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A GENETIC ALGORITHM IMPROVEMENT BY TOUR
CONSTRAINT VIOLATION PENALTY DISCOUNT FOR
MARITIME CARGO DELIVERY
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Abstract. The problem of minimizing the cost of maritime cargo delivery is consid-
ered. The cost is equivalent to the sum of the tour lengths of feeders used for the de-
livery. The problem is formulated as a multiple traveling salesman problem. In order
to find its solution as the shortest route of the tours of feeders, a genetic algorithm is
used where we present two inequalities constraining the tour length of every feeder
to lie between the shortest and longest lengths. Apart from the constant tour con-
straint violation penalty in the genetic algorithm, we suggest a changeable penalty as
an exponential function of the algorithm iteration, where we maintain the possibility
of the penalty rate to be either increasing or decreasing, whose steepness is con-
trolled by a positive parameter. Our tests show that the changeable penalty algorithm
may return shorter routes, although the constant penalty algorithms cannot be ne-
glected. As the longest possible tour of the feeder is shortened, the changeable pen-
alty becomes more useful owing to a penalty discount required either at the begin-
ning or at the end of the algorithm run to improve the selectivity of the best feeder
tours. In optimizing maritime cargo delivery, we propose to run the genetic algo-
rithm by the low and constant penalties along with the increasing and decreasing
penalties. The solution is the minimal value of the four route lengths. In addition, we
recommend that four algorithm versions be initialized by four different pseudoran-
dom number generator states. The expected gain is a few percent, by which the route
length is shortened, but it substantially reduces expenses for maritime cargo delivery.

Keywords: maritime cargo delivery, tour length, genetic algorithm, tour constraint
violation penalty, penalty discount.

INTRODUCTION

The up-to-date market of cargo delivery is divided into three branches of trans-
portation: ground-surface, water, and air. Among them the water transportation
has been the most used. In general, this is the maritime transportation which is the
basis of the world trading and commerce. Roughly about 80% of all goods are
transported by river, sea and ocean. The amount of maritime cargo has been dra-
matically growing since 1980. In 2020, there were about 1.85 billion metric tons
shipped all over the world, whereas it was only 0.1 billion metric tons in 1980.
Quite naturally, the world fleet of containers has expanded. The gross tonnage of con-
tainer carriers since 1980 has increased from 11 up to 275 million metric tons [1, 2].
The main advantages of maritime transportation over competitors are the
cost and reliability, and also the possibility to deliver any cargo. The main draw-
backs are relatively low speed of delivery and dependence on weather. It is im-
possible to influence weather, when a delivery is scheduled, but it is possible to
increase the delivery speed by routing the most efficient tours. The efficient tour
implies its minimally possible length, expressed in units of either distance or time.
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Tour length minimization is a transportation optimization problem [3]. In particu-
lar, this is a version of the assignment problem or the traveling salesman problem
[4, 5].

In fact, the traveling salesman problem solves the task of routing efficient
tours, using which optimizes the cost of the delivery. It is an NP-hard problem in
combinatorial optimization, whose exact solution usually takes too long to be ob-
tained because exact algorithms perform reasonably fast only for small-sized
problems [6]. Heuristic algorithms perform far much faster producing approxi-
mated solutions and saving computational resources (which are equivalent to time
and budget) [7, 8].

One of the best heuristics is the genetic algorithm allowing to find tours
whose length is practically close to the minimal length of the delivery [9, 10].
Sometimes the length found heuristically coincides with the length in the exact
solution. For maritime cargo delivery with using multiple tours, the genetic algo-
rithm requires such input parameters as follows: a map of ports, a number of
feeders (in maritime transportation, a cargo boat is called the feeder), a population
size, and a series of additional inputs including mutation operators. In detail, the
map of ports is the two-coordinate location of ports which should be visited en
route. The number of feeders defines the maximal number of tours by which the
cargo can be delivered. The population size is the number of randomly generated
tours to be processed by the algorithm.

To obtain the best approximated solution, the adjustable inputs (like the
population size, mutation operators, and others) should be optimally configured.
The optimal configuration is a very tough task being itself an optimization prob-
lem (similar, e. g., to the optimization in AutoML [11, 12]). In this way, rules of
thumb are widely accepted based on recent experience [13, 14]. Another way to
optimize the algorithm performance is to use penalty when a tour length exceeds
an upper length. The upper length is determined by the capability of the feeder
which can cover only the upper length distance and after that it will require fuel
refill. This is a tour constraint whose violation imposes a penalty that expunges
too lengthy tour from the processing. However, the tour constraint penalty is
taken by rules of thumb as well [15, 16]. Therefore, a proper rationalization of the
penalty would improve the genetic algorithm performance.

PROBLEM STATEMENT

The goal is to algorithmize the tour constraint penalty in order to optimize the
genetic algorithm itself. Moreover, the penalty algorithmization is expected to
make possible further minimization of the tour cost. For achieving the goal, the
following five tasks are to be fulfilled:

1. To formalize variables used in the genetic algorithm for a maritime cargo
delivery model. The model is to be formulated based on [15].

2. To substantiate the inclusion of the tour constraint penalty into the algo-
rithm. The penalty must be changeable depending on the state of the algorithm
convergence.

3. To show the advantage of the algorithm using the changeable penalty
compared to the algorithm using the constant penalty.

4. To discuss the significance and practical applicability of the suggested
improvement in the genetic algorithm.
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5. To make an unbiased conclusion on the contribution to the field of genetic
algorithms used, in particular, to optimize maritime cargo delivery. An outlook of
how the research should be extended and advanced is to be made as well.

MARITIME CARGO DELIVERY MODEL

We have N ports, from one of which every feeder starts its tour and ends up by
returning to that port. By default, the port is assigned number 1 and is called the
hub. Let p,, and p,, be coordinates of port k. Coordinates of all the ports are

gathered in matrix
P=[pulna- )
The distance between port £ and port j is

plk. )= (P~ P)* +(pia — p2)* by k=L, N and j=T N.

All the distances are gathered in matrix

D =[p(k, )yxy - )
Obviously,

pk. )=p(j:k) Yk=1, N and V=1 N
and
p(k,k)=0 Vk=1,N.
So, matrix (2) is symmetric:
D=D".

Matrix of distances (2) is directly associated with durations of the maritime cargo
delivery. The durations, in their turn, can be treated as the costs of the delivery.

The maximally possible number of feeders is denoted by M where

max °

M € NN {l} We consider binary variable xy;, associating ports k and j and
feeder m , where m =1, M and M is a current total number of feeders:

MM gy - 3)
Thus, x,, =1 if ports & and j are included into the tour of feeder m , where the
feeder visits either port ;j after port k£ or port &k after port j: if xj,, =1 then

X =0 and if x;,, =1 then xj;,, =0 for non-two-port tours. If a tour of feeder

m is of just ports 1 and &, then xy;,, = x;;,, =1 because the feeder must return to
the hub. Otherwise, if feeder m does not visit port j after port £ nor port k£ af-
ter port j, x,, =0 (although ports k£ and j still can be included into the tour of

feeder m ). So,

xkjme{oal} by k=1,_N and jzl,_N and m=1, M 4
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by
N M
Z lejm =M (5)
j=2m=1
and
N M
DD X =M, (6)
k=2m=1

where equality (5) means that each of M feeders only once departs from the hub,
and equality (6) means that each of M feeders only once arrives to the hub.

Meanwhile, a feeder may not cover the distance greater than d,,, . There-
fore, inequality

N N
Zzp(k’j)'xkjmgdmax Vm=1, M (7
k=1j=1
constrains the tour of every feeder. Moreover, the feeder must not be charged for
the delivery if its tour is too short. If d,;, is the shortest possible tour of the feed-

er, inequality

N N
Zzp(k’j)'xkjm>dmin Vm=1, M (®)
k=1;=1

also constrains the tour of every feeder.

Only one feeder can arrive at port j, being not the hub, from only one port

(which can be the hub). This is expressed by equality

N M

ZZxkjmzl Vj=2,N. )]
k=1m=1

Symmetrically, only one feeder can depart from port k& , being not the hub, towards

only one following port (which can be the hub). This is expressed by equality
N M

> Yy =1 V=2, N. (10)

J=lm=l1

Every feeder must depart from the hub and arrive at it, so its tour is a closed
loop. This is ensured by the following requirement:

> zxk§m<|Qm|_l

keQy j€0u \k
V0, cT, =1L {g!"}im} c {Il, N} by 2<|0,|<4,, and Vm=1,M (11)
with tour
T, ={L{g/"}/m} < I, N} (12)
of feeder m . Constraint (11) eliminates any subtours of every feeder. This en-
sures that a feasible route of delivering maritime cargo is of closed loops only,
where every loop is a feeder tour starting off the hub and ending up by returning
to the hub.

To optimize the maritime cargo delivery, we minimize the sum of all the
tours of the feeders: objective function
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M
pZ(Nﬂ M’ {{{xk]m}k 1}] 1} -1’ mm’ maxj ZZ Zxkjm p(k ])
k=1j=1m=1
is to be minimized subject to constraints (3)—(12). The minimization is implied to
be done over binary variables (4) along with trying to minimize the total number
of feeders used in the tours. That is, the minimization goal is to find such

M"e{l, My}
and

x;jm €{0,1} for k=, N and j=1, N by m=1, M"

at which

N M
Z Zxkjm p(k, j) =
j=lm=1

_|| MZ

*

* * M
= pZ(Na M > {{ {xkjm}llcvzl}yﬂ} -1’ dmim dmaxj =

m

M
> X - Pk, ). (13)

1m=1

T M=

N
= min Z

N N
{{xkjmfk 1‘[—1’ k=1j
=1, M, M=1, My

The solution given formally as

et} (14)

m=1

allows to build a set of M~ the most rational tours of M~ feeders. Sum (13) of
these tours is the shortest route to deliver maritime cargo and return to the hub.

THE TOUR CONSTRAINT PENALTY

Even for a few tens of ports, it is an intractably time-consuming computational
task to find an exact solution of problem (13) subject to constraints (3)—(12). A
solution whose route length is quite close to the shortest route length is obtained
by genetic algorithms. One of the best genetic algorithms designed for solving
problem (13) subject to constraints (3)—(7) and (9), (10) was presented in [15].
Herein, we add constraint (8) cutting off too short feeder tours, and add constraint
(11) with tour (12) of feeder m eliminating subtours.

The genetic algorithm uses four forms of chromosome mutations: flip, swap,
slide, and crossover. The crossover operation takes two chromosomes, cuts each
chromosome in two parts in random places, and interchanges those parts. For
generating a random place of the chromosome cut, the minimal number of ports
every feeder should visit without counting the hub after starting off port 1 (hub) is

used. This number is
N-1
H . = , 15
min W(Mmax J ( )
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where function y(x) returns the integer part of number x [17]. In addition, with-

in the crossover operation, two chromosomes as tours of two different feeders
may be merged into a single tour allowing to decrease the number of feeders used
to deliver maritime cargo. This is done with using a merging probability B given

at the input of the genetic algorithm.
Let H,, be the number of ports which feeder m should visit after starting

off port 1 (hub). Thus, we denote the vector of the tour of feeder m (vector of
ports which feeder m should visit in the order of the sequence of the vector ele-
ments) by

E, =[N, - (16)
So,

M -
Uy = (2, N} (17)
m=]

Initially, tours {Fm }Aml=1 of feeders are randomly generated by breaking the set of

non-hub ports {2, N} with using integers (15) and M . Each feeder has a series of
such tours called population.

For every element of the population, the following routine is executed during
an iteration of the algorithm. First,

d,=0form=1,M.
The distance to the port following the hub is calculated as
d,y =p(l, ™).

Then, the remaining distances except the last one are accumulated into d,, :
AW =d,, d, =d™ +p(f", () for k=1, H,, 1.
Finally, the distance of returning to the hub is:
Ay =d,, d, =d +p(f", 1), (18)

To improve selectivity of the best feeder tours to solution (14), and to ex-
punge tours which violate conditions (7), (8), the tour constraint violation penalty

is applied. Thus, as it was shown in [15], if d,, >d,,, then a current accumulated

distance d,, after (18) can be increased with a factor A >0:
b b
dr(nObS) = dm p dm = dr(no Y + (dr(no V- dmax) A

The increment of d,, in the case of d,, <d;, can be done in the same way.

min

However, we introduce a more flexible tour constraint violation penalty. In
our version, the penalty rate depends on the iteration (denoted by i) of the genetic
algorithm. It is either increasing or decreasing that is controlled by a positive pa-

rameter o :

i-‘lfa‘
b

r(i)y=1+

Itsign(o-1) s1gr;(oc =D +sign(l-a)e
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where the case o =1 is excluded. The penalty rate is increasing if o >1, and it is
decreasing if a<1. For instance, if oo =1.01 then the penalty rate exponentially
increases from a number close to o (because r(1) ~ o in this case) up to 2 (Fig. 1).
If, say, a=0.995 then the penalty rate exponentially decreases from a number
close to 1+ a (in this case r(1) is slightly greater than 1+ o ) down to 1 (Fig. 2).
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Fig. 1. The increasing tour constraint violation penalty by « =1.01
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Fig. 2. The decreasing tour constraint violation penalty by « =0.995

Therefore, upon obtaining accumulated distance d,, by (18), if
d,, >d., then

max
d,(nObS) — dm , dm — dIS,IObS) + (d,g;)bS) _ dmax) . ]”(l) .
If d, <d_. then

dr(nObS) = dm > dm = dig?bS) + (dmin - dr(nObS)) : I"(i) .
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Finally, sum

M
52 (N, M, {Fm}ﬁz/ﬁlﬂ dmim dmax; a)= de

m=1

is calculated and minimized over the population. Obviously,
M*

~ M * * N N

Ps (N’ M, {Fm}m=1’ dmin’ dmax; OL)> Ps N, M, {{{xkjm}k:l }j=1} ’ dmin’ dmax
m=1

Herein, the question is which o is to be selected. The matter is that at dif-
ferent values of o the output of the genetic algorithm varies. This is so due to the
state of the algorithm convergence varies depending on how tours violating re-
quirements (7), (8) are expunged. Therefore, it is better to run through a set of the
values and to select such a value at which the route is the shortest. The first run of
the algorithm is done at o =1.01, whereupon the value is decreased by a factor
slightly less than 1:

a® =, a=0.9990". (19)

After 10 runs, the penalty rate is still an exponentially increasing curve because
o ~1.000946 . Since the 11-th run, the penalty rate decreases because then
a~0.999945 . In fact, o >0.95 for the first 62 runs, whereas o < 0.95 after the
63-rd run. So, we re-run the algorithm until o > 0.95 starting with o =1.01 and
proceeding by (19). Besides, we use an early stop condition imposed on the re-
running. Denote by

5; = EZ(N’ M*a{Fm}]r:llﬂ, dmin, dmax; OL*)

the shortest route length found so far. Denote by s, the counter of fails to im-

prove the route (i. e., to shorten its length), and denote the maximal number of

such fails by s&™ . If

*

ﬁZ(Na M*’ {Fm}%zl’ dmin’ dmax; a) < ﬁ; (20)
for a next value of oL = &, then

~F o~ * e ~
Py = pZ(N’ M > {Fm}mzl’ dmin’ dmax; aj

and

o =a,
whereupon the counter of fails is set at 0:

S =0
Otherwise, if (20) is false,

(obs) _ _ (obs)
Stail . = Stail » Sgail = Sgayy . +1-

(max)

So, the algorithm is re-run while o >0.95 and sp; < g,
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To see whether the algorithm performs better with a decreasing tour con-

(max)

straint violation penalty, we need sy, >10. In any way, the last value of o in

ascertaining the performance must be less than 1. Therefore, in short, the de-
scribed flexible penalty may be called the tour constraint penalty discount, al-
though an increasing tour constraint violation penalty can give the shortest route
as well (for simplicity, the route returned by the algorithm we will further call the
shortest, although a shorter route may exist). In this case, it can be said that a pen-
alty discount is given at the start of the algorithm run; as the run advances (the
number of passed iterations increases), the discount decays.

TESTING

First, we test the algorithm for 10 to 50 ports randomly scattered. In this case, all
ports coordinates (1) are in matrix

P=50-O(N,2)
by
N=5+5n,n=1,9

and an operator O(N, 2) returning a pseudorandom N X2 matrix whose entries
are drawn from the standard uniform distribution on the open interval (0;1). The
remaining parameters are:

M, =2,s0=15,3=0.05,

m

N
Qo =¥ 125-y| 0.5-maxs > p(k, )¢ ||,
j=1

k=1, N

i :C(()-l‘dmax)ﬂ (2D
where function {(x) rounds number x to the nearest integer towards infinity.

The maximal number of iterations is 3600, whereas the algorithm early stop con-
dition is used, by which (a run of) the algorithm is stopped if the shortest route
length does not change for 720 iterations (a one fifth of the maximal number of
iterations). The test is repeated for 100 times for the algorithm used in three ver-
sions: with the tour constraint penalty discount, with the constant penalty by

ri)=1 Yi=1,3600, (22)

and with the augmented constant penalty by

(i) =100 Vi=1,3600. (23)

Overall, there are 900 route lengths (for instances of randomly generated
ports) returned by each of the three versions, where M~ =1 (the shortest route is
of a single tour in every solution). We will refer to them as v, v, v, , respec-

tively. Whereas the pseudorandom number generator outputs the same instance
for each of the three algorithm versions, re-runs for v are not initialized with the
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same pseudorandom number generator seed. The advantage of the algorithm us-
ing the changeable penalty compared to the algorithm using constant penalties by
(22), (23) can be seen in Table 1, where “better than” implies producing a shorter

route. Table 2 shows that v, has been worse than v, in less than 1.5 %. Com-
pared v, to v, this percentage is even far smaller — just 0.1111 % (only one of
those 900 route lengths produced by v, has appeared to be longer than the
respective route length produced by v, ; this is an instance of 50 ports whose
vo-route length is 274.8312 and v;-route length is 274.6006). Table 3 shows that
v, and v, are more likely to produce the same result (strictly speaking, the

equal lengths of the routes, whereas the routes themselves may differ in particular
regions). The percentage of instances where v, performs identically to v, or v,

is not that small. At least, this is 20% on average.

Table 1. The percentage of instances where one algorithm version produces
a shorter route than the other version

v, better than v, v better than v,,, Vv, better than v,
Overall average 75.7778 75.8889 19.3333
10 10 17 11
15 55 51 8
20 78 71
25 83 84 14
N 30 88 88 19
35 88 89 22
40 95 95 29
45 90 90 28
50 95 98 34

Table 2. The percentage of instances where one algorithm version produces
a longer route than the other version

Vv, worse than v, | v, worse than v, | V, worse than Vv,
Overall average 0.1111 1.4444 21.5556
10 0 0 2
15 0 0 15
20 0 0 17
25 0 0 17
N 30 0 0 19
35 0 3 28
40 0 3 24
45 0 6 40
50 1 1 32
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Table 3. The percentage of instances where two algorithm versions produce
the same route lengths

Vo and v, Ve and vy v and vy
Overall average 24.1111 22.6667 59.1111
10 90 83 87
15 45 49 77
20 22 29 74
25 17 16 69
N 30 12 12 62
35 12 8 50
40 5 2 47
45 10 4 32
50 4 1 34

In the test, v, has produced 653 route lengths (72.5556 %) by a>1 (i.e.,
by an increasing tour constraint violation penalty). All the 100 instances of 10
ports are solved by o >1. Then, however, the percentage of instances where v,
has produced the shortest route by an increasing tour constraint penalty starts de-
creasing (Fig. 3). The way how the best values of o are distributed shown in
Fig. 4 delusively hints at that the increasing penalty is better than the decreasing
one. Meanwhile, it is worth noting that 224 of 900 instances has been v -solved
by starting with a=1.01. The distributions of the best values of o for the
number of ports in Fig. 5 confirm that the decreasing penalty becomes more influ-
ential as the number increases.
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Fig. 5. The distributions of instances per o for the number of ports
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A simple example of how the changeable penalty algorithm outperforms the
two constant penalty algorithm versions is presented in Fig. 6. Compared to Fig.
7, where both the constant penalty algorithm versions produce the same route, the
changeable penalty algorithm shortens the route by 3.7837 %, which is quite con-
siderable and significant improvement. A more intricate example is presented in
Fig. 8, where the shortest route through 50 ports is found at an increasing tour
constraint violation penalty as well. Compared to Fig. 9, showing the shortest
route found by v, the changeable penalty algorithm shortens the route by

11.1689 %. Moreover, algorithm version v, seeming to be a slightly more ro-

bust than v, produces a longer route (Fig. 10). Its length is 15.5299 % greater
than that in Fig. 8.

@9

Fig. 6. The v,-solution of an instance with 10 ports by o =1.008 , where p; =139.5179

4
5

€9
Fig. 7. The worse solution of the instance with 10 ports in Fig. 6 by v; and vy, , where
Py =145.0045
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Fig. 9. The v,-solution of the instance with 50 ports in Fig. 8, where 5; =320.5976

Cucmemni docniodicenns ma ingpopmayivini mexronoeii, 2023, Ne 2 117



V.V. Romanuke, A.Y. Romanov, M.O. Malaksiano

Fig. 10. The v, -solution of the instance with 50 ports in Fig. 8, where 5; =337.1495

It is noteworthy that the results reported in Tables 1-3 and Figs. 3—5 are sta-
tistically reliable, i. e. they are approximately repeatable for other pseudorandom
number generator seeds. Thus, in another series of 900 instances, the overall aver-
age percentages from Table 1 first row are now 73.6667 %, 75.7778 %, 21 %
(there have been obtained 189 routes by v; whose lengths are shorter than lengths
by vq9 ), respectively. So, v, is indeed “better than” v, and v, in about 75 %
of the modeled instances. The overall average percentages from Table 2 first row
are now 0.1111 % (once again only one of those 900 route lengths produced by
v, has appeared to be longer than the respective route length produced by v,),

0.8889 % (the difference is so big due to a few instances where v, is “worse
than” vy ), 16.8889 %, respectively. Just like in the first series, the only instance
whose v -route is longer than v,-route has appeared to be of 50 ports, where the

vg-route length is 272.0435 and the v{-route length is 271.7023 (the difference in

the first series is even smaller). Eventually, the overall average percentages from
Table 3 first row are now 26.2222 %, 23.3333 %, and 62.1111 %, respectively,
being really close to those ones in Table 3.

A very specific property of the genetic algorithm is that its result as the
shortest route length depends on the pseudorandom number generator state seeded
at the beginning of a test. Hence, we try re-running v, initialized with the same
pseudorandom number generator seed. By this set-up of the test, the shortest route
length does depend on whether oo >1 or a <1. Nevertheless, this dependence is
weak: 769 instances have been v -solved by a =1.01 (the starting value for the
increasing penalty rate), whereas just 99 instances have been v,-solved by
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a=0.999945 (the starting value for the decreasing penalty rate). Similarly to
Tables 1-3, the comparison to v; and v, is presented in Tables 4-6. These ta-

bles clearly show that the advantage of v, is not that big, if any.

Table 4. The “better than” percentages for the same pseudorandom number

generator seed test

v, better than v, | v, better than v,y | v; better than v,

Overall average 42.5556 45.6667 21
10 11 15 10

15 32 32 6

20 37 37 8

25 48 49 17

N 30 46 48 25
35 50 50 24

40 52 63 28

45 50 62 35

50 57 55 36

Table 5.
generator seed test

The “worse than” percentages for the same pseudorandom number

vy worse than v, | v, worse than v, | v; worse than v,
Overall average 40.5556 37.3333 16.8889
10 6 4 4
15 27 28 9
20 47 45 9
25 46 44 12
N 30 51 47 15
35 47 48 17
40 48 37 26
45 50 38 25
50 43 45 35

Table 6. The “equal route lengths” percentages for the same pseudorandom
number generator seed test

Vo and v Vo and vygo v and vy
Overall average 16.8889 17 62.1111
10 83 81 86
15 41 40 85
20 16 18 83
25 6 7 71
N 30 3 5 60
35 3 2 59
40 0 0 46
45 0 0 40
50 0 0 29
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Table 7 shows what the pure advantage is (when the algorithm version is si-
multaneously compared to the two other versions). Moreover, the average route
length by v, is 233.5604 (averaged over 900 route lengths), whereas the average
route lengths by v, and vy, are 234.0213 and 234.41296, respectively. There-
fore, at least a tiny advantage of v, does exist, i. e. using the tour constraint pen-
alty discount may indeed shorten the route.

Table 7. The percentages of performance comparison for the same pseudo-
random number generator seed test

better than the two
other versions

worse than the two
other versions

not worse than the
two other versions

Vg 36 31.5556 53.6667
v 14.1111 12.5556 53.1111
Vioo 9.6667 15.2222 48.5556

The final test is done for each of algorithm versions v;, vio9, Vv, by

sgri‘lax) =19 and resetting every re-run with a new pseudorandom number genera-

tor seed being the same for v, voy, v, . This is the purest experiment, where
every instance is solved at least 20 times (and there are 19 attempts to shorten the
very first route length). It is v,-solved for 10 times by the increasing penalty and
10 times by the decreasing penalty, unless a shorter route is found by a decreased
o . Now, the performance comparison similar to Table 7 is presented in Table 8.
It is clearly seen that the purest advantage of v, does exist (because there have
been v,-found 33 routes, which is 3.6667 %, each shorter than any of 20 routes by
v, and any of 20 routes by v;(, in the respective 33 instances). However, the pur-
est advantage of vy, seems to be stronger. Amazingly enough, there have been
v,-found 134 routes (14.8889 %) each shorter than any of 20 routes by v;(, in the
respective 134 instances. Contrariwise, there have been v;q,-found 143 routes
(15.8889 %) each shorter than any route by v, in the respective 143 instances. In

other words, the algorithm version using the tour constraint penalty discount has
an efficiency comparable (roughly speaking, almost the same) to the effi-
ciency of the algorithm version using the high constant penalty. The respec-
tive percentages for v, and v, are 8.3333 % (v, outperforms v;) and

11.2222 % (v, outperforms v, ).

Table 8. The percentages of performance comparison for the purest experiment

better than the two
other versions

worse than the two
other versions

not worse than the
two other versions

Vg 3.6667 6.1111 79
v 7.4444 5.8889 81.8889
Vi0o 12.2222 12.5556 80.2222
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Consequently, the algorithm using the changeable penalty sometimes
outperforms the algorithm using the constant penalty. Although this occasion
is not very likely, there are expectedly about one problem of 25, when the
changeable penalty algorithm will produce a shorter route than routes by the
constant penalty algorithm versions. The latter can outperform as well, with
slightly higher likelihoods.

The final test has revealed another interesting peculiarity. Among those 900
instances, 215 shortest routes by v, have been found by a=1.01, 88 shortest

v,-routes have been found by o =1.009, and 68 shortest v,-routes have been
found by o =1.008 (the two nearest values to 1.01). The distribution resembles
that one in Fig. 4. The ratio of the number of instances solved by a>1 to the
number of instances solved by a <1 is about 2. Consequently, the increasing
penalty has its one advantage over the decreasing penalty, but still the latter is
“needed” roughly in every third problem solved by the changeable penalty algo-
rithm.

DISCUSSION OF THE CONTRIBUTION

The experiment with controllable seed for generating maritime cargo delivery
problem instances and for randomly generating tours (16) for (17) has shown that
the changeable penalty, along with the constant penalty, is an important parameter
of the genetic algorithm. It has been also revealed that the algorithm output de-
pends on the seed. It is unclear how the best value of a could be selected. More-
over, it is impossible to foresee that the constant penalty algorithm version will
not be outperformed by the changeable penalty algorithm. Therefore, the best de-
cision is to use both the constant and changeable penalty versions (say, by run-
ning them on parallel processor cores), whereupon the shortest route length is
trivially selected. In our case of study, we propose to run simultaneously four ver-
sions: vy, Vjgo, Vo, by a=1.01, and v, by a=0.999945 (here the penalty has
the slowest descent; during the starting few thousand iterations, it decreases al-
most linearly).

An example of how the suggested changeable penalty improves the genetic
algorithm is presented in Figs. 11-13. A maritime cargo delivery problem with 45
ports is solved, starting with the same pseudorandom number generator seed, by
using the low constant penalty by (22), the high constant penalty by (23), and the
increasing penalty with a=1.01. As we can see, the high constant penalty has

improved the low constant penalty route length by just 0.08 % (5; =300.90902
in Fig. 12 against ﬁ; =301.1532 in Fig. 11). The improvement by the increasing
penalty is far more significant: it is 3.8194 % (ﬁ; =289.4161 in Fig. 13) com-
pared to 5; =300.90902 in Fig. 12, and it is 3.8974 % compared to
Py =301.1532 in Fig. 11.
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Fig. 12. The v,-solution of the instance with 45 ports in Fig. /1, where p; =300.90902
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Fig. 13. The v.-solution (a=1.01) of the instance with 45 ports in Fig. 11, where
Py =289.4161
Despite the example in Figs. 11-13 is a good demonstration of that the
changeable penalty is a real improvement of the genetic algorithm, a counterex-
ample is easily generated just on the same maritime cargo delivery problem by re-
running the constant penalty algorithm versions and v, (a re-run implies that the
pseudorandom number generator state is changed). Thus, in a series of 302 re-
runs, the shortest route length by v, varies between 272.8407 and 323.0998, and
the shortest route length by v, varies between the same lower and upper bounda-
ries. The shortest route length by v, varies between 272.8407 (the same lower
boundary) and 317.6751, so its upper boundary is less than that for v; and v, .

Nevertheless, as the maximally possible number of feeders is increased, the
suggested changeable penalty further improves the genetic algorithm. In this case,
we have

1 S
dimax =VY| 1.25-y M : Ta—x Zp(k’])

max k=1, N Jj=1
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and (21), i. e. the longest and shortest possible tours of the feeder are shortened.

For the same instance with M . =6, the performance of v, in a series of 738

re-runs is significantly better. The lower and upper boundaries in this case are
274.1295 and 321.0341 for v, 274.70303 and 317.0557 for vy, 272.8407 and

323.7964 for v, , where the shortest route length 5; =272.8407 is found in a re-
run with 5; =288.4775 (it is even shorter than that in Fig. 13) by v, and

Py =297.49702 by vy, . Furthermore, in this “local” test series v,, is better than

the two other versions in 27.9133 % and is worse than the two other versions in
23.9837 % of all re-runs. These rates are 3.9735 % and 1.9868 % for the series
with M, =2. By the way, the performance of the high constant penalty algo-

rithm with M, =6 significantly drops: the average route length is 290.4455
within the 302 re-runs with M, =2, and itis 295.3313 with M, =6.

At last, it is important to note that all the generated instances in our testings
have been such that, in the solution returned by the algorithm, only one feeder

was required to cover the shortest route (M T=1 ). This is practically possible and
applicable due to we set the longest possible tour of the feeder at a relatively high
value. Even though the shortened route length by the suggested improvement in
the genetic algorithm is small, it is a significant decrement of the maritime cargo
delivery cost.

CONCLUSION

We have presented a tour constraint violation penalty to the genetic algorithm for
solving a maritime cargo delivery problem formulated as a multiple traveling
salesman problem. The penalty is an exponential function of the iteration, where
we maintain the possibility of the penalty rate to be either increasing or decreas-
ing whose steepness is controlled by a positive parameter o. Our tests have
shown that the changeable penalty algorithm may return shorter routes, although
the constant penalty algorithms cannot be neglected. Therefore, our contribution
to the field of genetic algorithms is the monotonous flexibility of the tour con-
straint violation penalty. The usefulness of this flexibility grows as the longest
possible tour of the feeder is shortened. It is so due to a penalty discount is re-
quired either at the beginning or at the end of the algorithm run to improve selec-
tivity of the best feeder tours. In optimizing maritime cargo delivery, we propose
to run the genetic algorithm by the low and constant penalties along with the in-
creasing and decreasing penalties, whereupon the solution is the minimal value of
the four route lengths. In addition, we recommend the four algorithm versions to
be initialized by four different pseudorandom number generator states. Although
the gain is just a few percent (by which the route length is shortened) or less, it is
a substantial reduction of expenses for maritime cargo delivery.

The research should be extended and advanced in the way of studying the
pseudorandom number generator state influence. As we have revealed that the
state influences the algorithm output, it is to ascertain lower and upper boundaries
of the route length. Another open question is how many re-runs should be made
(by changing the state) to obtain the shortest possible route in a maritime cargo
delivery problem.
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IHOKPAIIEHHSA T'EHETUYHOI'O AJITOPUTMY Hé& OCHOBI ILI/ICKOHTS."
IITPA®Y 3A NMOPYHIEHHA OBMEXEHb PEHUCY JUUIsSIT MOPCBKOI
JTOCTABKH BAHTAXIB / B.B. Pomaniok, A.1O. Pomanos, M.O. Manakciano

AnoTanisi. Po3risHyTO 3a1ady MiHIMI3amii BAPTOCTI MOPCHKOT TOCTaBKU BAaHTaXKIiB.
Ll BapTicTh eKBiBaJEHTHA CyMi JOBXKHH peHCiB (ifepiB, M0 BUKOPUCTOBYIOTHCS
VIS OCTaBKU. 3amava (OpMYIIOEThCs Y (GopMi 3aadi IEKiIbKOX KOMiBOSKEPIB.
Jnst 3HaXODKEeHHsI po3B 513Ky y (OpMi HAlIKOPOTIIOTO MapIIpyTy, IO CKIAIAETHCS 3
peiiciB dinepiB, BAKOPHCTOBYEThCS T€HETHYHUIT alrOPUTM, y IKOMY JBi HEpiBHOCTI,
KOTpPi OOMEXYIOTh JOBXKHHY peicy KOXKHOro ¢izepa 10 iHTepBaly MiX HaHKOpOT-
1I0I0 Ta HalOumbmow MoBxkuHAMH. OKpiM cTamoro mrpady 3a MOpyIIeHHS oO0Me-
JKEHb peiicy y TeHeTHYHOMY aJTOPHTMIi 3allpOIIOHOBAHO 3MiHIOBaHHU mTpad y ¢o-
pMi eKkcroHeHniabHOI (GyHKIIT iTepamii anropuTMy, A€ 3aIHIIAETHECS MOXIIUBICTD
SIK 3pOCTAIOYOro, TaK i CramHoro mrpady, 4us KPYTH3HA KOHTPOIIIOETHCS JESIKUM
JONAaTHUM TNapaMeTpoM. TecTH HMOoKa3yIoTh, 10 aJITOPUTM 31 3MiHIOBaHHM IITpadoM
MOKE€ TIOBEpPTaTH KOPOTIII MapLIpyTH, X04a AJITOPUTMH 31 CTAIMMHU mTpadamu He
MOXYTh OYTH BiIKMHYTI. 31 CKOPOUEHHSIM HaiJ0BLIOrO peicy dinepa 3MiHIOBaHHUI
wrpad crae OiIbII KOPUCHUM 3aBISIKH TOMY, IO JCSKUI TUCKOHT IuTpady moTpio-
HMIT Ha oyaTKy ab0 HANPHKIHII IPOTrOHY aJrOPUTMY 338 MOKPAILIEHHS CEJNeKTH-
BHOCTI Halikpamux peiiciB ¢igepis. i1 onTuMizamii MOPCHKOI TOCTaBKH BaHTaXiB
3aIIPONIOHOBAHO 3aIlyCKAaTH JaHWil TEHSTHYHUI aIrOPUTM 32 HU3BKOTO Ta BHCOKOTO
mrpadiB pa3oM 31 3pOCTAIOUNM Ta CIIAJAI0YNM IMITpadaMu, MIiCIs YOT0 PO3B’SI3KOM €
MiHIMaJIbHE 3HAYEHHS 3 YOTHPHOX BIIIOBIIHHUX JOBXUH MapIIpyTiB. PekomennoBa-
HO iHiLiani3yBaTH Lli YOTUPH Bepcii aIropuTMy YOTHPMA Pi3HUMH CTaHaMH I'eHepa-
TOpa INCEeBAOBHNAAKOBUX uucen. O4iKyBaHUI BUTpall CKJIAQJA€ IEKiNbKa BiIICOTKIB
CKOPOYEHHS JJOBXXMHM MapIIPYTY, ajie ULl MOPChKOT JOCTABKH BaHTaXIB i€ € 3Ha4-
HHMM CKOPOYCHHSM BUTpAT.

KurodoBi ciioBa: Mopchbka JIOCTaBKa BaHTaXIB, JOBXKUHA PEiCy, TeHETUYHHI aliro-
puTM, ITpad 3a HOPYLIEHHST 0OMEKEHb peHCy, AUCKOHT mWTpady.
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