
 

 E.O. Perepeka, V.V. Lazoryshynets, V.O. Babenko, I.V. Davydovych, I.A. Nastenko, 2024 

Системні дослідження та інформаційні технології, 2024, № 1                                                 33 

UDC 004.852 + 616.12-07 
DOI: 10.20535/SRIT.2308-8893.2024.1.03 

CARDIOMYOPATHY PREDICTION IN PATIENTS  

WITH PERMANENT VENTRICULAR PACING USING  

MACHINE LEARNING METHODS 

E.O. PEREPEKA, V.V. LAZORYSHYNETS, V.O. BABENKO, 
I.V. DAVYDOVYCH, I.A. NASTENKO 

Abstract. Pacing-induced cardiomyopathy is a notable issue in patients needing 
permanent ventricular pacing. Identifying risk groups early and swiftly preventing 
the ailment can reduce patient harm. However, current prognostic methods require 
clarity. We employed machine learning to develop predictive models using medical 
data. Three algorithms — decision tree, group method of data handling, and logistic 
regression — formed models that forecast pacing-induced cardiomyopathy. These 
models displayed high accuracy in predicting development, signifying soundness. 
Factors like age, paced QRS width, pacing mode, and ventricular index during im-
plantation significantly influenced predictions. Machine learning can enhance pac-
ing-induced cardiomyopathy prediction in ventricular pacing patients, aiding medi-
cal practice and preventive strategies. 

Keywords: permanent ventricular pacing, risk factors, artificial intelligence, fore-
casting, machine learning.  

INTRODUCTION 

Right ventricular myocardial pacing remains dominating method in providing 
medical care to patients with various potentially fatal bradyarrhythmias, even 
though at the beginning of the 21st century, a relation between this form of car-
diac pacing and the left ventricular contractility impairment [1], as well as dete-
rioration of clinical outcomes in the distant period [2; 3]. 

According to data from various sources, the incidence of pacing-induced 
cardiomyopathy (PICM) in patients with conventional right ventricular pacing 
and with preserved initial left ventricle ejection fraction (LVEF) ranges from 7.5 
to 26% [4–10]. 

The risk of heart failure hospitalizations (HFH) and overall mortality are 
significantly higher among patients with PICM, as was shown in a large retro-
spective study by Sung Woo Cho et al. [10]. Though in patients with initially re-
duced systolic function of the left ventricle and high burden of ventricular pacing, 
the factors of deterioration of the clinical outcomes are well established [3], in 
patients with preserved LVEF, they have not yet been fully studied. Along with 
the wide availability and significant global experience of using this method of 
cardiac pacing in clinical practice, there is a growing number of publications fo-
cusing on the adverse effects of right ventricular myocardial pacing (and investi-
gating risk factors that led to them), one of which is the development of the so-
called pacing-induced cardiomyopathy, which is characterized by a decrease in 
the left ventricle contractility and negative remodeling of the heart chambers, 
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The identification of risk factors and prediction of PICM development in patients 
with an implanted pacemaker is an objective of significant importance for modern 
medicine, considering the appearance of modern physiological methods of cardiac 
pacing (such as conduction system pacing) which allow preventing or minimizing 
the negative consequences of right ventricular myocardial pacing [11–14]. It is 
important to note that machine learning and artificial intelligence are becoming 
more prevalent in healthcare, particularly in cardiology. These technologies have 
successfully predicted disease cases and identified pathologies [15]. However, 
studies that apply machine learning to indicate PICM were not found after analyz-
ing various literature sources.  

The primary focus of research in the intersection of cardiology and machine 
learning is centered around the prediction and diagnosis of diseases, including 
ischemic heart disease (IHD) [16; 17], HF [18], atrial arrhythmias [19; 20], and 
others, using data from patients’ medical records, imaging, and biosignals. In the 
context of PICM, the scientific community focuses on studying risk factors and 
developing preventive measures [21; 22]. Thus, the use of machine learning can 
contribute to identifying patients at considerable risk of PICM, which will allow 
the introduction of prompt and effective therapeutic interventions or other inva-
sive strategies. This study focuses on figuring out the possibilities of using the 
machine learning methodology to predict the development of PICM in patients 
with permanent ventricular pacing.  

Specific tasks due to the urgency of the problem are determined by the fol-
lowing aspects: 

1. Development of PICM prediction models based on various machine 
learning algorithms using the available medical dataset. 

2. Comprehensive evaluation of constructed models using classification 
metrics including (but not limited to) accuracy, sensitivity, and specificity. 

3. A detailed study of the importance of individual factors included in the 
model in the context of their influence on predicting PICM. 

The objective of the study is the construction of detailed prognostic models 
for the development of PICM and the identification of critical factors that con-
tribute to the occurrence of this complication. 

MATERIALS AND METHODS 

In this research, we used anonymized data from patient examinations performed 
at the State Institution “M. Amosov National Institute of Cardiovascular Surgery” 
of the National Academy of Medical Sciences of Ukraine within the framework 
of the cooperation agreement with the National Technical University of Ukraine 
“Igor Sikorsky Kyiv Polytechnic Institute”.  

Before initiating the study, the M. Amosov National Institute of 
Cardiovascular Surgery performed a bioethical evaluation of the research 
protocol. We analyzed data on thirty-four patients, of which nine (26.5%) were 
diagnosed with PICM, which was determined with an LVEF of less than 45%. 
Left ventricle ejection fraction was within normal limits in the remaining twenty-
five patients (73.5%). 

The study included only those patients who met the following criteria: avail-
ability of echocardiographic data at the time of pacemaker (PM) implantation; 
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total percentage of ventricular pacing at the time of examination is not less than 
90%; preserved LVEF at the time of implantation (≥ 50%); age restrictions pa-
tients (18–80 years at the time of implantation and control examination, respec-
tively); this was to be a primary PM implantation without previous endocardial 
lead extractions or power source replacements. 

For the study, the M. Amosov National Institute of Cardiovascular Surgery 
systematically collected and documented data, which included gender, age, the 
period from PM implantation to follow-up, as well as the main and concomitant 
diagnoses of the patients.  

In addition, the data from echocardiographic and electrocardiographic 
studies were collected, as well as cardiac pacing parameters at two stages: at the 
time of hospitalization and during the control examination.  

It is important to note that the used database has seventeen attributes, de-
scribed in detail in Table 1. 

T a b l e  1 . Attributes of the selected database 

Attribute1 Data type Symbolic 
notation 

PICM Binary y 
Gender Binary x1 

Age Continuous integer x2 
Time from pacemaker implantation to follow-up Continuous integer x3 

LVEF at the time of implantation Continuous integer x4 
LA diameter at the time of PM implantation Continuous integer x5 

 Width of native QRS complex Continuous integer x6 
Width of paced QRS complex Continuous integer x7 

Presence of atrial arrhythmias (including AF) Binary x8 
Right ventricle pacing site Binary x9 
Structural heart diseases Binary x10 

Diabetes mellitus Binary x11 
Hypertension Binary x12 

Ischemic heart disease Binary x13 
Pacemaker type (single-chamber/dual-chamber) Binary x14 

Rate-adaptive pacing mode Binary x15 
Left ventricle EDI at the time of PM implantation Continuous х16 
 

The purpose of applying machine learning technologies was to find key in-
put (independent) variables x  that correlate with the presence of cardiomyopathy, 
represented as an output (dependent) variable y . Machine learning aims to iden-

tify patterns and relationships between variables through data processing. Ma-
chine learning algorithms are designed to explore dependencies in data and show 
trends that may not be clear. A substantial number of scientific developments con-
firmed this hypothesis, where authors considered tasks from various subject areas, 
including medicine [23–25]. 

                                                      
1 Accepted abbreviations: PICM — stimulation-induced cardiomyopathy; AP — artificial pace-
maker; LVEF — left ventricular ejection fraction; LA — left atrium; AF — atrial fibrillation; EDI 
— end-diastolic index. 
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As can be seen from Table 1, the output variable y is dichotomous, which 
writes down the need to solve the classification problem.  

Taking this into account, we decided to use three simple classification algo-
rithms: decision tree [26], group method of data handling (GMDH) [27], and lo-
gistic regression [28].  

Decision trees are one of the most convenient algorithms because of their 
visual interpretation and ability to oversee numerical and categorical data. They 
work by partitioning the space of input variables into regions corresponding to 
different classes of the output variable. However, they can be prone to overfitting, 
especially with complex data. 

GMDH is an algorithm that creates a model based on a pairwise comparison 
of objects. Its main advantage is the high interpretability of the results, which 
supplies the possibility of a clear understanding of the classification mechanisms. 
However, due to high computational complexity, GMDH may only be effective 
for a small volume of data. 

Logistic regression is a statistical algorithm commonly used to predict the 
probability of an event occurring by applying a logistic function. This method 
works well on two-class problems but can run into issues with non-linear relation-
ships or many categorical variables. 

RESULTS 

Before building PICM prediction models, we divided the patient sample into a 
train (80%, or twenty-seven patients) and a test (20%, or seven patients) using a 
stratification method, which preserves the class ratio between subjects in each 
sample. We measured the performance of each algorithm by its accuracy (propor-
tion of correctly classified patients), sensitivity (proportion of correctly classified 
patients with pathology), and specificity (proportion of correctly classified 
healthy patients) [29]. The performance of the selected classification algorithms is 
presented in Table 2. 

T a b l e  2 .  Evaluation of the constructed PICM prediction models by classification
metrics 

Train (80%) Test (20%) 
Classifier 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
Decision tree 1.000 1.000 1.000 1.000 1.000 1.000 

GMDH 1.000 1.000 1.000 1.000 1.000 1.000 
Logistic regression 0.852 0.857 0.850 1.000 1.000 1.000 

 

Using the scikit-learn (the Python library), we implemented the classifica-
tion model (Figure) based on the decision tree method. The tree has a depth of 
five and consists of nine leaves. 

According to the data presented in Table 2, this model shows 100% accuracy on 
the test sample, indicating its reliability and the absence of overfitting phenomena. 

Six input variables: 152763 ,,,, xxxxx , and 16x , were used in the model and 
are illustrated in the tree (Fig. 1). We expressed each variable’s impact through 
the tree’s weights: 303.03 x , 193.06 x , 146.07 x , 127.02 x , 118.015 x , 

113.016 x . The weighting coefficients were figured out using the Gini index [26]. It 
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considers the number of times each variable was used to split the data and how 
effective this split was. The final weighting of each variable is a normalized value 
based on the overall reduction in the Gini index caused by each variable. A vari-
able with a higher importance value is considered more “important” to the model. 

Applying the GMDH, we generated a model for which the formula below 
is given: 

  16121221413167
2
16 006.0006.0643.00009.0001.0 xxxxxxxxxy  

 736.0519.0018.00003.0031.0 1211124
2
7159  xxxxxxx  

We conducted the training process by using GMDH Shell DS software. As 
shown in Table 2, the results show that the GMDH model is completely accurate 

x16 ≤ 67.674
gini = 0.5 

samples = 270 
value = [135.0, 135.0] 

class = 2 

x6 ≤ 152.454 
gini = 0.366 

samples = 100 
value = [60.75, 19.286] 

class = 1 

x3 ≤ 33.641 
gini = 0.476 

samples = 170 
value = [74.25, 115.714] 

class = 2 

4. gini = 0.0
samples = 80 

value = [54.0, 0.0] 

class = 1 

x2 ≤ 68.34
gini = 0.254 
samples = 60 

value = [13.5, 77.143]
class = 2 

5. x2 ≤ 60.71
gini = 0.384 
samples = 20 

value = [6.75, 19.286]
class = 2 

7. x3 ≤ 51.819 
gini = 0.475 

samples = 110 
value = [60.75, 38.571] 

class = 1 

8. gini = 0.0 
samples = 10 

value = [6.75, 0.0] 
class = 1 

9. gini = 0.0
samples = 10 

value = [0.0, 19.286]
class = 2 

10. gini = 0.0
samples = 30 

value = [0.0, 57.857]
class = 2 

11. x15 ≤ 1.15 
gini = 0.484 
samples = 30 

value=[13.5, 19.286] 
class = 2 

12. gini = 0.0
samples = 60 

value = [40.5, 0.0]
class = 1 

13. x6 ≤ 128.428 
gini = 0.451 
samples = 50 

value = [20.25, 38.571] 
class = 2 

14. gini = 0.0 
samples = 10 

value = [0.0, 19.286] 
class = 2 

15. gini = 0.0
samples = 20 

value = [13.5, 0.0] 
class = 1 16. x7 ≤ 160.001

gini = 0.5 
samples = 40 

value=[20.25, 19.286]
class = 1 

17. gini = 0.0 
samples = 10 

value = [0.0, 19.286] 
class = 2 

18. gini = 0.0
samples = 30 

value = [20.25, 0.0]
class = 1 

19. gini = 0.0
samples = 10 

value = [0.0, 19.286] 
class = 2 

Decsion tree model 
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in testing, indicating no model overfitting. This model includes ten independent 
variables, namely: 121471316 ,,,, xxxxx , 92411 ,,, xxxx , and 15x . The weight of 
each of these variables is found based on the change in the model’s predicted val-
ues when replacing the variable’s actual values with its average value. As a result, 
the following variable weights were obtained: %7.8316 x , %9.5313 x , 

%2.537 x , %7.3914 x , %4.3312 x , %8.3011 x , %6.174 x , %4.62 x , 

%6.19 x , %2.015 x . 

In the third step, we applied a logistic regression model. The general form of 
the logistic model is defined by formula: 

 
ye

p 


1

1
, 

where p  is the calculated probability of occurrence of a given event (PICM in 
this context); e is the basis of natural logarithms (2.713); y is the linear regression 
equation. The following logistic regression model was obtained: 

 179.8119.0758.1044.0065.0 161572  xxxxy . 

We conducted the training procedure using the scikit-learn package of the 
Python programming language. The complexity of this model is four. Interest-
ingly, this model includes variables also used in the earlier models: 1572 ,, xxx , 

and 16x . 

DISCUSSION 

While analyzing constructed models for predicting pacing-induced cardiomyopa-
thy based on the data in Table 2, it was found that only the logistic regression 
model failed to present an ideal result for the entire sample (with a classification 
accuracy of 85.2% in the train, despite 100% accuracy in the test). The observed 
phenomenon can be explained by the intrinsic simplicity of the logistic model in 
contrast to the other comparable models utilized in the research. 

The developed decision tree model was structurally simple and included 
only six independent variables. While the results of the classification estimation 
are excellent, this model may be prone to misprediction of new data due to the 
limited initial sample size. The GMDH model wins here by incorporating ten in-
dependent variables for prediction. Additionally, the algorithm for constructing 
such a model allows non-linear combinations of variables, which sensitively in-
creases their predictive power. 

The identified combinations of factors influencing the PICM development 
align with the latest global publications. The three prediction models include the 
following independent variables: x2 (patient’s age), x7 (width of paced QRS com-
plex), x15 (rate-adaptive pacing mode), and x16 (left ventricular EDI at the time of 
PM implantation).  

Among them, variable x7 has a significant impact, especially in the decision 
tree (0.147) and GMDH (53.2%), with one of the highest weighting coefficients. 
There are also independent variables that were not included in any of the models, 
such as x1 (patient gender), x5 (LA diameter at the time of PM implantation), x8 
(presence of atrial arrhythmias), and x10 (structural heart diseases). 
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The modeling results obtained during the study open the possibility of pre-
dicting undesirable clinical consequences of right ventricular pacing based on 
combinations of the most informative factors. That makes it possible to prevent 
the influence of these factors or intervene at the stage of medical care provided, 
choosing more physiological cardiac pacing methods. 

CONCLUSION 

The study successfully developed models for predicting pacing-induced cardio-
myopathy (PICM) based on various machine learning algorithms using an avail-
able medical dataset of thirty-four patients.  

Methods used — including decision tree, group method of data handling 
(GMDH), and logistic regression — allowed robust predictive models to be cre-
ated. On the test sample, all of them showed 100% prediction accuracy. 

Obtained results demonstrated the high efficiency of the used machine learn-
ing algorithms in terms of the accuracy of the PICM prediction, the absence of 
overfitting, and the ability of the models to classify adequately normal and patho-
logical states of patients. 

A detailed study of values included in the models allows an understanding of 
their role in developing PICM.  

The most significant data included in the models were patient age, paced 
QRS complex width, rate-adaptive pacing mode, and left ventricular end-diastolic 
index (EDI) at the time of pacemaker implantation.  

The developed models can serve as a basis for further improving diagnostic 
and treatment technologies for PICM prevention strategies. 
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ПРОГНОЗУВАННЯ КАРДІОМІОПАТІЇ У ПАЦІЄНТІВ З ПОСТІЙНОЮ 
ШЛУНОЧКОВОЮ ЕЛЕКТРОКАРДІОСТИМУЛЯЦІЄЮ ЗА ДОПОМОГОЮ 
МЕТОДІВ МАШИННОГО НАВЧАННЯ / Є.О. Перепека, В.В. Лазоришинець, 
В.О. Бабенко, І.В. Давидович, Є.А. Настенко 

Анотація. Кардіоміопатія, спричинена кардіостимуляцією, є важливою про-
блемою для пацієнтів, які потребують постійної шлуночкової кардіостимуля-
ції. Раннє виявлення груп ризику та швидка профілактика недуги можуть зме-
ншити шкоду для пацієнтів. Однак сучасні методи прогнозування потребують 
доопрацювання. Застосовано машинне навчання для розроблення прогностич-
них моделей на основі медичних даних. Три алгоритми — дерево рішень, гру-
па оброблення даних та логістична регресія — сформували моделі, які прогно-
зують кардіоміопатію, спричинену кардіостимуляцією. Ці моделі показали 
високу точність у прогнозуванні розвитку, що свідчить про їх надійність. 
Ключові фактори, такі як вік, ширина QRS, режим кардіостимуляції та шлуно-
чковий індекс під час імплантації, суттєво впливали на прогнози. Машинне 
навчання може покращити прогнозування кардіоміопатії, спричиненої кардіо-
стимуляцією, у пацієнтів, які перебувають на шлуночковій електрокардіости-
муляції, допомагаючи медичній практиці та профілактичним стратегіям. 

Ключові слова: постійне ритмоведення шлуночків, фактори ризику, штучний 
інтелект, прогнозування, машинне навчання. 


