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RESEARCH ON HYBRID TRANSFORMER-BASED
AUTOENCODERS FOR USER BIOMETRIC VERIFICATION

M.P. HAVRYLOVYCH, V.Y. DANYLOV

Abstract. Our current study extends previous work on motion-based biometric veri-
fication using sensory data by exploring new architectures and more complex input
from various sensors. Biometric verification offers advantages like uniqueness and
protection against fraud. The state-of-the-art transformer architecture in Al is known
for its attention block and applications in various fields, including NLP and CV. We
investigated its potential value for applications involving sensory data. The research
proposes a hybrid architecture, integrating transformer attention blocks with differ-
ent autoencoders, to evaluate its efficacy for biometric verification and user authen-
tication. Various configurations were compared, including LSTM autoencoder,
transformer autoencoder, LSTM VAE, and transformer VAE. Results showed that
combining transformer blocks with an undercomplete deterministic autoencoder
yields the best performance, but model performance is significantly influenced by
data preprocessing and configuration parameters. The application of transformers for
biometric verification and sensory data appears promising, performing on par with
or surpassing LSTM-based models but with lower inference and training time.

Keywords: biometric verification, transformers, variational autoencoder, trans-
former autoencoder.

INTRODUCTION

The usage of various deep learning algorithms boosted and enabled various Al
and machine learning fields and applications. The biometric field was no excep-
tion, specifically with the growth and significant adoption of various electronic
devices such as smartphones, bracelets, watches, etc. One of the important areas
where biometric data is utilised is security, verification and authentication. Much
research was conducted in this field to discover and provide deep learning archi-
tectures that will be able to build efficient and reliable systems feasible for usage
in real life.

Traditional methods, such as passwords and PINs, are prone to breaches and
hacking, as well as are challenging to manage, which lead us to the exploration of
more secure and user-friendly alternatives. However, the effectiveness of biomet-
ric verification is contingent on the ability to process and interpret complex bio-
metric data accurately. Deep learning approached, which can generalize over
large data samples and be high-performant, is a solution to solve the problem.
Specifically, combining autoencoders and transformer attention layers, a novel
deep learning approach, has shown promise in enhancing the performance of bi-
ometric verification systems. However, this approach is still not widely presented
in biometric verification and continuous authentication research.

The relevance of this research lies in developing more secure and efficient
user authentication methods. By enhancing the performance of biometric verifica-
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tion systems, we can provide a more secure and convenient alternative to tradi-
tional authentication methods.

The object of this research is the application of autoencoders combined with
transformer attention layers in biometric verification and continuous authentica-
tion.

This study investigates the effectiveness of autoencoders combined with
transformer attention layers for biometric verification and continuous authentica-
tion. We aim to assess whether this novel approach can improve the performance
and efficiency of biometric verification systems, thereby contributing to the de-
velopment of more secure and user-friendly authentication methods.

LITERATURE REVIEW

In [1], the authors convey an in-depth survey on which deep learning and machine
learning models are used for biometric verification. There is extensive research on
hybrid models, such as extracting features with the CNN model and conducting
authentication with some machine learning models, such as SVM or One-Class
SVM or LSTM block with further Stochastic Gradient Descent (SGD) classifier.
Another quite popular solution is using LSTM model architecture, which is self-
explainable as biometric in many cases is sensory data with a sequential structure.
Specifically for the motion or gait patterns, the hybrid architecture LSTM + CNN
is popular, which outperforms the LSTM or CNN separately [1; 2]. Overall it is
noticed that hybrid architectures provide a boost in performance and are widely
adopted in biometric authentication. It is worth noting that there is no clear dis-
tinction between supervised and unsupervised approaches in the paper, and all of
them are compared altogether, which is essential for the context of the constraints
and limitations of the implemented verification system. Our interest is in unsu-
pervised approaches as they provide a solution in real cases when there is no ac-
cess to other users’ data (as it will be due to data privacy), contrary to supervised
models.

The data nature causes the popularity of LSTM applications for sensory data,
but not only recurrent architectures can handle sequences. The transformer archi-
tecture [3] was initially adopted in natural language processing (NLP) tasks and
almost replaced the recurrent neural networks in that field [4].

Transformers’ way of consuming sequences provided faster training and in-
ference and better generalization capabilities for sequences as it does not have an
issue of forgetting input in case of long input, as the sequence was consumed as a
whole instantly and not chunk by chunk. On the other hand, the architecture re-
quires fixed sequence length and sequences with lengths higher than the model
support will not be processed. As the transformers were great with sequence data
— they slowly started being used in other fields, such as CV and time series. In
the [5; 6], authors review the effectiveness of transformers for time series data
and compare various transformer types, which show pretty decent results.

Nevertheless, RNNs are still holding their place in the time series field, as
they are better at capturing the autoregressive nature of time series signals. Both
models have pros and cons, and at the end of the day, each can bring something to
the table. In [7], authors show that LSTM with attention layer outperforms the
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transformer-based model for time series tasks, which supports the idea that hybrid
models create more performant and robust deep learning systems.

In biometric fields, transformers were used for human activity recognition
(HAR) problems [8; 9]. The authors proposed a HAR transformer, which solves
the time series classification problem.

The choice of the approach and model architecture for biometric verification
depends on which type of authentication system we want to build. Authentication
can be implicit and explicit, as well as continuous or more discrete. We are inter-
ested in implicit continuous authentication, generally the unsupervised approach.
The overall model architecture used for such tasks is autoencoder. We have re-
viewed and experimented with the usage of autoencoders for biometric verifica-
tion tasks in our previous research [10]. In another paper, we reviewed which sen-
sor data signal contributes the most to creating a distinctive user pattern [11].

In [12], the VAE-based system was proposed to solve the text keystroke au-
thentication when the training is done on the English typing data and evaluating
the Korean typing data from the same users. This may show that the model learns
the pattern of the user uniqueness and not the different patterns related to activi-
ties. A deep LSTM-based autoencoder is proposed in [13] for anomaly detection
in ECG signals. In contrast, in [14], adversarial autoencoder [15], which is the
combination of autoencoder with generative adversarial networks (GAN), was
used for the health monitoring of ECG and for detecting abnormal data points,
which by the authors outperformed LSTM and VAE architectures. The autoen-
coder with attention mechanism, placed between encoder and decoder blocks to
learn relations on the latent space feature representations, is proposed in [16] for
ECG data anomaly detection.

However, the LSTM-based architecture still was more performant and better
at capturing time series data. In [17], the authors proposed the attentive adversar-
ial autoencoder for user authentication. Compared to approaches like one-class
SVM, LSTM and HMM, the autoencoder-based solution achieved the highest
performance in terms of qualitative metrics and time performance. In [18], the
purely transformer-based architecture is used for detecting anomalies in ECG se-
ries, which is also shown to be a viable option.

Autoencoder and its various modification of it are widely used and re-
searched in the area of intelligent fault diagnosis and prognosis for industrial sys-
tems [19]. In this area, autoencoders help to prevent system failure processing,
like wind turbine equipment or other complex systems, processing the multiple
modality data, such as acoustic and vibration signals [20]. Stacked autoencoder
architecture is quite famous for fault diagnosis, where multiple encoders and de-
coders are stacked on top of each other, which may help the neural network to
recognize data trends and patterns better.

We want further review and experiment with various autoencoder-based ar-
chitecture sand specifically review the possibility of incorporating elements from
other architecture to see whether it will impact the performance. As the trans-
former-based architecture is still state-of-the-art in many fields, though it was
proposed some time ago, and multiple other research incorporate it for various
biometric-related tasks, such as health monitoring — we would like to experiment
with how it will impact metrics in biometric verification tasks, and whether it will
reduce the inference time, as a transformer, due to the way how they process se-
quence should be faster than RNN.
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MATERIALS AND METHODS

As a baseline model with which we will compare other experiments, an LSTM
autoencoder will be used. The autoencoder is an artificial neural network for
learning hidden internal representations and features of input data. It consists of
two main parts: an encoder that compresses the input into a latent-space represen-
tation and a decoder which reconstructs the input from the latent space. During
training autoencoder learns to minimize the difference between the input and the
reconstructed output. The optimization task objective is to minimize this differ-
ence, called the reconstruction error:

E= \/iuxi ~dg(ep(x,))
i=1

where xj,...,x, is data rows, and the functions d,, and e, represent the encoder

b

and decoder, respectively, with some parameters ¢ and 6.

Autoencoder can be considered as a high-level neural network architecture,
as it does not limit what architectural elements should or should not be in the en-
coder and decoder. However, there are some types of autoencoders that specify
some limitations on the architecture of the autoencoder or some of its configura-
tions. For example, a sparse autoencoder should have a dimension of latent space
higher than the input dimension; the denoising autoencoder puts the requirement
for adding noise to the input data; the contractive autoencoder specifies the opti-
mization loss.

Variational Autoencoder (VAE) is somewhat different from other autoen-
coder types, as it maps the input data not to the fixed latent space representation,
but the Gaussian distribution with some parameters (mean and variance). Thus, it
allows us to present our input data points in probabilistic manner. This model ar-
chitecture is close to the generative Al algorithms we reconstruct our data sam-
pling it from out latent distribution, so in fact generating it [21].

The encoder part of the VAE is defined as:

1. Encoder:

w=Ww,*h+b,;
log(c?) =W, *h+b, .
2. Reparameterization Trick:
z=u+0 O g, where e~ N(0,]).
3. Decoder:
P(x[2) = fhec(2)-

4. Loss Function:
L = Eflog p(x/z)]— Dg; (Q(z/ x)[| P(2)),
where / is the output of the encoder’s hidden layer; Wu’ Ws, bu ,and by are the

weights and biases for the mean and log-variance, respectively; pu and o are the
mean and standard deviation of the latent variable z; ¢ is a random variable sam-
pled from a standard normal distribution; © denotes element-wise multiplication;
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fdec 18 the decoder function; p(x/z) is the probability of the data given the la-
tent variable; Q(z/x) is the approximate posterior distribution; P(z) is the prior
distribution (standard normal distribution in the case of VAEs); Dy, (...) is the
Kullback-Leibler divergence, which measures the difference between two prob-
ability distributions; E[...] denotes the expectation; L is the loss function that the
VAE aims to minimize.

These formulas represent the core of the VAE. The encoder generates the pa-
rameters of the latent variable’s distribution, the reparameterization trick is used
to sample from this distribution, and the decoder generates the data from the sam-
pled latent variable. The loss function consists of the reconstruction loss (the first
term) and the regularization term (the second term).

Neural network building blocks. As autoencoder is a high-level architec-
ture — it may be constructed from any neural network units which are suitable for
the given problem and data input.

Long Short-Term Memory (LSTM). LSTM is a type of recurrent neural
network (RNN) that can learn and remember over long sequences and is not that
by the vanishing gradient problem, as just RNN. It achieves this by using a series
of “gates”. These blocks collectively decide what information should be kept or
discarded.

The LSTM cell can be defined by the following set of equations:

Forget gate:

Ji=oWp*(h_1,x,)+by).

Input gate:
i =c(W;*(h_1,x,)+b,) .
Cell update:
C, = tanh(W, *(h,_;,x,)+b,) .
New cell:
C,=f*C +i*C,.
Output gate:

o, =W, *(h_,x)+b,).
New hidden state:
h, = o, *tanh(C,).
Where o is the sigmoid function, (4,_;,x,) denotes the concatenation of the
input vector x, and the previous hidden state /,_; , and W and b are the weight

matrices and bias vectors.

Transformers (attention unit). Transformers are a type of model that uses
self-attention mechanisms and are particularly effective for tasks involving se-
quential data. Unlike RNNSs, transformers do not require that the sequence data be
processed in order, thus allowing for parallel processing of the data.

The self-attention mechanism in transformers can be defined as:

Q=Wq*X,K=Wk*X,V=Wv*X.
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x T

A

Where O, K, and V are the query, key, and value vectors, and d, is the di-

mension of the key vector. The softmax function ensures that the weights of the
different positions sum to 1.

Attention(Q, K ,V') = soft max *V.

EXPERIMENTS

Dataset. Open-source dataset [22—24], a large-scale user study with 100 volun-
teers to collect a wide spectrum of signals about smartphone user behaviors, in-
cluding touch, gesture, and pausality of the user, as well as movement and orien-
tation of the phone. Data from three usage scenarios on smartphones were
recorded: 1) document reading; 2) text production; 3) navigation on a map to lo-
cate a destination.

The dataset contains multiple modalities input from various sensors. For our
experimentation, we selected the accelerometer, gyroscope and magnetometer
inputs in the dataset.

The dataset contains multiple activities, such as read and walking, read and
sitting, write and walking, write and sitting, navigate the map and walking and
navigate the map and sitting — overall 6 activity types. We have trained our models
on some selected activity type, as well as on activity pair, like reading, navigating
the map or writing and activity triplet, like sitting or walking.

For deep learning models, we split data in overlapping on 50 percent win-
dows with a sampling of 100Hz and a length of 1s.

The original dataset is split into a 20% share for the test set and the rest for
the train.

We preprocessed data in 2 ways: standart dcaling and min-max normalizing.

Sensors description. An accelerometer measures changes in velocity along
one axis. The values reported by the accelerometers are measured in increments
of the gravitational acceleration, with the value 1.0 representing an acceleration of
9.8 meters per second in the given direction. Depending on the direction of the
acceleration, the sensor values may be positive or negative. A gyroscope meas-
ures the rate at which a device rotates around a spatial axis and is used to detect or
measure direction. The magnetometer measures the strength of the magnetic field
surrounding the device, allowing us to detect the device’s orientation correctly
[25; 26].

Metrics. The threshold formula was used as in [10]:

N
T- ZMAE%V +std(MAE,) ,
i=1

where MAE is the mean absolute error between ground truth and predicted
sample; std — standard deviation; and N is the number of samples in the training
dataset.

As model evaluation metrics [27], the EER (equal error rate); FAR (false ac-
cept rate) and FRR (false reject rate) were chosen, which are typical for assessing
the biometric system quality:
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FAR =FPR =FP/FP+TN;
FRR =FNR =FN/TP +FN.

Equal error rate is obtained by adjusting the system’s detection threshold to
equalize FAR and FRR. The EER is calculated using the following formula:

EER =FAR+FRR/2,

where | FAR + FRR | is the smallest value [27].

The models were coded and trained in Python using Keras library with Ten-
sorflow backend.

All models were trained in 20 epochs with Adam optimiser on the GeForce
RTX 2070 GPU.

The architecture of transformer-based hybrid autoencoder used for experi-
ments illustrated in Fig. 1.

Layer Normalization

Input Layer: Shape = (None, 100, 9) Multi-Head Attention

Transformer Block (x2) Dropout
. Addition (Dropout output + Previous
Global Average Pooling : DL':’tpuﬂln;flt}

Layer Normalization

Dense: Units = 32

Conv1D: Filters = 12, Kernel size =1

Dropout

Dropout

Dense: Units =9 _ ]
ConviD: Filters =9, Kernel size =1

output from the start of the block)

a b
Fig. 1. Architecture of transformer-based hybrid autoencoder: a — the high-level
autoencoder architecture with transformer encoder; b — the internal structure of
transformer-based encoder with attention units

The LSTM autoencoder architecture with which the transformer-based auto-
encoder was compared is illustrated on Fig. 2.

Input Layer: Shape = (Mone, 100, 8)

LSTM Layer: 50 units ("tanh")

Repeat Vector: n = 100

Dropout: 0.2

LSTM Layer: 25 units ("tanh")

LSTM Layer: 50 units ("tanh")

TimeDistributed Dense: 9 units

Fig. 2. LSTM autoencoder architecture
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RESULTS

The experimentation results can be reviewed in the tables below.

The results for the single activity with standart scaling data preprocessing
and variational-based autoencoders can be reviewed in Table 1. In Table 2 we can
view the model performance for activity pairs, and results for acitivy triplet in
Table 3. For the deterministic models the data was processed with min-max nor-
malization.

As well we can view the performance time for training and inference for
models in Table 4. Overall in each exeperiment for each chosen activity set data
100 model were trained.

Table 1. Average EER, FAR, FRR for 100 users for single activity

Model architecture Average EER Average FAR Average FRR
Single activity — write and sitting
LSTM VAE 5.10% 14.25% 3.28%
Transformer-VAE 4.20% 12.95% 1.72%

Table 2. Average EER, FAR, FRR for 100 users for activity pairs

Model architecture Average EER Average FAR Average FRR
Activity Pair — write and walking, write and sitting
LSTM AE 5.21% 13.30% 3.37%
Transformer AE 4.22% 13.93% 1.76%
Activity Pair — map and walking, map and sitting
LSTM AE 6.74% 14.39% 5.00%
Transformer AE 5.87% 13.24% 3.42%

Table 3. Average EER, FAR, FRR for 100 users for activity triplet

Model architecture Average EER Average FAR Average FRR
Activity Triplet — read and sitting, write and sitting, map and sitting
LSTM AE 1.26% 12.38% 0.06%
Transformer AE 1.61% 10.97% 0.14%
Activity Triplet — read and walking, write and walking, map and walking
LSTM AE 9.10% 12.66% 9.51%
Transformer AE 6.47% 12.37% 4.81%

Table 4. Average training and inference time for 100 users for sitting activity
triplet

Model architecture Training Time (S) Inference Time (S)
LSTM AE (MSE loss) 90.67 43.32
Transformer-AE (MSE loss) 82.22 29.61
Difference 9.32% 31.65%
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DISCUSSION

The obtained experiments results showed us that transformer architecture, specifi-
cally its central architectural unit as attention, provides performance improvement
for the biometric verification task in the case of deterministic model version or
generative (variational). The transformer-based autoencoder outperformed the
LSTM based one in the case of training on single activity and activity pairs,
which confirmed that the model performance is stable over different data inputs.

Though on sitting activity triplet, the LSTM AE slightly outperformed the
Transformer AE in terms of EER and FRR but had a higher FAR rate. It shows us
that the LSTM can generalize better with a larger train data sample. However, as
well showing us that transformer-based autoencoders can generalize on smaller
amounts of data.

It is worth noting that the transformer is significantly faster than the LSTM
based model in terms of training and inference time; therefore, it is a much better
fit for the edge devices like smartphones or smartwatches, where such models will
be applied.

During the experimentation, we were also trying different losses and data
preprocessing approaches and figured out that models are susceptible to the scale
of the data input. The insightful observation was that deterministic models are
great for generalization in the case of data normalization with min-max. However,
in the case of standard scaling, the variational version generalizes better, which
can happen due to multiple factors. First, min-max transformation can distort the
data distribution in case of significant outliers in data; therefore, variational auto-
encoder that samples from Gaussian distribution with mean and variance will not
be able to learn on the data that do not follow Gaussian distribution. On the other
hand, the reason why deterministic models could not generalize well on standard
scaled data was due to using as input multiple sensor signals, which may have
different ranges and make it harder for neural networks that are sensitive to the
range caused by the tanh activation function. Though this observation should be
rigorously tested, it provides insights into how the data should be preprocessed for
different architectures and how strongly the data format is coupled with the neural
network.

CONCLUSIONS

We have conducted various experiments in this research and proposed and ana-
lysed the hybrid transformer-based autoencoder model architecture. The model
was high-performant compared to the LSTM-based architecture and robust with
different data inputs regarding amount and activity types.

Overall more than 800 neural networks were trained during the experi-
mentation.

We have noticed that although the model architecture plays a significant part
in the final metrics, the data pre-processing step is critical, and we cannot expect
from deep learning model to generalise without preliminary steps. Depending on
model internals, we should keep an eye on the validity of data distribution and the
presence of noise and outliers in the dataset. Model type and data may also impact
the selection of optimised losses, such as the used in our models’ mean squared
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error or mean absolute error, which is more robust to the outliers, or the combina-
tion of both losses like Huber loss. During experimentation, we noticed that opti-
mised loss may significantly add to the model’s generalisation ability. However,
this observation should be researched further to understand how model architec-
ture connects with the different loss functions.

As further steps — we may consider creating the ensemble of the models in
order to achieve the highest possible metric value. We can see that treating a neu-
ral network as a weak learner is possible. Though, it has a considerable amount of
parameters — the discussion in the machine learning community makes us believe
that it should be the auspicious direction in further neural network architecture
development.
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AOC/IUKEHHS I'IBPUIHUX ABTOKOAYBAJIbHUKIB 3 BUKOPUCTAHHSM
TPAHC®OPMEPIB JJIsI BIOMETPUYHOI BEPU®IKAILII KOPUCTYBAYA /
MLIIL. I'aBpuiioBuy, B.4. Janmios

AHoTamisi. Y IDOCIIDKEHHI PO3MIUPEHO HOIEPEAHIO Mpamio 3 6ioMeTpHYHOI BepH-
¢ikaxuii Ha OCHOBI PyXy 3 BUKOPHCTaHHSIM CEHCOPHHUX HAaHHX IIUIIXOM JOCIIJKEH-
Hsl HOBUX apXITEKTyp Ta OUIBII CKJIaIHUX JAQHUX BijJ Pi3HUX JaT4MKiB. biomerpruna
Bepudikalist Jae Taki IepeBary, K YHIKaJIbHICTh Ui KOXKHOTO KOPHCTyBaya i 3a-
XHCT Bij maxpaiictBa. ApxitekTypa Tpanchopmepa, ofHa 3 HalcydacHIuxX y cdepi
LITyYHOTO 1HTEJIEKTY, BiZIOMa CBOIM IOHITOM yBard Ta 3aCTOCYBaHHSIM y pi3HHX cde-
pax, Bkmtodaroud NLP ta CV. V mpani mocnimkeHo i mOTeHUiHHY WiHHICTH A
JOJATKIB, sIKi 0OpOOJAIOTE CEeHCOpHI JAaHi. JloCHimkeHHs NPONOHYyE TiOpHIHY
apxIiTEeKTypy, o 00’ €aHye OIOKH yBaru Bix TpaHC(opMepa 3 Pi3HUMH aBTOKOIyBa-
JIbHUKAaMH, 00 OLiHKUTH 11 eheKTUBHICTH Ui OioMeTpHYHOI Bepudikarii Ta ayTeH-
Tudikamii kopucrysaya. [TopiBHSIHO pi3Hi KOH(DIrypamii, BKIIOYHO 3 aBTOKOIyBallb-
nukom LSTM, aBTokomyBanpHHKOM Ha 6a3i Tpanchopmepa, LSTM VAE i VAE na
ocHOBI TpaHcgopmepa. Pe3ysbpraTi nokasaiH, 0 MOoeAHAHHS OJI0KIB TpaHchopMme-
pa i3 HeTIOBHUM JETEPMiHOBAaHUM aBTOKOIYBaJIbHUKOM J[a€ HAMKpAaIlli MCTPHKH, aje
Ha TIOKa3HUKH MOJEJI TakoX 3HAYHO BIUIMBAIOTH TOIEpenHe O0OpoOIeHHs DaHHX i
napameTpy KoHQiryparii anroput™y. 3acTocyBaHHs TpaHCGopMepiB ais GiomMeTpH-
9HOT BepHdiKalii Ta CCHCOPHUX JTaHUX BUTIIANAE 0araToOoOIlSsIIBHAM, 32 METPH-
KaMH HapiBHI 3 MojeasiMu Ha ocHoBI LSTM abo mepeBepinyroun ix, mpoTe 3 MCH-
HIMMH YacOM O0OpOOJICHHSIM CHTHAITY | HABUQHHS MOZETI.

KunrodoBi cioBa: Giomerpuuna Bepudikamnis, TpanGopMepH, BapialiifHUI aBTOKO-
IyBaJILHUK, aBTOKO/yBaJIbHUK Ha OCHOBI TpaHC(oMepa.
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