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Abstract. The problem of minimizing the cost of maritime cargo delivery is consid-
ered. The cost is equivalent to the sum of the tour lengths of feeders used for the de-
livery. The problem is formulated as a multiple traveling salesman problem. In order 
to find its solution as the shortest route of the tours of feeders, a genetic algorithm is 
used where we present two inequalities constraining the tour length of every feeder 
to lie between the shortest and longest lengths. Apart from the constant tour con-
straint violation penalty in the genetic algorithm, we suggest a changeable penalty as 
an exponential function of the algorithm iteration, where we maintain the possibility 
of the penalty rate to be either increasing or decreasing, whose steepness is con-
trolled by a positive parameter. Our tests show that the changeable penalty algorithm 
may return shorter routes, although the constant penalty algorithms cannot be ne-
glected. As the longest possible tour of the feeder is shortened, the changeable pen-
alty becomes more useful owing to a penalty discount required either at the begin-
ning or at the end of the algorithm run to improve the selectivity of the best feeder 
tours. In optimizing maritime cargo delivery, we propose to run the genetic algo-
rithm by the low and constant penalties along with the increasing and decreasing 
penalties. The solution is the minimal value of the four route lengths. In addition, we 
recommend that four algorithm versions be initialized by four different pseudoran-
dom number generator states. The expected gain is a few percent, by which the route 
length is shortened, but it substantially reduces expenses for maritime cargo delivery. 

Keywords: maritime cargo delivery, tour length, genetic algorithm, tour constraint 
violation penalty, penalty discount. 

INTRODUCTION 

The up-to-date market of cargo delivery is divided into three branches of trans-
portation: ground-surface, water, and air. Among them the water transportation 
has been the most used. In general, this is the maritime transportation which is the 
basis of the world trading and commerce. Roughly about 80% of all goods are 
transported by river, sea and ocean. The amount of maritime cargo has been dra-
matically growing since 1980. In 2020, there were about 1.85 billion metric tons 
shipped all over the world, whereas it was only 0.1 billion metric tons in 1980. 
Quite naturally, the world fleet of containers has expanded. The gross tonnage of con-
tainer carriers since 1980 has increased from 11 up to 275 million metric tons [1, 2]. 

The main advantages of maritime transportation over competitors are the 
cost and reliability, and also the possibility to deliver any cargo. The main draw-
backs are relatively low speed of delivery and dependence on weather. It is im-
possible to influence weather, when a delivery is scheduled, but it is possible to 
increase the delivery speed by routing the most efficient tours. The efficient tour 
implies its minimally possible length, expressed in units of either distance or time. 
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Tour length minimization is a transportation optimization problem [3]. In particu-
lar, this is a version of the assignment problem or the traveling salesman problem 
[4, 5]. 

In fact, the traveling salesman problem solves the task of routing efficient 
tours, using which optimizes the cost of the delivery. It is an NP-hard problem in 
combinatorial optimization, whose exact solution usually takes too long to be ob-
tained because exact algorithms perform reasonably fast only for small-sized 
problems [6]. Heuristic algorithms perform far much faster producing approxi-
mated solutions and saving computational resources (which are equivalent to time 
and budget) [7, 8]. 

One of the best heuristics is the genetic algorithm allowing to find tours 
whose length is practically close to the minimal length of the delivery [9, 10]. 
Sometimes the length found heuristically coincides with the length in the exact 
solution. For maritime cargo delivery with using multiple tours, the genetic algo-
rithm requires such input parameters as follows: a map of ports, a number of 
feeders (in maritime transportation, a cargo boat is called the feeder), a population 
size, and a series of additional inputs including mutation operators. In detail, the 
map of ports is the two-coordinate location of ports which should be visited en 
route. The number of feeders defines the maximal number of tours by which the 
cargo can be delivered. The population size is the number of randomly generated 
tours to be processed by the algorithm. 

To obtain the best approximated solution, the adjustable inputs (like the 
population size, mutation operators, and others) should be optimally configured. 
The optimal configuration is a very tough task being itself an optimization prob-
lem (similar, e. g., to the optimization in AutoML [11, 12]). In this way, rules of 
thumb are widely accepted based on recent experience [13, 14]. Another way to 
optimize the algorithm performance is to use penalty when a tour length exceeds 
an upper length. The upper length is determined by the capability of the feeder 
which can cover only the upper length distance and after that it will require fuel 
refill. This is a tour constraint whose violation imposes a penalty that expunges 
too lengthy tour from the processing. However, the tour constraint penalty is 
taken by rules of thumb as well [15, 16]. Therefore, a proper rationalization of the 
penalty would improve the genetic algorithm performance. 

PROBLEM STATEMENT 

The goal is to algorithmize the tour constraint penalty in order to optimize the 
genetic algorithm itself. Moreover, the penalty algorithmization is expected to 
make possible further minimization of the tour cost. For achieving the goal, the 
following five tasks are to be fulfilled: 

1. To formalize variables used in the genetic algorithm for a maritime cargo 
delivery model. The model is to be formulated based on [15]. 

2. To substantiate the inclusion of the tour constraint penalty into the algo-
rithm. The penalty must be changeable depending on the state of the algorithm 
convergence. 

3. To show the advantage of the algorithm using the changeable penalty 
compared to the algorithm using the constant penalty. 

4. To discuss the significance and practical applicability of the suggested 
improvement in the genetic algorithm. 
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5. To make an unbiased conclusion on the contribution to the field of genetic 
algorithms used, in particular, to optimize maritime cargo delivery. An outlook of 
how the research should be extended and advanced is to be made as well. 

MARITIME CARGO DELIVERY MODEL 

We have N  ports, from one of which every feeder starts its tour and ends up by 
returning to that port. By default, the port is assigned number 1 and is called the 
hub. Let 1kp  and 2kp  be coordinates of port k . Coordinates of all the ports are 

gathered in matrix  

 2][  NklpP . (1) 

The distance between port k  and port j  is 

   2
22

2
11 )()(, jkjk ppppjk   by Nk ,1  and Nj ,1 .  

All the distances are gathered in matrix  

 NNjk  )],([D . (2) 

Obviously,  

 ),(),( kjjk   Nk ,1   and  Nj ,1   

and 

 0),(  kk  Nk ,1 .  

So, matrix (2) is symmetric:  

 TDD  .  

Matrix of distances (2) is directly associated with durations of the maritime cargo 
delivery. The durations, in their turn, can be treated as the costs of the delivery. 

The maximally possible number of feeders is denoted by maxM , where 

 1\Nmax M . We consider binary variable kjmx  associating ports k  and j  and 

feeder m , where Mm ,1  and M  is a current total number of feeders: 

 maxMM  . (3) 

Thus, 1kjmx  if ports k  and j  are included into the tour of feeder m , where the 

feeder visits either port j  after port k  or port k  after port j : if 1kjmx  then 

0jkmx  and if 1jkmx  then 0kjmx  for non-two-port tours. If a tour of feeder 

m  is of just ports 1 and k , then 111  mkkm xx  because the feeder must return to 

the hub. Otherwise, if feeder m  does not visit port j  after port k  nor port k  af-

ter port j , 0kjmx  (although ports k  and j  still can be included into the tour of 

feeder m ). So, 

 }1,0{kjmx  by Nk ,1  and Nj ,1  and Mm ,1  (4) 
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by 
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N
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M

m
jm  

 2 1
1   (5) 

and 

 Mx
N

k

M

m
mk 

 2 1
1 , (6) 

where equality (5) means that each of M  feeders only once departs from the hub, 
and equality (6) means that each of M  feeders only once arrives to the hub. 

Meanwhile, a feeder may not cover the distance greater than maxd . There-
fore, inequality 

 max
1 1

),( dxjk
N

k

N

j
kjm 

 
  Mm ,1  (7) 

constrains the tour of every feeder. Moreover, the feeder must not be charged for 
the delivery if its tour is too short. If mind  is the shortest possible tour of the feed-
er, inequality 

 min
1 1

),( dxjk
N

k

N

j
kjm

 
  Mm ,1  (8) 

also constrains the tour of every feeder.  
Only one feeder can arrive at port j , being not the hub, from only one port 

(which can be the hub). This is expressed by equality 

 1
1 1


 

N

k

M

m
kjmx  Nj ,2 . (9) 

Symmetrically, only one feeder can depart from port k , being not the hub, towards 
only one following port (which can be the hub). This is expressed by equality 

 1
1 1


 

N

j

M

m
kjmx  Nk ,2 . (10) 

Every feeder must depart from the hub and arrive at it, so its tour is a closed 
loop. This is ensured by the following requirement: 

 
 

1
\

 
 

m
Qk kQj

kjm Qx
m m

  

 },1{}}{,1{ 2
)( NqTQ mA

l
m

lmm    by mm AQ 2  and Mm ,1  (11) 

with tour 

 },1{}}{,1{ 2
)( NqT mA

l
m

lm     (12) 

of feeder m . Constraint (11) eliminates any subtours of every feeder. This en-
sures that a feasible route of delivering maritime cargo is of closed loops only, 
where every loop is a feeder tour starting off the hub and ending up by returning 
to the hub. 

To optimize the maritime cargo delivery, we minimize the sum of all the 
tours of the feeders: objective function 
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is to be minimized subject to constraints (3)–(12). The minimization is implied to 
be done over binary variables (4) along with trying to minimize the total number 
of feeders used in the tours. That is, the minimization goal is to find such 

 },1{ max
* MM    

and 

 }1,0{* kjmx  for Nk ,1  and Nj ,1  by *,1 Mm    

at which 
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The solution given formally as  

  
*

1
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* }{
M
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N
kkjmx


 





  (14) 

allows to build a set of *M  the most rational tours of *M  feeders. Sum (13) of 
these tours is the shortest route to deliver maritime cargo and return to the hub. 

THE TOUR CONSTRAINT PENALTY 

Even for a few tens of ports, it is an intractably time-consuming computational 
task to find an exact solution of problem (13) subject to constraints (3)–(12). A 
solution whose route length is quite close to the shortest route length is obtained 
by genetic algorithms. One of the best genetic algorithms designed for solving 
problem (13) subject to constraints (3)–(7) and (9), (10) was presented in [15]. 
Herein, we add constraint (8) cutting off too short feeder tours, and add constraint 
(11) with tour (12) of feeder m  eliminating subtours. 

The genetic algorithm uses four forms of chromosome mutations: flip, swap, 
slide, and crossover. The crossover operation takes two chromosomes, cuts each 
chromosome in two parts in random places, and interchanges those parts. For 
generating a random place of the chromosome cut, the minimal number of ports 
every feeder should visit without counting the hub after starting off port 1 (hub) is 
used. This number is 

 






 


max
min

1

M

N
H , (15) 
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where function )(x  returns the integer part of number x  [17]. In addition, with-
in the crossover operation, two chromosomes as tours of two different feeders 
may be merged into a single tour allowing to decrease the number of feeders used 
to deliver maritime cargo. This is done with using a merging probability   given 
at the input of the genetic algorithm. 

Let mH  be the number of ports which feeder m  should visit after starting 

off port 1 (hub). Thus, we denote the vector of the tour of feeder m  (vector of 
ports which feeder m  should visit in the order of the sequence of the vector ele-
ments) by 

 
mH

m
hm f  1

)( ][F . (16) 

So,  

 },2{}{
1

1
)( Nf

M

m

H
h

m
h

m 


 . (17) 

Initially, tours  M
mm 1F  of feeders are randomly generated by breaking the set of 

non-hub ports },2{ N  with using integers (15) and M . Each feeder has a series of 
such tours called population.  

For every element of the population, the following routine is executed during 
an iteration of the algorithm. First, 

 0md  for Mm ,1 .  

The distance to the port following the hub is calculated as 

 ),1( )(
1

m
m fd  .  

Then, the remaining distances except the last one are accumulated into md : 

 mm dd )obs( , ),( )(
1

)()obs( m
k

m
kmm ffdd   for 1,1  mHk .  

Finally, the distance of returning to the hub is: 

 mm dd )obs( , )1,( )()obs( m
Hmm m

fdd  . (18) 

To improve selectivity of the best feeder tours to solution (14), and to ex-
punge tours which violate conditions (7), (8), the tour constraint violation penalty 
is applied. Thus, as it was shown in [15], if maxddm   then a current accumulated 

distance md  after (18) can be increased with a factor 0 : 

 mm dd )obs( ,  )( max
)obs()obs( dddd mmm .  

The increment of md  in the case of minddm   can be done in the same way. 

However, we introduce a more flexible tour constraint violation penalty. In 
our version, the penalty rate depends on the iteration (denoted by i ) of the genetic 
algorithm. It is either increasing or decreasing that is controlled by a positive pa-
rameter  : 

 


 1)1(sign
2

)1(sign1
1)( ieir ,  
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where the case 1  is excluded. The penalty rate is increasing if 1 , and it is 
decreasing if 1 . For instance, if 01.1  then the penalty rate exponentially 
increases from a number close to   (because )1(r  in this case) up to 2 (Fig. 1). 

If, say, 995.0  then the penalty rate exponentially decreases from a number 
close to 1  (in this case )1(r  is slightly greater than 1 ) down to 1 (Fig. 2).  

Therefore, upon obtaining accumulated distance md  by (18), if 

maxddm   then 

 (obs)
m md d , )()( max

)obs()obs( irdddd mmm  . 

If minmd d  then 

 (obs)
m md d , )()( )obs(

min
)obs( irdddd mmm  . 
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Fig. 1. The increasing tour constraint violation penalty by 1.01   

Fig. 2. The decreasing tour constraint violation penalty by 0.995   
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Finally, sum 

 


 
M

m
m

M
mm dddMN

1
maxmin1 );,,}{,,(~ F  

is calculated and minimized over the population. Obviously, 

  

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
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

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
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M

m

N

j
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kkjm

M
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Herein, the question is which   is to be selected. The matter is that at dif-
ferent values of   the output of the genetic algorithm varies. This is so due to the 
state of the algorithm convergence varies depending on how tours violating re-
quirements (7), (8) are expunged. Therefore, it is better to run through a set of the 
values and to select such a value at which the route is the shortest. The first run of 
the algorithm is done at 01.1 , whereupon the value is decreased by a factor 
slightly less than 1: 

  )obs( ,  )obs(999.0  . (19) 

After 10 runs, the penalty rate is still an exponentially increasing curve because 
000946.1 . Since the 11-th run, the penalty rate decreases because then 
999945.0 . In fact, 95.0  for the first 62 runs, whereas 95.0  after the 

63-rd run. So, we re-run the algorithm until 95.0  starting with 01.1  and 
proceeding by (19). Besides, we use an early stop condition imposed on the re-
running. Denote by 

 




  

*
maxmin1

** ;,,}{,,~~ *
ddMN M

mmF  

the shortest route length found so far. Denote by fails  the counter of fails to im-

prove the route (i. e., to shorten its length), and denote the maximal number of 

such fails by (max)
fails . If  

 *
maxmin1

* ~~;,,}{,,~ *

 




  ddMN M

mmF  (20) 

for a next value of    , then 

 




  

~;,,}{,,~~
maxmin1

** *
ddMN M

mmF  

and 

  ~* , 

whereupon the counter of fails is set at 0: 

 fail 0s  . 

Otherwise, if (20) is false, 

 fail
)obs(

fail ss  , 1)obs(
failfail  ss . 

So, the algorithm is re-run while 95.0  and (max)
fail fails s . 
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To see whether the algorithm performs better with a decreasing tour con-

straint violation penalty, we need (max)
fail 10s  . In any way, the last value of   in 

ascertaining the performance must be less than 1. Therefore, in short, the de-
scribed flexible penalty may be called the tour constraint penalty discount, al-
though an increasing tour constraint violation penalty can give the shortest route 
as well (for simplicity, the route returned by the algorithm we will further call the 
shortest, although a shorter route may exist). In this case, it can be said that a pen-
alty discount is given at the start of the algorithm run; as the run advances (the 
number of passed iterations increases), the discount decays. 

TESTING 

First, we test the algorithm for 10 to 50 ports randomly scattered. In this case, all 
ports coordinates (1) are in matrix 

 )2,(50 NP  
by  

 5 5N n  , 1, 9n   

and an operator )2,(N  returning a pseudorandom 2N   matrix whose entries 

are drawn from the standard uniform distribution on the open interval )1;0( . The 
remaining parameters are: 

 max 2M  , (max)
fail 15s  , 0.05  ,  

  max
1,

1

1.25 0.5 max ,
N

k N
j

d k j




                 
 ,  

 )1.0( maxmin dd  ,  (21) 

where function )(x  rounds number x  to the nearest integer towards infinity. 

The maximal number of iterations is 3600, whereas the algorithm early stop con-
dition is used, by which (a run of) the algorithm is stopped if the shortest route 
length does not change for 720 iterations (a one fifth of the maximal number of 
iterations). The test is repeated for 100 times for the algorithm used in three ver-
sions: with the tour constraint penalty discount, with the constant penalty by 

 1)( ir   1, 3600i  ,  (22) 

and with the augmented constant penalty by 

 100)( ir  1, 3600i  . (23) 

Overall, there are 900 route lengths (for instances of randomly generated 
ports) returned by each of the three versions, where * 1M   (the shortest route is 
of a single tour in every solution). We will refer to them as v , 1v , 100v , respec-

tively. Whereas the pseudorandom number generator outputs the same instance 
for each of the three algorithm versions, re-runs for v  are not initialized with the 
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same pseudorandom number generator seed. The advantage of the algorithm us-
ing the changeable penalty compared to the algorithm using constant penalties by 
(22), (23) can be seen in Table 1, where “better than” implies producing a shorter 
route. Table 2 shows that v  has been worse than 100v  in less than 1.5 %. Com-

pared v  to 1v , this percentage is even far smaller – just 0.1111 % (only one of 

those 900 route lengths produced by v  has appeared to be longer than the 

respective route length produced by 1v ; this is an instance of 50 ports whose 

v-route length is 274.8312 and v1-route length is 274.6006). Table 3 shows that 

1v  and 100v  are more likely to produce the same result (strictly speaking, the 

equal lengths of the routes, whereas the routes themselves may differ in particular 
regions). The percentage of instances where v  performs identically to 1v  or 100v  

is not that small. At least, this is 20% on average. 

T a b l e  1 .  The percentage of instances where one algorithm version produces 
a shorter route than the other version 

 v  better than 1v  v  better than 100v 1v  better than 100v  

Overall average 75.7778 75.8889 19.3333 

10 10 17 11 

15 55 51 8 

20 78 71 9 

25 83 84 14 

30 88 88 19 

35 88 89 22 

40 95 95 29 

45 90 90 28 

N  

50 95 98 34 
 

T a b l e  2 .  The percentage of instances where one algorithm version produces 
a longer route than the other version 

 v  worse than 1v  v  worse than 100v 1v  worse than 100v  

Overall average 0.1111 1.4444 21.5556 

10 0 0 2 

15 0 0 15 

20 0 0 17 

25 0 0 17 

30 0 0 19 

35 0 3 28 

40 0 3 24 

45 0 6 40 

N  

50 1 1 32 
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T a b l e  3 .  The percentage of instances where two algorithm versions produce
the same route lengths 

 v  and 1v  v  and 100v  1v  and 100v  

Overall average 24.1111 22.6667 59.1111 
10 90 83 87 
15 45 49 77 
20 22 29 74 
25 17 16 69 
30 12 12 62 
35 12 8 50 
40 5 2 47 
45 10 4 32 

N  

50 4 1 34 
 

In the test, v  has produced 653 route lengths (72.5556 %) by 1  (i. e., 
by an increasing tour constraint violation penalty). All the 100 instances of 10 
ports are solved by 1 . Then, however, the percentage of instances where v  
has produced the shortest route by an increasing tour constraint penalty starts de-
creasing (Fig. 3). The way how the best values of   are distributed shown in 
Fig. 4 delusively hints at that the increasing penalty is better than the decreasing 
one. Meanwhile, it is worth noting that 224 of 900 instances has been v-solved 
by starting with 01.1 . The distributions of the best values of   for the 
number of ports in Fig. 5 confirm that the decreasing penalty becomes more influ-
ential as the number increases. 
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Fig. 3. The percentage of instances per 
number of ports where v  has produced 
the shortest route by 1  
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A simple example of how the changeable penalty algorithm outperforms the 
two constant penalty algorithm versions is presented in Fig. 6. Compared to Fig. 
7, where both the constant penalty algorithm versions produce the same route, the 
changeable penalty algorithm shortens the route by 3.7837 %, which is quite con-
siderable and significant improvement. A more intricate example is presented in 
Fig. 8, where the shortest route through 50 ports is found at an increasing tour 
constraint violation penalty as well. Compared to Fig. 9, showing the shortest 
route found by 1v , the changeable penalty algorithm shortens the route by 
11.1689 %. Moreover, algorithm version 100v  seeming to be a slightly more ro-
bust than 1v  produces a longer route (Fig. 10). Its length is 15.5299 % greater 
than that in Fig. 8. 
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Fig. 6. The v-solution of an instance with 10 ports by 1.008  , where * 139.5179   
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Fig. 7. The worse solution of the instance with 10 ports in Fig. 6 by 1v  and 100v , where 

0045.145~*   
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Fig. 10. The v100-solution of the instance with 50 ports in Fig. 8, where 1495.337~*   

It is noteworthy that the results reported in Tables 1–3 and Figs. 3–5 are sta-
tistically reliable, i. e. they are approximately repeatable for other pseudorandom 
number generator seeds. Thus, in another series of 900 instances, the overall aver-
age percentages from Table 1 first row are now 73.6667 %, 75.7778 %, 21 % 
(there have been obtained 189 routes by 1v  whose lengths are shorter than lengths 

by 100v ), respectively. So, v  is indeed “better than” 1v  and 100v  in about 75 % 
of the modeled instances. The overall average percentages from Table 2 first row 
are now 0.1111 % (once again only one of those 900 route lengths produced by 

v  has appeared to be longer than the respective route length produced by 1v ), 

0.8889 % (the difference is so big due to a few instances where v  is “worse 

than” 100v ), 16.8889 %, respectively. Just like in the first series, the only instance 

whose v-route is longer than v1-route has appeared to be of 50 ports, where the 
v-route length is 272.0435 and the v1-route length is 271.7023 (the difference in 
the first series is even smaller). Eventually, the overall average percentages from 
Table 3 first row are now 26.2222 %, 23.3333 %, and 62.1111 %, respectively, 
being really close to those ones in Table 3.  

A very specific property of the genetic algorithm is that its result as the 
shortest route length depends on the pseudorandom number generator state seeded 
at the beginning of a test. Hence, we try re-running v  initialized with the same 
pseudorandom number generator seed. By this set-up of the test, the shortest route 
length does depend on whether 1  or 1 . Nevertheless, this dependence is 
weak: 769 instances have been v-solved by 01.1  (the starting value for the 
increasing penalty rate), whereas just 99 instances have been v-solved by 



A genetic algorithm improvement by tour constraint violation penalty discount for maritime … 

Системні дослідження та інформаційні технології, 2023, № 2 119

999945.0  (the starting value for the decreasing penalty rate). Similarly to 
Tables 1–3, the comparison to 1v  and 100v  is presented in Tables 4–6. These ta-

bles clearly show that the advantage of v  is not that big, if any. 

T a b l e  4 .  The “better than” percentages for the same pseudorandom number 
generator seed test 

 v  better than 1v  v  better than 100v 1v  better than 100v  

Overall average 42.5556 45.6667 21 
10 11 15 10 
15 32 32 6 
20 37 37 8 
25 48 49 17 
30 46 48 25 
35 50 50 24 
40 52 63 28 
45 50 62 35 

N  

50 57 55 36 
 

T a b l e  5 .  The “worse than” percentages for the same pseudorandom number
generator seed test 

 v  worse than 1v  v  worse than 100v 1v  worse than 100v  

Overall average 40.5556 37.3333 16.8889 
10 6 4 4 
15 27 28 9 
20 47 45 9 
25 46 44 12 
30 51 47 15 
35 47 48 17 
40 48 37 26 
45 50 38 25 

N  

50 43 45 35 
 

T a b l e  6 .  The “equal route lengths” percentages for the same pseudorandom 
number generator seed test 

 v  and 1v  v  and 100v  1v  and 100v  

Overall average 16.8889 17 62.1111 

10 83 81 86 
15 41 40 85 
20 16 18 83 
25 6 7 71 
30 3 5 60 
35 3 2 59 

40 0 0 46 

45 0 0 40 

N  

50 0 0 29 
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Table 7 shows what the pure advantage is (when the algorithm version is si-
multaneously compared to the two other versions). Moreover, the average route 
length by v  is 233.5604 (averaged over 900 route lengths), whereas the average 

route lengths by 1v  and 100v  are 234.0213 and 234.41296, respectively. There-

fore, at least a tiny advantage of v  does exist, i. e. using the tour constraint pen-

alty discount may indeed shorten the route. 

T a b l e  7 .  The percentages of performance comparison for the same pseudo-
random number generator seed test 

 better than the two 
other versions 

worse than the two 
other versions 

not worse than the  
two other versions 

v  36 31.5556 53.6667 

1v  14.1111 12.5556 53.1111 

100v  9.6667 15.2222 48.5556 
 

The final test is done for each of algorithm versions 1v , 100v , v  by 

19(max)
fail s  and resetting every re-run with a new pseudorandom number genera-

tor seed being the same for 1v , 100v , v . This is the purest experiment, where 
every instance is solved at least 20 times (and there are 19 attempts to shorten the 
very first route length). It is v-solved for 10 times by the increasing penalty and 
10 times by the decreasing penalty, unless a shorter route is found by a decreased 
 . Now, the performance comparison similar to Table 7 is presented in Table 8. 
It is clearly seen that the purest advantage of v  does exist (because there have 

been v-found 33 routes, which is 3.6667 %, each shorter than any of 20 routes by 

1v  and any of 20 routes by 100v  in the respective 33 instances). However, the pur-

est advantage of 100v  seems to be stronger. Amazingly enough, there have been 

v-found 134 routes (14.8889 %) each shorter than any of 20 routes by 100v  in the 

respective 134 instances. Contrariwise, there have been v100-found 143 routes 
(15.8889 %) each shorter than any route by v  in the respective 143 instances. In 
other words, the algorithm version using the tour constraint penalty discount has 
an efficiency comparable (roughly speaking, almost the same) to the effi-
ciency of the algorithm version using the high constant penalty. The respec-
tive percentages for v  and 1v  are 8.3333 % ( v  outperforms 1v ) and 

11.2222 % ( 1v  outperforms v ). 

T a b l e  8 .  The percentages of performance comparison for the purest experiment 

 better than the two 
other versions 

worse than the two 
other versions 

not worse than the 
two other versions 

v  3.6667 6.1111 79 

1v  7.4444 5.8889 81.8889 

100v  12.2222 12.5556 80.2222 
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Consequently, the algorithm using the changeable penalty sometimes 
outperforms the algorithm using the constant penalty. Although this occasion 
is not very likely, there are expectedly about one problem of 25, when the 
changeable penalty algorithm will produce a shorter route than routes by the 
constant penalty algorithm versions. The latter can outperform as well, with 
slightly higher likelihoods. 

The final test has revealed another interesting peculiarity. Among those 900 
instances, 215 shortest routes by v  have been found by 01.1 , 88 shortest 

v-routes have been found by 009.1 , and 68 shortest v-routes have been 

found by 008.1  (the two nearest values to 1.01). The distribution resembles 
that one in Fig. 4. The ratio of the number of instances solved by 1  to the 
number of instances solved by 1  is about 2. Consequently, the increasing 
penalty has its one advantage over the decreasing penalty, but still the latter is 
“needed” roughly in every third problem solved by the changeable penalty algo-
rithm. 

DISCUSSION OF THE CONTRIBUTION 

The experiment with controllable seed for generating maritime cargo delivery 
problem instances and for randomly generating tours (16) for (17) has shown that 
the changeable penalty, along with the constant penalty, is an important parameter 
of the genetic algorithm. It has been also revealed that the algorithm output de-
pends on the seed. It is unclear how the best value of   could be selected. More-
over, it is impossible to foresee that the constant penalty algorithm version will 
not be outperformed by the changeable penalty algorithm. Therefore, the best de-
cision is to use both the constant and changeable penalty versions (say, by run-
ning them on parallel processor cores), whereupon the shortest route length is 
trivially selected. In our case of study, we propose to run simultaneously four ver-
sions: 1v , 100v , v  by 01.1 , and v  by 999945.0  (here the penalty has 

the slowest descent; during the starting few thousand iterations, it decreases al-
most linearly). 

An example of how the suggested changeable penalty improves the genetic 
algorithm is presented in Figs. 11–13. A maritime cargo delivery problem with 45 
ports is solved, starting with the same pseudorandom number generator seed, by 
using the low constant penalty by (22), the high constant penalty by (23), and the 
increasing penalty with 01.1 . As we can see, the high constant penalty has 

improved the low constant penalty route length by just 0.08 % ( 90902.300~*   

in Fig. 12 against 1532.301~*   in Fig. 11). The improvement by the increasing 

penalty is far more significant: it is 3.8194 % ( 4161.289~*   in Fig. 13) com-

pared to 90902.300~*   in Fig. 12, and it is 3.8974 % compared to 

1532.301~*   in Fig. 11. 
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Fig. 11. The v1-solution of an instance with 45 ports, where * 301.1532   
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Fig. 12. The v100-solution of the instance with 45 ports in Fig. 11, where * 300.90902   
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Despite the example in Figs. 11–13 is a good demonstration of that the 
changeable penalty is a real improvement of the genetic algorithm, a counterex-
ample is easily generated just on the same maritime cargo delivery problem by re-
running the constant penalty algorithm versions and v  (a re-run implies that the 
pseudorandom number generator state is changed). Thus, in a series of 302 re-
runs, the shortest route length by 1v  varies between 272.8407 and 323.0998, and 

the shortest route length by v  varies between the same lower and upper bounda-

ries. The shortest route length by 100v  varies between 272.8407 (the same lower 

boundary) and 317.6751, so its upper boundary is less than that for 1v  and v . 

Nevertheless, as the maximally possible number of feeders is increased, the 
suggested changeable penalty further improves the genetic algorithm. In this case, 
we have 
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and (21), i. e. the longest and shortest possible tours of the feeder are shortened. 
For the same instance with 6max M , the performance of v  in a series of 738 
re-runs is significantly better. The lower and upper boundaries in this case are 
274.1295 and 321.0341 for 1v , 274.70303 and 317.0557 for 100v , 272.8407 and 

323.7964 for v , where the shortest route length 8407.272~*   is found in a re-

run with 4775.288~*   (it is even shorter than that in Fig. 13) by 1v  and 

297.49702~*   by 100v . Furthermore, in this “local” test series v  is better than 
the two other versions in 27.9133 % and is worse than the two other versions in 
23.9837 % of all re-runs. These rates are 3.9735 % and 1.9868 % for the series 
with 2max M . By the way, the performance of the high constant penalty algo-

rithm with 6max M  significantly drops: the average route length is 290.4455 

within the 302 re-runs with 2max M , and it is 295.3313 with 6max M . 

At last, it is important to note that all the generated instances in our testings 
have been such that, in the solution returned by the algorithm, only one feeder 

was required to cover the shortest route ( 1* M ). This is practically possible and 
applicable due to we set the longest possible tour of the feeder at a relatively high 
value. Even though the shortened route length by the suggested improvement in 
the genetic algorithm is small, it is a significant decrement of the maritime cargo 
delivery cost. 

CONCLUSION 

We have presented a tour constraint violation penalty to the genetic algorithm for 
solving a maritime cargo delivery problem formulated as a multiple traveling 
salesman problem. The penalty is an exponential function of the iteration, where 
we maintain the possibility of the penalty rate to be either increasing or decreas-
ing whose steepness is controlled by a positive parameter  . Our tests have 
shown that the changeable penalty algorithm may return shorter routes, although 
the constant penalty algorithms cannot be neglected. Therefore, our contribution 
to the field of genetic algorithms is the monotonous flexibility of the tour con-
straint violation penalty. The usefulness of this flexibility grows as the longest 
possible tour of the feeder is shortened. It is so due to a penalty discount is re-
quired either at the beginning or at the end of the algorithm run to improve selec-
tivity of the best feeder tours. In optimizing maritime cargo delivery, we propose 
to run the genetic algorithm by the low and constant penalties along with the in-
creasing and decreasing penalties, whereupon the solution is the minimal value of 
the four route lengths. In addition, we recommend the four algorithm versions to 
be initialized by four different pseudorandom number generator states. Although 
the gain is just a few percent (by which the route length is shortened) or less, it is 
a substantial reduction of expenses for maritime cargo delivery. 

The research should be extended and advanced in the way of studying the 
pseudorandom number generator state influence. As we have revealed that the 
state influences the algorithm output, it is to ascertain lower and upper boundaries 
of the route length. Another open question is how many re-runs should be made 
(by changing the state) to obtain the shortest possible route in a maritime cargo 
delivery problem. 
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ПОКРАЩЕННЯ ГЕНЕТИЧНОГО АЛГОРИТМУ НА ОСНОВІ ДИСКОНТУ 
ШТРАФУ ЗА ПОРУШЕННЯ ОБМЕЖЕНЬ РЕЙСУ ДЛЯ МОРСЬКОЇ 
ДОСТАВКИ ВАНТАЖІВ / В.В. Романюк, А.Ю. Романов, М.О. Малаксіано 

Анотація. Розглянуто задачу мінімізації вартості морської доставки вантажів. 
Ця вартість еквівалентна сумі довжин рейсів фідерів, що використовуються 
для доставки. Задача формулюється у формі задачі декількох комівояжерів. 
Для знаходження розв’язку у формі найкоротшого маршруту, що складається з 
рейсів фідерів, використовується генетичний алгоритм, у якому дві нерівності, 
котрі обмежують довжину рейсу кожного фідера до інтервалу між найкорот-
шою та найбільшою довжинами. Окрім сталого штрафу за порушення обме-
жень рейсу у генетичному алгоритмі запропоновано змінюваний штраф у фо-
рмі експоненціальної функції ітерації алгоритму, де залишається можливість 
як зростаючого, так і спадного штрафу, чия крутизна контролюється деяким 
додатним параметром. Тести показують, що алгоритм зі змінюваним штрафом 
може повертати коротші маршрути, хоча алгоритми зі сталими штрафами не 
можуть бути відкинуті. Зі скороченням найдовшого рейсу фідера змінюваний 
штраф стає більш корисним завдяки тому, що деякий дисконт штрафу потріб-
ний на початку або наприкінці прогону алгоритму задля покращення селекти-
вності найкращих рейсів фідерів. Для оптимізації морської доставки вантажів 
запропоновано запускати даний генетичний алгоритм за низького та високого 
штрафів разом зі зростаючим та спадаючим штрафами, після чого розв’язком є 
мінімальне значення з чотирьох відповідних довжин маршрутів. Рекомендова-
но ініціалізувати ці чотири версії алгоритму чотирма різними станами генера-
тора псевдовипадкових чисел. Очікуваний виграш складає декілька відсотків 
скорочення довжини маршруту, але для морської доставки вантажів це є знач-
ним скороченням витрат. 

Ключові слова: морська доставка вантажів, довжина рейсу, генетичний алго-
ритм, штраф за порушення обмежень рейсу, дисконт штрафу. 

 


