the case of training on single activity and activity pairs, 
which confirmed that the model performance is stable over different data inputs. 

Though on sitting activity triplet, the LSTM AE slightly outperformed the 
Transformer AE in terms of EER and FRR but had a higher FAR rate. It shows us 
that the LSTM can generalize better with a larger train data sample. However, as 
well showing us that transformer-based autoencoders can generalize on smaller 
amounts of data. 

It is worth noting that the transformer is significantly faster than the LSTM 
based model in terms of training and inference time; therefore, it is a much better 
fit for the edge devices like smartphones or smartwatches, where such models will 
be applied. 

During the experimentation, we were also trying different losses and data 
preprocessing approaches and figured out that models are susceptible to the scale 
of the data input. The insightful observation was that deterministic models are 
great for generalization in the case of data normalization with min-max. However, 
in the case of standard scaling, the variational version generalizes better, which 
can happen due to multiple factors. First, min-max transformation can distort the 
data distribution in case of significant outliers in data; therefore, variational auto-
encoder that samples from Gaussian distribution with mean and variance will not 
be able to learn on the data that do not follow Gaussian distribution. On the other 
hand, the reason why deterministic models could not generalize well on standard 
scaled data was due to using as input multiple sensor signals, which may have 
different ranges and make it harder for neural networks that are sensitive to the 
range caused by the tanh activation function. Though this observation should be 
rigorously tested, it provides insights into how the data should be preprocessed for 
different architectures and how strongly the data format is coupled with the neural 
network. 

CONCLUSIONS 

We have conducted various experiments in this research and proposed and ana-
lysed the hybrid transformer-based autoencoder model architecture. The model 
was high-performant compared to the LSTM-based architecture and robust with 
different data inputs regarding amount and activity types. 

Overall more than 800 neural networks were trained during the experi-
mentation. 

We have noticed that although the model architecture plays a significant part 
in the final metrics, the data pre-processing step is critical, and we cannot expect 
from deep learning model to generalise without preliminary steps. Depending on 
model internals, we should keep an eye on the validity of data distribution and the 
presence of noise and outliers in the dataset. Model type and data may also impact 
the selection of optimised losses, such as the used in our models’ mean squared 
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error or mean absolute error, which is more robust to the outliers, or the combina-
tion of both losses like Huber loss. During experimentation, we noticed that opti-
mised loss may significantly add to the model’s generalisation ability. However, 
this observation should be researched further to understand how model architec-
ture connects with the different loss functions. 

As further steps – we may consider creating the ensemble of the models in 
order to achieve the highest possible metric value. We can see that treating a neu-
ral network as a weak learner is possible. Though, it has a considerable amount of 
parameters – the discussion in the machine learning community makes us believe 
that it should be the auspicious direction in further neural network architecture 
development. 
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ДОСЛІДЖЕННЯ ГІБРИДНИХ АВТОКОДУВАЛЬНИКІВ З ВИКОРИСТАННЯМ 
ТРАНСФОРМЕРІВ ДЛЯ БІОМЕТРИЧНОЇ ВЕРИФІКАЦІЇ КОРИСТУВАЧА / 
М.П. Гаврилович, В.Я. Данилов 

Анотація.  У дослідженні розширено попередню працю з біометричної вери-
фікакції на основі руху з використанням сенсорних даних шляхом досліджен-
ня нових архітектур та більш складних даних від різних датчиків. Біометрична 
верифікація дає такі переваги, як унікальність для кожного користувача і за-
хист від шахрайства. Архітектура трансформера, одна з найсучасніших у сфері 
штучного інтелекту, відома своїм юнітом уваги та застосуванням у різних сфе-
рах, включаючи NLP та CV. У праці досліджено її потенційну цінність для 
додатків, які обробляють сенсорні дані. Дослідження пропонує гібридну 
архітектуру, що об’єднує блоки уваги від трансформера з різними автокодува-
льниками, щоб оцінити її ефективність для біометричної верифікації та аутен-
тифікації користувача. Порівняно різні конфігурації, включно з автокодуваль-
ником LSTM, автокодувальником на базі трансформера, LSTM VAE і VAE на 
основі трансформера. Результати показали, що поєднання блоків трансформе-
ра із неповним детермінованим автокодувальником дає найкращі метрики, але 
на показники моделі також значно впливають попереднє оброблення даних і 
параметри конфігурації алгоритму. Застосування трансформерів для біометри-
чної верифікації та сенсорних даних виглядає багатообіцяльним, за метри-
ками нарівні з моделями на основі LSTM або перевершуючи їх, проте з мен-
шими часом обробленням сигналу і навчання моделі. 

Ключові слова: біометрична верифікація, транформери, варіаційний автоко-
дувальник, автокодувальник на основі трансфомера. 

 
 


