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ALGORITHM FOR SIMULATING MELTING POLAR ICE,
EARTH INTERNAL MOVEMENT AND VOLCANO ERUPTION
WITH 3-DIMENSIONAL INERTIA TENSOR

YOSHIO MATSUKI, PETRO BIDYUK

Abstract. This paper reports the result of an investigation of a hypothesis that the
melting polar ice of Earth flowing down to the equatorial region causes volcano
eruptions. We assumed a cube inside the spherical body of Earth, formulated a
3-dimensional inertia tensor of the cube, and then simulated the redistribution of the
mass that is to be caused by the movement of melted ice on the Earth’s surface.
Such mass distribution changes the inertia tensor of the cube. Then, the cube’s rota-
tion inside Earth was simulated by multiplying the Euler angle matrix by the inertia
tensor. Then, changes in the energy intensity and the angular momentum of the cube
were calculated as coefficients of Hamiltonian equations of motion, which are made
of the inertia tensor and sine and cosine curves of the rotation angles. The calcula-
tions show that the melted ice increases Earth’s internal energy intensity and angular
momentum, possibly increasing volcano eruptions.

Keywords: inertia tensor, volcano eruption, mass distribution, Hamiltonian equation
of motion.

INTRODUCTION

The polar ice melts and flows to the Equatorial region by Earth’s centrifugal force
by its rotation (from Fig. 1 to Fig. 2), then Earth swells along the Equatorial re-
gion (Fig. 3). The mass balance of Earth changes, then its inertia tensor changes.
We assume that the change of the inertia tensor, which is caused by the redistribu-
tion of mass from the polar region to the equatorial region, excites the Earth’s in-
ternal energy and the angular momentum, causing volcano eruptions.

Fig. 1. Polar ice Fig. 2. Melting ice Fig. 3. Swell around Equator
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ALGORITHM OF THE SIMULATION

Equation (1) shows how to calculate inertia tensor of a solid body, r is a distance
between the centre of mass and each point of the body, V is the volume of the

body, a and B are suffixes that represent coordinates’ axis, and d is Kronecker’s
delta:

Lop = [ p(r)Bugr® = rurp)dV . (1)
V

Fig. 4 shows a spherical body in a 3-dimensional flat space. Inside of the
sphere, we put a cube, 3 sides of which are on x, y and z axis of a flat 3-

dimensional coordinate system. The cube’s mass is M, each side’s length is @, and
we set:

b=Ma*.
Applying (1) to this cube, the inertia tensor becomes:
) _
S _lb _lb
3 4 4
1= —lb —%b —lb . 2)
4 3 4
2
L 4 4 3

The inertia tensor (2) of this cube is taken from the example shown at

end of the chapter 5.3 “The inertia tensor and the moment of inertia” in
page 94 of [1].

o -~
Fig. 4. A spherical body in a 3-dimensional flat space

By rotating the spherical body around z-axis, (2) is multiplied by Euler angle D:

cos sin 0
D=|—-sin cos 0].
0 01

Then we get:
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—bcos —lbsin gbsin —lbcos —lb
4 3 4 4

ID = —lbcos —gbsin —lbsin +gbcos —lb . 3)
4 3 4 3 4

—lbcos +%bsin —lbsin —lbcos %b

For calculating the energy intensity of the rotation, we take the diagonal
components of (3) to make a vector

(2/3)bcos +(1/4)bsin
X =|-(1/4)bsin +(2/3)bcos |, @)
(2/3)b

while, for calculating the angular momentum of the rotation, we take non-
diagonal (y, x) and (x, y) components of (3) to make a vector

1 2.
_ZCOS +—bsin
X = 3 . (5)
2.
——cos ——bsin
4 3
This re-formulation of the matrix to the vectors for energy intensity and for

angular momentum is explained from page 14 to page 21 of [2].
Then we make the Hamiltonian equation of motion:
H=kT-Xc. (6)
Here, kT is a stress energy that reflects the energy intensity and angular mo-
mentum of the rotating body. In this simulation, we set it as a unity vector. And ¢

is a coefficient vector, which is to be calculated as energy intensity of the rotating
body or the angular momentum; Xc for energy intensity is

Xc=C, zbcos + lsin +C| - lbsin +gbcos +C, gb ,
3 4 4 3 3
and for angular momentum it is
Xc=Cy| - lbcos + zbsin +C| - lbcos - gbsin .
4 3 4 3

Then, X’ is multiplied from the left side of (6), and we set it to be zero as
the boundary condition to make X' H = X' (kT — Xc)=0. Then, ¢ will be calcu-

lated by transforming X'H = X'(kT — Xc)=0 to X' Xc=X'kt, and then to
X' Xc=X"kt .
Here, X' is a transposed vector of X. (X' X )_1 is an inverse matrix of (X' X).

INPUT DATA FOR THE NUMERIC SIMULATION

We assign unity for b, therefore M and a become unity in (2) in order to simulate
the relative values and their changes of the energy intensity and angular momen-
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tum, not the absolute values. Then we deduct dx, dy and dz from M in each of 3
directions in x, y and z-axis, as shown in (7) for the energy level and (8) for
angular momentum:

gbcos +%bsin +dx

X= —lbsin +%bcos +dy |; 7
4 3
Zb —dz
L 3 i
—lcos +%bsin +dx
X = 3 . )

——Cos —gbsin +dy
4 3

First, we assign the value for d_, then calculate d, and d, by

dx=dy= ‘/ ! -1= 1/;—1, so that these can make the volume of the
a—dz 1-dz

cube to be unity. Then we simulate 4 cases by assigning 4 different sets of the
values of d, d ) and d,, which are shown in Table 1:

dx=dy=\/ ! —1=\/ ! -1].
a—dz 1-dz

Table 1. Marginal changes, d,,d, and d_, of Earth’s mass, which are to be

reflected to the cubic

Marginal mass change Case 1 Case 2 Case 3 Case 4
dy 0 0.00503 0.0541 0.118
d, 0 0.00503 0.0541 0.118
d, 0 0.01 0.1 0.2

Here, the image of Case 1 is shown in Fig. 1, and Cases 2, 3 and 4 are in Fig. 3.

For (4), (5), (7) and (8), we use sine and cosine curves shown in Fig. 5.
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Fig. 5. Sin ¢ and cos ¢
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RESULT

The result of the calculation of the coefficient vectors are shown in Table 2
and Fig. 6 for the energy intensity and in Table 3 and Fig. 7 for the angular
momentum. As the mass moves from the North Pole to the Equatorial region
the energy intensity becomes larger on z-axis and the angular momentum also
becomes larger on x-y plane. Fig. 8 shows the caricatured images of these cal-
culated results.

Table 2. Calculated coefficient vector for energy intensity

Energy intensity in | Case 1,d,=0 |Case 2,d,=0.01| Case 3, d,=0.1 | Case 4, d,=0.2
x 3.053:107° -6.94-10" -2.08107° -7.49-10°¢
-2.220-10"¢ -5.03-10"" -2.03-107° -8.67-107"%
z 1.50 1.52 1.76 2.14

Table 3. Calculated coefficient vector for angular momentum

Angular momentum in| Case 1,d,=0 |Case 2, d,=0.01| Case 3, d,=0.1 | Case 4, d,=0.2

-0.146 -7.19-107 0.617 1.16
0.178 -8.72:107 0.750 1.41
- ' 50E+00 16
® E 14 == Angular momentum in x
_ﬁ ' 00E+00 2 —#— Angular momentum in 'y
@©
i g
B S0E+00 E
% === Fnergy intensity in x =
= -00E+00 mmpmm Energy intensity in y g
w® Energy intensity in Z E
3 3.00E-01 &
o 3
S g
1 00E+00 W - - a $]
dz=0 dz=0,01 dz=0,1 42202 -
_5.00E-01 ) 04 )
Marginal change of mass Marginal change of mass
Fig. 6. Calculated energy intensity Fig. 7. Calculated angular momentum

| Image of energy intensity on z-axis |

Before ice melt After ice melt

‘Image of angular momentum on x-y plane

Fig. 8. Images of the simulation results
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CONCLUSIONS AND RECOMMENDATIONS

After the polar ice melting, the internal energy intensity of Earth becomes larger
on z-axis, and the angular momentum also becomes larger on x-y plane. This re-
sult suggests that the polar ice melting influences the Earth’s internal energy in-
tensity as well as the internal angular momentum, and larger. This result means a
possibility of volcano eruptions.

The simulated result should be compared to the observations on Earth, and
appropriate methodologies need to be developed for the comparison.
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AJITOPUTM  MOJEJIOBAHHA TAHEHHA HOJAPHOIO JIbOAY,
BHYTPIIIHBOI'O PYXY 3EMJII TA BUBEP’KEHH BYJIKAHY 3 3-BUMIPHUM
TEH30POM IHEPUII / Y. Manyki, [1.1. Binrok

Anotanis. [Togano pe3ynbTaTi TOCTIHKEHHS TINOTE3H PO TE, 0 TAHEHHS MOJISp-
HOTO JIbOAY 3eMJIi, IO CTIKa€ IO €KBATOPIaNbHOI TUISHKH, BUKINKAE BUBCPKECHHS
BynKkaHiB. [Ipumyctuny, mo BeepeauHi cheprynoro tia 3emii € kyo, chopmMoBaHO
TPUBHMIPHHUH TEH30p iHepIil Ky0a, IOTiM 3MOAEIBOBAHO IIEPEPO3IOIIT MACH, SKUH
Oy/ic CIPHYMHEHHI PyXOM TaJoro JIbOAy Ha moBepxHi 3emuti. Takuil po3moain Mac
3MiHIOE TeH30p iHepuil Kyba. 3MozesnboBaHO oOepTaHHs KyOa BcepenuHi 3emii
LIIIXOM MHOXKEHHsI MaTpHLli KyTta Eitnepa Ha Ten3op iHepuii. 3MiHH €HEpProeMHOCTI
Ta MOMEHTY IMITYJIbCY Ky0a po3paxoBaHO sIK KOe]illieHTH TaMiJIbTOHOBHX PiBHSHb
PYXY, SIKi CKJIaJal0ThCs 3 TEH30pa iHEepIil Ta KPUBUX CHHYCIB 1 KOCHHYCIB KyTiB I0-
BOpoTy. PesympTatm po3paxyHKiB IOKa3yloTh, INO Taduid Jig 30iibLIye
IHTEHCUBHICTh BHYTPIIIHBOI €Heprii 3eMiIi Ta KyTOBHH MOMEHT, 1[0 03HAYa€ MOX-
JIMBE 30LIBIICHHS BUBEP)KEHD BYJIKaHIB.

KawuoBi cioBa: TeH30p iHepwii, BHBEpP)KCHHsA ByJKaHa, pPO3MOIIT MacH,
TaMiJIbTOHOBE PIBHAHHS PYXY.
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