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SEMI-SUPERVISED INVERTED FILE INDEX APPROACH
FOR APPROXIMATE NEAREST NEIGHBOR SEARCH

A.BAZDYREV

Abstract. This paper introduces a novel modification to the Inverted File (IVF) in-
dex approach for approximate nearest neighbor search, incorporating supervised
learning techniques to enhance the efficacy of intermediate clustering and achieve
more balanced cluster sizes. The proposed method involves creating clusters using a
neural network by solving a task to classify query vectors into the same bucket as
their corresponding nearest neighbor vectors in the original dataset. When combined
with minimizing the standard deviation of the bucket sizes, the indexing process be-
comes more efficient and accurate during the approximate nearest neighbor search.
Through empirical evaluation on a test dataset, we demonstrate that the proposed
semi-supervised IVF index approach outperforms the industry-standard IVF imple-
mentation with fixed parameters, including the total number of clusters and the
number of clusters allocated to queries. This novel approach has promising implica-
tions for enhancing nearest-neighbor search efficiency in high-dimensional datasets
across various applications, including information retrieval, natural language search,
recommendation systems, etc.

Keywords: approximate nearest neighbor search, inverted file index, high-
dimensional data, machine learning.

INTRODUCTION

Approximate Nearest Neighbor (ANN) [1] search is a fundamental problem in
many data-driven applications, spanning domains such as information retrieval,
image processing, natural language search, and recommendation systems. The
efficient retrieval of similar data points from vast datasets is critical for tasks that
involve high-dimensional data representations, where exhaustive search methods
become computationally infeasible. As the dataset size grows, the computational
cost of performing an exact nearest neighbor search using brute force algorithms
becomes prohibitive. Brute force approaches involve comparing each query vec-
tor with every data point in the dataset, leading to computational inefficiencies
and impractical execution times for large datasets. Approximate nearest neighbor
algorithms offer a trade-off between search accuracy and efficiency, allowing for
the retrieval of reasonably accurate results within a significantly reduced search
space. By intelligently approximating the nearest neighbors, these algorithms en-
able faster exploration of large datasets, making them essential for real-world ap-
plications where timely responses are crucial, such as image and text search, rec-
ommendation systems, and similarity-based clustering.

One popular approach in ANN is the Inverted File (IVF) index method [2].
Originally, the IVF index was an inverted indexing technique that partitions the
dataset into a set of Voronoi cells or “buckets” [3]. Each bucket corresponds to a
cluster of data points, and the indices of data points within each bucket are stored
efficiently. During the search process, queries are mapped to their corresponding
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buckets, and the search is constrained to the nearest neighbors within these buck-
ets, significantly reducing the search space and accelerating the process.

The standard IVF index has shown remarkable performance gains in nearest
neighbor search tasks. However, it faces challenges in scenarios with unevenly
distributed data, leading to imbalanced bucket sizes [4]. These imbalances can
result in a suboptimal trade-off between search efficiency and accuracy, as some
buckets might be excessively populated, while others remain underutilized. In
addition to challenges posed by unevenly distributed data and imbalanced bucket
sizes, another significant issue that the standard IVF index may encounter relates
to the formation of centroid clusters. The standard approach typically relies on
unsupervised clustering techniques to create the centroids or representatives for
each bucket. This process can potentially lead to suboptimal cluster assignments,
especially when the training data for centroid formation is insufficient or poorly
representative of the underlying data distribution.

To address this limitation, we propose a novel modification to the IVF index
method that leverages supervised learning techniques. Specifically, we train clas-
sification neural networks to assign query vectors to their most appropriate
bucket, based on the similarity to vectors in the dataset. Moreover, we incorporate
an optimization objective to minimize the standard deviation of the bucket sizes,
further refining the indexing process. By doing so, we aim to achieve more bal-
anced cluster sizes, effectively mitigating the impact of unevenly distributed data.

PRELIMINARIES

Let’s formulate a general ANN problem. Let X = {x; cRY li = I,_N} be a set of N
d-dimensional vectors representing the data points in the dataset. The objective of

ANN search is to efficiently find, for a given query vector ge R?, an approximate

nearest neighbor x"¢ X such that the distance between ¢ and x* is minimized.
In the Inverted File Index (IVF) approach, we partition the dataset X into K
disjoint subsets or buckets, denoted as B,,B, ...By . Each bucket corresponds to a
subset (cluster) of vectors in X with corresponding centroids ¢; — centroid of
corresponding B; .
The ANN search with the IVF index can be formulated as follows. Given the

metric function dist, a query vector ¢ eR?, the goal is to find the bucket B,,,,,,

with a corresponding centroid ¢ that minimizes the distance to the query vec-

query
tor — equation:

Cquery = argmin (dist (.c,)) .
tepeeg )
Once the bucket B,,,,,, is identified, we need to find x" — approximate

nearest neighbor within that bucket using brute force search — equation:

x =argmin(dist(q,x)).
x€Byyery
Optionally, to improve accuracy, it is possible to use several B; adjoining to

B, buckets on the last step depending on the method hyperparameter set.
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Let dist — some metric function (euclidian, manhattan, etc.).

Let X ={x; eRY |i = I,_N} vectors representing the data points in the dataset.

Let O={q;¢€ RY li = I,_M} — a set of M d-dimensional vectors with a similar
distribution to real-life production queries be a queries training set, M << N .
Let R ={r;¢ X |r; = argmin(dist(g;,x)), i = L_M} — set of ground truth near-
xeX
est neighbors (responses) from X for each ¢g; €Q.

Let KeN — method hyperparameter, a desired amount of buckets
B,,B,,..., By, such that X= UX, B, and B, NB; = ifi=#j.

Let NN :R? — RX — some vector function — equation:
NN (q;)=Plg;e B;/r;e B} for j=LK, (1)

where P{q;eB;/r;eB;} — is a conditional probability that ;e B, given 7,€B,;.

In our case a multi-layer perceptron [5] with a final softmax layer — equation

Zi

e — o .
softmax,;(z) = ———— for i=1,K, that distributes query vectors ¢; into buckets
J

K

1€

B,B,,...,Bx . We also want this function to have a specific property, that it
distributes query vectors ¢;€(Q to the same bucket as their corresponding re-
sponses ;R .

We can estimate the NN’s parameters using the maximum likelihood estima-
tion method [6; 7], if we consider the task as a standard softmax multiclass classi-
K
fication with a cross-entropy loss function — equation CE(y,)=->_y,;log(};) .
i=1
If we consider Q as an input training set and on each epoch step we can calculate
actual training targets Y as follows Y ={argmax({NN;(r;)}), i= I,_M} — for
J=LK
each training query we assign its ground truth nearest neighbor’s bucket as a tar-
get bucket. As a result of NN training, we can explicitly distribute input queries
by buckets — equation bucket(q) = argmax ({NN,(q)}) for g € RY and implicitly
i=1,K
get the desired buckets B,,B,,...,Bx — equation:

B; ={x€X |argmax({NN,~(x)}):j} for j=1,_K. )
i=1,K
STANDARD DEVIATION-BASED BUCKET SIZE REGULARIZATION

The vanilla approach proposed in the previous paragraph can produce imbalanced
buckets By, B,,...,Bx in the result, for example, NN will distribute all the query

items in the single bucket, so there will be no full power use of the IVF index. If
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we want the most efficient computational power of the IVF index method, then
we obviously need buckets of the most equal size so that the expectation of the
search time of a brute force search over a random bucket takes the minimum time.

Let S={s; = |Bl~|| i= I,_K} — set of buckets sizes after we have trained NN that
distributes query vectors by buckets. We can calculate the standard deviation of

=2
the dataset S: o(S)= [Z(]S\’]—_f)] . If we want to have buckets of approxi-

mately equal sizes then we need to minimize o(S). The problem here is that this
function is not differentiable with respect to the parameters of the NN model, so
we need to use a differentiable approximation of o(S) .

Using equations (1), (2) we can calculate the expectation of size for each
bucket as follows — equation:

N
s;=> NN;(x;) for x;eX; for j=1K. 3)
i=1

So, we can have S = {s;|j= I,_K} — set of expectations of bucket sizes after

we have trained NN that distributes query vectors by buckets. And G(§ ) which is

differentiable with respect to the parameters of the NN model.
Finally, we can introduce a combined multiclass cross-entropy loss function
with std-based bucket size regularization in equation:

N 1 N K - -
L(y,y,X){—NZZyglog(y,j)}y*c(S), 4)
i=1 j=1

N K N
where (—LZZ y;log (JN/ij)J is a standard cross-entropy component; o(S) —
i=1 =1

approximated standard deviation of bucket sizes and ye€[0,+00) — regularization
scale.

TRAINING ALGORITHM

1. Defining K — desired number of buckets and M — desired maximum
bucket size.

2. Initialization of multiclass classification NN weights [8].
3. On each training epoch:

1. Calculate current epoch targets ¥ = {argmax({NN,(1;)})}.
j=LK

2. Calculate the multiclass cross-entropy loss component using g; €0 as
inputs and y; €Y as targets.

. Calculate expectations of sizes for each cluster — equation (3).

. Calculate G(§ ) — std-regularization component.

. Calculate aggregated loss equation (4).

. Do the backpropagation step using stochastic gradient descent modifi-
cation, for example, Adam [9], and update NN’s weights.

AN DN bW
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4. After the training process is complete, we select the best checkpoint
based on the desired performance metric, for example, precision where the actual
maximum bucket size < M. If there is no such checkpoint in which the maximum
actual bucket size is lower than the desired one, then select the checkpoint with
the size closest to the desired one and display the corresponding warning.

It could also be useful to apply some dynamic scaling of y regularization

parameter to achieve better precision performance results.

EXPERIMENTAL RESULTS

We’ve used 3 different configurations in our experiments:

1. Both indexed and query data have a Normal distribution: X ~ N(0,1);
O~N(,]).

2. Both indexed and query data have a skewed Exponential distribution:
X ~ Exponential (1); Q ~ Exponential (1).

3. Indexed data has a Normal distribution and query data has an Exponential
distribution that can be similar to different life scenarios: X ~ N(0,1);

O ~ Exponential(l) .
In all cases we use 64-dimensional vectors. We also split query data Q to

training and testing parts equally in order to minimize the risk of overfitting and
getting incorrect results — we use the train part during NN 5§ weights optimization
and the test part to calculate final metrics. We use a three-layer perceptron with
tanh activation functions and Adam [9] optimization algorithm using pytorch
framework [10]. We evaluate our algorithm compared to a faiss IVF implementa-
tion [11] which is a current industrial standard using SMAPE and precision met-
rics — equations:

suapE(A.Fy =100+ Ly A

nisi| A, +F, | /2
Precision :L.
TP + FP

Where in our case 4, is the distance between i-th query vector ¢, and its ac-

tual nearest neighbor from X and F; is the distance between i-th query vector g,

and its suggested by algorithm approximate nearest neighbor from X. In other
words, the SMAPE metric shows us how much the distances to the ground truth
nearest neighbors and to the approximated neighbors differ on average.

In the case of the precision metric, we have TP — the number of cases where
the approximate nearest neighbor equals the actual nearest neighbor and FP — the
number of cases where the approximate nearest neighbor differs from the actual
nearest neighbor. In other words, this metric shows us how often our approxi-
mated nearest neighbors exactly coincide with the ground truth ones.

We have final results presented in Tables 1, 2, 3. We also have a general
structure of the result table:

— X-size — number of vectors in the indexed dataset;

— O-size — number of vectors in the queries training set;

Cucmemni docnioxcenna ma ingpopmayivini mexnonoeii, 2023, Ne 4 73



A. Bazdyrev

— K — number of buckets in the algorithm;
— Nprobe — number of adjoining buckets to use in the brute force phase in
order to achieve a better precision;
— IFV Prec./ IFV SMAPE — precision and SMAPE metrics of the faiss IFV;
— SSIFV Prec./ SSIFV SMAPE — precision and SMAPFE metrics of the novel
semi-supervised /F'V proposed in the paper.

Table 1

X-size | Q-size | K |Nprobe |IFV Prec.| IFV SMAPE |SSIFV Prec.|SSIFV SMAPE
10K 10K | 200 1 0.055 8.7% 0.083 7.7%
10K 10K | 200 5 0.200 4.37% 0.255 3.69%
10K 10K | 200 20 0.480 1.81% 0.524 1.56%
M 10K | 2000 1 0.063 7.41% 0.071 7.1%
1M 10K | 2000 5 0.200 3.8% 0.220 3.72%
1M 10K | 2000 20 0.435 1.79% 0.491 1.65%

X ~N(0,1); O~ N(0,]) results

Table 2

X-size | Q-size | K |Nprobe |IFV Prec. IFV SMAPE |SSIFV Prec.| SSIFV SMAPE
10K 10K | 200 1 0.057 8.68% 0.066 8.53%
10K 10K | 200 5 0.197 4.40% 0.207 4.33%
10K 10K | 200 20 0.473 1.87% 0.460 1.95%
IM 10K | 2000 1 0.061 8.16% 0.069 7.99%
IM 10K | 2000 5 0.218 4.32% 0.217 4.34%
IM 10K | 2000 20 0.490 1.77% 0.498 1.77%

X ~ Exponential (1); O~ Exponential(l) results

Table 3

X-size | Q-size | K |Nprobe | IFV Prec. IFV SMAPE| SSIFV Prec. | SSIFV SMAPE
10K 10K | 200 1 0.025 14.76% 0.137 3.87%
10K 10K | 200 5 0.107 6.14% 0.403 1.46%
10K 10K | 200 20 0.305 2.49% 0.756 0.41%
IM 10K | 2000 1 0.035 11.68% 0.141 3.65%
M 10K | 2000 5 0.130 4.97% 0.419 1.28%
M 10K | 2000 20 0.341 2.44% 0.766 0.40%

X ~N(0,1); O~ Exponential(1) results
CONCLUSION

The experimental results of our novel semi-supervised modification to the In-
verted File (IVF) index approach for approximate nearest neighbor search look
very promising, because SS-IVF approach outperforms the industry standard im-
plementation in a lot of different experiment configurations from the raw preci-
sion/smape metrics perspective, especially in scenarios where query distribution
significantly differs from the indexed dataset. However, this SS-IVF algorithm is still
quite far from a production solution, since we have not yet done an efficient C/C++
implementation, which would use parallelization and low-level optimizations.
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Naxia 3 HAINIBKEPOBAHUM HABYAHHSIM B IHBEPTOBAHOMY
(I)AIZIJIOBOMY IHAEKCI JJIs1 TIOIYKY HABJIUXEHOI'O
HAUBJINXYOTO CYCIJA / A.A. ba3nupes

AHoTamisi. 3arpoIIOHOBaHO YJOCKOHAICHHS IMiJX0My 3 BUKOPHCTAHHSIM iHBEPTOBa-
Horo (aiiyIoBOro iHAEKCY JUTs TOLIYKY HaOMIKSHUX HAHOMIDKIUX CYCiiB 3 BUKOPH-
CTAHHSM HAaIliBKEPOBAHOIO HABYAHHS Ta HABYAHHSA 3 yYMTEIEM 3 METOIO IiJBUIICH-
HSl €(pEeKTHBHOCTI MPOMDKHOI KJIacTepH3alii Ta JOCATHEHHs OLTbII 30aTaHCOBAaHHX
PO3MIpiB KJIacTepiB. 3alpONOHOBAaHUI METOJI IOJIATAE Y CTBOPEHHI KIIacTepiB 3a J10-
MOMOTO0I0 HeHPOHHOT MepeKi 3 po3B’sI3aHHAM 3aBAAHHS KiIacudikalii BEKTOpIB 3a-
IUTIB y TOWM caMHi KJlacTep, IO i IXHi BiAMOBIIHI HaliGIM>K4i CyCiHI BEKTOPH y BU-
XiTHOMY HaOopi JaHuWX. Y TOEIHAHHI 3 MIHIMI3aIliEl0 CTAHIAPTHOTO BiIXMICHHS
PO3MIpiB KJacTepiB MpoOIeC iHIACKCYBaHHS CTa€ OUTbIN ¢(PEKTUBHUM i TOYHUM IIiJ
4yac HaOJIIDKEHOTo MOIIYKY HaHOMmK4nx cycifis. Uepes eMmipuuHy OLHKY Ha Tec-
TOBOMY Ha0Opi JaHUX MPOAEMOHCTPOBAHO, LIO 3APOINOHOBAHMI MiAXIA 10 iHACKCY
BUSBUBCS OUTBII TOYHWM TIOPIBHSHO 3 iHAYCTPIHHO-CTaHAAPTHOIO Peali3alicro i3
(hikcoBaHUMH TMMapaMeTpaMH, BKJIIOYAIOYH 3arajbHy KUIbKICTh KJIacTepiB Ta Killb-
KIiCTh KJIACTEPiB, IO BHIAUISIOTHCS JUIS 3alHTIB. MeTo MepCeKTHBHUM IS TTiIBH-
IIEHHSI e()EKTUBHOCTI IONIYKY HAHOIIKIMX CYCIJiB Y BEIMKOPO3MIpHUX Habopax
JIAHUX y PI3HUX 3aCTOCYBAaHHSX, TAKUX SIK iHPOPMAIIHHMN MMOLIYK, NOIIYK 3a IPH-
POIHOIO MOBOIO, pEKOMEH IaLliiHi CHCTEMH TOLIO.

KunrodoBi ciioBa: monryk HaOMmKEHHX HafOIIDKYNX CYCiIiB, IHBEpTOBAaHUH (haiiino-
BUH 1HJIEKC, TaHI BUCOKOI pO3MIpHOCTI, MalllMHHE HaBUYAHHSI.
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