
 

 Publisher IASA at the Igor Sikorsky Kyiv Polytechnic Institute, 2024 

Системні дослідження та інформаційні технології, 2024, № 3                                                107 

UDC 519.652 
DOI: 10.20535/SRIT.2308-8893.2024.3.07 
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Abstract. The goal of this paper is to further investigate the properties and advan-
tages of corotational beam spline, CBS, as suggested recently. Emphasis is placed 
on the relatively simple task of drawing the spline between two endpoints with pre-
scribed tangents. In the capacity of “goodness” of spline, the well-known notion of 
“fairness” is chosen, which presents itself as the integral from the squared curvature 
of spline over its length and originates from the elastic beam theory as the minimum 
of energy of deformation. The comparison is performed with possible variants of the 
cubic Bezier curve, BC, and geometrically nonlinear beam, GNB, with varying 
lengths. It was shown that CBS was much more effective than BC, where any at-
tempt to provide better fairness of BC by varying the distances from endpoints to 
two intermediate points generally leads to lower fairness results than CBS. On the 
other hand, GNB, or in other words, the elastica curve, can give slightly better val-
ues of fairness for optimal lengths of the inserted beam. It can be explained by the 
more sophisticated scientific background of GNB, which employs 6 degrees of free-
dom in each section, compared with CBS, which operates only by 4 DoF.  

Keywords: corotational beam spline, geometrically nonlinear beam, 2D, Bezier 
curve, fairness, transfer matrix method. 

INTRODUCTION 

In this paper we analyze the aesthetical quality, or in other words the fairness of 
the newly proposed Corotational Beam Spline, CBS [1]. For a few examples, we 
will also compare the CBS results with those obtained by an accurate Geometri-
cally Nonlinear Beam, GNB, approach [2]. It is done intentionally because some-
times there is confusion as to the difference between the real beam and the beam 
splines. For the case of small displacements, both approaches are the same – we 
mean cases of explicit presentation )(xyy  , where for example, y  is the verti-

cal coordinate of the point, and x  is the horizontal one. Yet in the case of large 
displacements GNB operates by 6 parameters and presents itself as the solution of 
the differential equation of the 6th order, whereas the explicit beam spline is al-
ways the solution of the 4th order equation.  

Historically, the beams have generated splines both as technical tools ini-
tially, and later as the mathematical model [3]. For many years, starting from 
early AD Roman times the elastic beams (long and thin strips of wood) have been 
used by draftsmen to fair in a smooth curve between specified points for ship-
building [4]. Mathematical cubic spline approximation in its present form was 
suggested in 1957 by Holladay [5]. He noted that for curves with modest slopes, 
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the cubic spline became identical to the bending of a straight beam. The latter op-
erates by four degrees of freedom – displacement, angle of rotation (first deriva-
tive), bending moment (second one), and transverse force (third one). To apply 
the beam spline the positions of consecutive points should be known and one ad-
ditional boundary condition should be specified at each end. The beam spine is 
called the natural one if the second derivative is taken as zero. In beam theory, 
this corresponds to simply supported end, when displacement is fixed, and mo-
ment is zero. 

The language and technique of the beam theory were fruitfully employed 
later. Mention only a few ideas. First of all, in analogy to beam the different end 
conditions can be considered [3; 6]. They are: free end conditions, when second 
and third derivatives (moment and force) are equal to zero and the position is un-
known; the clamped one, when the position and angle (first derivative) are pre-
scribed; zero force condition (third derivative is additionally equal to zero). An-
other finding of the beam theory is the employment of the tensed beam model to 
use in beam spline – this is to make the spline straighter [7] at the expense of in-
creased curvature at the prescribed positions (control points). Instead of the 3rd-
order polynomial the 1st-order polynomial and two exponential functions, 

 kxexp , are used, where coefficient k  is proportional to the square root of the 
prescribed axial force (used in addition to the usual transversal one) [8]. Note, that 
if 0k  we get the usual beam spline. Also note, that 4 parameters tensed beam 
model is a simplification of 6 parameters planar beam problem (analog of the 
elastica).  

Mention some additional beam features suggested during the “golden age” 
of the beam domination in the spline development. Very effective is the applica-
tion of the beam on the elastic support model instead of the usual rigid ones, 
where the curve was suspended by springs attached to its control points for 
smoothing the errors of measurements [9]. The spring stiffness controls how 
closely the beam interpolates these points [10]. Asker [11] introduces several ap-
proaches to overcome wiggles [12]. The variable beam stiffness is in a piecewise 
constant fashion and in a piecewise linear fashion, which allows to change locally 
the spline behavior while keeping the same control points. As noted in [12] these 
methods are equivalent to the weighted spline of Salkauskas [13]. 

The main drawback of ‘classical’ beam splines is that they are suitable only 
for interpolation to plane curves, which turn through an angle of less than 180° 
[14]. The reason is the explicit presentation of the form )(xfy  , which is axis 
dependent and is not able to represent multiple-valued functions, and cannot be 
used where a constraint involves an infinite derivative [15].  

So, generally, for any geometry, the implicit representations of the form 
0),( yxf , and parametrical representation of the form )(tfy   and )(tgx  , 

where t  is an additional parameter, are used for curve splines [15]. As to beam 
splines in particular, Ferguson [16] introduces the parametric cubic spline curve 
by applying the cubic spline function for each coordinate by employing the inde-
pendent curve parameter t , by prescribing for each consequent vector point 

),( yx  the non-decreasing value of parameter t . Their drawback is in the arbi-
trariness of the parameter t , the choice of which leads to different configurations 
[17], especially in smoothing the sharp corners [18], or in general, in case of large 
curvature [19]. Of course, it can be ‘repaired’ by imposing the additional re-
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quirement to transverse force (third derivative), by changing the positions of cor-
ner points [18], but it implies additional complications. So, the parametric beam 
spline is rarely used nowadays.  

Very popular now are splines based on Bezier curves, B-splines, and 
NURBS [15]. Their peculiarities are that they are formed by special polynomial 
or rational functions, and the sum of them in each control point is equal to 1. Oth-
er kinds of curves are used very often, too [19; 20]. Nevertheless, despite of pre-
sent less usability, the cubic beam splines have tremendous historical significance 
and a large impact on the development of the spline theory. We can formulate, at 
least, three of their salient contributions.  

1. The quantitative notion of the curve aesthetic measure or ‘fairness’. The 
number of curves passing through a set of points is infinite, thus the interpolation 
problem is by nature ill-posed [21]. So convenient criteria for the best curve must 
be formulated. Of course, the notion of a fair curve appeared long before the ori-
gin of cubic beam spline, and various qualitative formulations were abundantly 
employed in literature [12; 21]. However, the first mathematically exact definition 
was based on the analogy with the elastic beam theory, where the energy of de-
formation E  is given by expression [5; 8]:  

 dllE
L

)(2
0
  ,  (1) 

where   is the curvature, l  is an element of length, and L  is the length. So, the 
curve is deemed to be the best, if it provides the minimum of energy E . In the 
context of CAD, this integral becomes one of the standard criteria for the fairness 
of a planar spline curve [22]. Note, that cubic splines give the minimum energy 
only in case of small deflections.  

The expression (1) for the energy E  very often is supplemented by other 
components, which also have the ‘beam’ origin. For example, for a 3D beam, it is 
common to introduce the ‘stretch’ energy, which is proportional to the 
‘elongation’ of the beam and is the integral from the squared first derivative, or 
the ‘twist’ energy, which is found as the integral from the squared third derivative 
(rotation of the beam) [23]. For approximation spline, the control points are often 
considered as the springs [10], and the extension or compression of which makes 
the additional contribution to the elastic energy. So, an additional term for each 
“spring’ (control) point is considered, which is proportional to the squared 
difference between the position of the spring and smoothened points [24]. Such 
curves are named minimal energy curves, MEC, [12]. 

Of course, the beam-based energy criteria are not unique mathematical for-
mulations for defining the best curve. Other formulations are widely used, too, but 
they were either inspired by the energy criteria analogy or emerged as a result of 
the drawback of MEC for the best curve construction. Explain this. When the 
length of the spline is not restricted, the best MEC (mathematically) may be at-
tained for the spline of infinite length and minimal curvature [25].  

So, in general, MEC does not correspond to the common requirement of 
Farin [26], that a curve’s curvature plot must be almost piecewise linear, continu-
ous, and with only a small number of segments. So, a different functional, which 
satisfies Farin’s criteria, the so-called minimum variation curve, MVC, was pro-

posed in [12]. Instead of )(2 l  in functional (1) the square of the derivative of 
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curvature 
2

)(






 

dl

ld
 is used. In contrast to the MEC which bends as little as possi-

ble, the MVC bends as uniformly or as smoothly as possible [12]. Yet the MVC 
has no clear physical sense, it is not as flexible as the MEC to account for other 
constraints, for example, for the required proximity to the control points at ap-
proximation.  

So, the MEC are still widely used in the usual continuous [22] or discrete 
form [27], where the energy is accounted for integrally in the control points as the 
sum of squared angular misalignments. The minimization of functional can give 
an aesthetically pleasant curve, which is stable for relatively slowly changing an-
gles between neighboring control points. Very often the energy minimization is 
applied as a polishing tool for curves, which are derived by other kinds of splines. 
For example, in many works, energy minimization is applied to Bezier curves 
[28; 29], cubic spline curves [30], biarck splines [31], B-splines [32], for Hermite 
splines [33], and many others.  

2. Development of the technique of construction of elastica and promotion 
of its popularity. The notion of elastica originated at the end of the 17th century 
due to the efforts of the Bernoulli brothers [34]. The elastica is the free-form de-
formation of the elastic beam, whose shape is such that its squared curvature (1) 
was minimized. It was an interesting mathematical task, and many famous scien-
tists contributed to its solution and application to different problems, to mention 
only Euler, Laplace, Kirchhoff, Max Born, Love, etc [34].  

The practical resurrection of interest in elastica originated in the works of 
Schoenberg [34] in 1946, where the spline was defined as a variational problem 
that minimizes the functional (1) but makes the small-deflection approximation. 
The basic shortcoming of the works of Schoenberg and Holliday [34] was under-
lined by Birkhoff and de Boor in 1965 [35], where it was noted that linearized 
interpolation schemes are not invariant under rigid rotation. So, they suggested 
replacing linearized spline curves with non-linear splines (or “elastica”). Further-
more, they obtained the differential equation for curvature functions )(l , which 

satisfy to minimum energy requirement (1):  

 0
2

1
)( 3

¨
 l .  (2) 

This curve was treated as a free elastic curve as it refers to a planar elastic 
curve without length constraints. This result was extended in work [36], where it 
was shown that equation (2) can be applied for segmented curvature function with 
natural end conditions that pass through a prescribed set of control points. Other 
generalization of these results consists in the justification of the validity of equa-
tion (2) when the end conditions are given in the form of prescribed tangents [37].  

Based on these general results the various algorithms of elastica construction 
were proposed. The first work on the numerical construction of elastica was pro-
posed by Glass in [38], where the discrete points on the curve were specified it-
eratively. Technically this algorithm was later improved by Malcolm [39]. 
Mehlum [40] used circular arc approximation of arbitrary precision. Mehlum uses 
these methods in the Autokon system for curve and surface design, which became 
the first commercial CAD software, and underlined the tight relation between 
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free-form shape representations and physically inspired mathematical functions 
[41]. Another technique of nonlinear spline construction was suggested in [22], 
where the looking for function is presented as a piecewise polynomial curvature 
function.  

Among the many early works on nonlinear elastica, we see the work of Horn 
[42], where it was carefully studied a specific MEC segment, defined by two 
points on a baseline with a vertical tangent constraint specified at each point. The 
approach consists of a presentation of the looking-for curve as a set of circular 
arcs with a minimization of energy. Starting from one arc, then two or more arcs 
up to sixty-four were considered, while the resulting curve resembles a croquet 
hoop. The resulting energy was as small as 0.913953% of the semicircle. Then the 
elliptical curve with minimal energy was constructed and energy was equal to 
93.42% of the semicircle, and for the Cornu spiral the energy was as low as 
0.9178%. Then Horn computes closed-form expressions for the energy, arc 
length, and maximum curvature of his subject curve and the lowest value is equal 
to 0.913893. MEC has at least two principal shortcomings: the first cause it to fail 
a very desirable property for splines such as roundness [21], and another one, is 
that energy depends on an unspecified length of elastica. So, in the works of Kal-
lay [43; 44] the theoretical substantiation and numerical method are elaborated for 
computing that shape, given the positions and directions of the endpoints and the 
total length. In this case, the notion of energy and the goal of optimization be-
come clearer and are related to the fixed length. In work [45] the elastica is con-
structed by the elastic curve segments which are expressed in a closed form via 
the elliptic functions. The method depends on the good initial guess for the ap-
proximating curve with subsequent application of gradient-driven optimization.  

On the other hand, the analytical solution for Euler’s Elastica motivated 
within the structural mechanical community the development and application of 
one-dimensional theories for the deformation of elastic slender bodies [46] and 
especially the elaboration of the comprehensive and efficient numerical formula-
tion [47]. Geometrically nonlinear computational models of the beam under finite 
rotation are obtained from three basic approaches: total Lagrangian, updated La-
grangian, and Co-rotational [47]. It is beyond the goal of the paper to discern 
them in detail.  

We only mention that technically they often are reduced to solution by the 
transfer matrix method, TMM, either within the Lagrangian approach [48] or in 
the corotational formulation [49]. The transfer matrix, which relates the set of 
governing parameters at any point of the element including its end with those at 
the beginning of the element, is called the field transfer matrix, FTM. It is derived 
by the solution of physical differential equations. The continuity relations be-
tween the parameters of two neighboring elements at the border between them are 
given by the point transfer matrix, PTM. Sometimes the method is called in litera-
ture as a method of initial parameters [50]. The transfer matrix method is a very 
effective tool, which allows to eliminate the intermediate unknowns of inner ele-
ments, thus while keeping a large number of degrees of freedom, technically it 
reduces the ultimate matrix to the size determined only by the number of real 
points [51].  

3. Employment of local coordinates system for each element. In structural 
mechanics, this approach is called a corotational approach [52; 53]. Here, the total 
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configuration of a beam is presented as the sum of two components: straight ele-
ments position and pure deformational displacement of points. The deformation is 
measured from a rotating frame attached to the straight element, and linearized 
formulation solutions are employed in the numeric incremental procedure. The 
nonlinearity is accounted for by the rotation matrix between the elements. So, the 
discontinuous angles of rotation between elements are the key parameters of the 
corotational scheme. Note that the geometrically nonlinear beam model of work 
[2] is the enhanced corotational approach, where the reference geometry is part of 
a circle and already contains build-in deformation (basic solution), which is sup-
plemented by smoothing solution derived by integration of governing linear dif-
ferential equations written in curvilinear (polar) coordinates.  

Within the computer graphics world, the looking for curves are usually pre-
sented as continuous ones at every stage (iteration) of computation. The only 
known exception is the Fowler–Wilson method [54], which was based on usual 
cubic beam splines in a local two-dimensional coordinate system. The Fowler-
Wilson scheme is a transition from the explicit presentation of spline )(xfy   to 

the implicit one 0),( yxg . It was very popular till the beginning of the 21st cen-
tury and was used in many industries around the world [55]. So, initially, the 
spline is given by a set of straight sections, which determine the tangent vector 
and normal vector. Local sections of the spline are calculated along the normal to 
the section. The main requirement is to provide the continuity of slope and curva-
ture at the borders between points. The nonlinear equations of continuity are ob-
tained and iteratively solved.  

Now return to the goal of this paper. The corotational beam spline of our 
work [1], among other ideas, uses the idea of straight initial sections drawn be-
tween control points, which determine the local system of coordinates. So, the 
purpose of splines is to smooth out the so-called misalignment (gap) angles. This 
resembles the idea of Fowler–Wilson. As to the task of interpolation, the main 
differences in our work [1] consist of two peculiarities. First, from the very be-
ginning, our spline is constructed in a linearized statement, which is usual for the 
theory of beam:  

  sintg ,  (3) 

where   is the calculated angle of rotation, this noticeably simplifies the calcula-
tions [56; 57]. Second, to suppress the errors induced by (3) we introduce the no-
tion of auxiliary ‘imaginary’ points. So, we consider that control points are of two 
kinds. Points of the first kind are of the real kind, where the outer constraints are 
explicitly given. Points of the second kind are imaginary ones, which are arbitrar-
ily placed between the real ones, their positions are not specified and naturally 
refined during the calculation process. They are intended to: a) make the length of 
the straight section approximately equal to the length of the spline section; b) de-
crease the maximal calculated angle   within each section to provide better accu-
racy of (3). Another enhancement of the method is of technical significance and 
consists of the employment of the transfer matrix method, which allows keeping 
the resulting matrix for spline with imaginary points of the same dimension as 
without them. Besides, the geometrically exact definition of curvature is used.  

The goal of the paper is to analyze the aesthetical quality or energy (1) of the 
CBS and compare it with GNB for example a simple task defined by two end-
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points with a tangent constraint specified at each point. This choice is taken be-
cause: 1) similar tasks were considered in old theoretical investigations of elastica 
[42; 44]; 2) the fairness of such curve can be easily assessed visually; 3) it is a 
practical task for thin deformable wire held at each end by a robotic gripper [58] 
and for applications of robotic hot-blade cutting [45; 59].  

THEORETICAL FOUNDATION OF CBS AND GNB 

Short introduction to CBS 

Note, that very simplified logic, designations, and equations of more general pa-
per [60] are outlined here. The main reason for simplification is that here we con-
sider only the task of interpolation, so many enhancements related to consistency 
with the task of approximation will be omitted. Note, that the solution process is 
organized according to the transfer matrix method, TMM, methodology.  

Let we have enumerated consequently both the exactly measured (real) 
points and the inserted between them (in any number) imaginary points, 

),( mmm YXA , where m  is the point number, and mX , mY  are their Cartesian co-
ordinates in the absolute coordinate system. Usually, we do not discern between 
them and name them as the control points, because referring to the transfer matrix 
method, TMM, the field transfer matrix, FTM, is the same for any element placed 
between any two neighboring points. The difference exists only for the point 
transfer matrix, PTM, and depends on whether the considered point is a real or 
imaginary one. So, in this case, the points will be discerned by using the addi-
tional lower indexes: “r” for real points, and “i” for imaginary ones. For example, 

rmA ,  means that point mA  is the real, and imA ,  is the imaginary one.  

Connect the consequent points mA  by straight lines and get the open or 

closed polygon. Consider the particular straight beam section, named as m  sec-
tion, which is placed between control points 1mA  and mA , Fig 1. Introduce the 

notion of iteration number, k . The real points retain the same position at each 
iteration; however, the imaginary points change their position. Furthermore, the 
algorithm envisages that new imaginary points might be inserted during the itera-
tion process. This is controlled by the maximal value of calculated angle  , as to 

condition (3). If the angle is large enough, say, larger than 
30


, we insert a new 

imaginary point. This provides the accuracy as to (3) within 0.2%. So, the inser-
tion of a new imaginary point may change the general enumeration. Thus, the 
numeration is iteration dependent, and control points should be presented as 

),( k
m

k
m

k
m YXA , where k  is the iteration number. Nevertheless, in most cases, the 

upper index k  will be omitted. 

The vectorial length of each beam section is designated as ml


: 

 jYYiXXAAl mmmmmmm


)()( 111   .  (4) 

For each straight section introduce the local coordinate system ( mm ws , ) and 

basic vectors mt


 and  mn


. The tangent local vector nt , is derived from (4):  
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 jbia
l

l
t mm

m

m
m






 ,   

where 

 2
1

2
1 )()( mmmmmm YYXXll  


.   

The normal vector mn


 is perpendicular to mt


 and rotated clockwise concern-
ing it, Fig 1. Local coordinate system ( ws, ) is related to the basic vectors, where 

s  is counted from mA


 in the direction of t


 , and w  is directed as n


. Vector mn


 
is presented as:  

 jdicn mmm


 ,   

where 

 
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m

b

a

b

a
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c
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)2/(cos)2/(sin

)2/(sin)2/(cos
.   

Important in the model is the misalignment angle between two adjacent 
straight beam sections: m  and 1m , denoted as m , Fig. 1. It is counted clock-

wise from vector 1mt


 to vector mt


. The angle of misalignment 1m  is found 
from the scalar and vector products of these two vectors:  

 mmm tt


*)(sin 1 ,  mmm tt

 1)(cos . (5) 

Application of both rules is needed to establish the correct angle quadrant.  
Now describe the calculation model. Consider the simplest beam model for 

an initially straight beam. Each straight beam section is characterized by the vec-

tor of state )(sZ


, which is formed by 4 scalar functions of length coordinate s :  

 )}();();();({column)( sQsMssWsZ 


,   

where following the beam traditions we operate by four physical values: )(sW  is 

displacement directed along the local normal vector n


; )(s  is the angle of (de-

Am

Am-1 
Am+1 

tm-1

nm-1 

ψm-1 
ψm+1 

tmnm

i

j

ψm

Fig. 1. The global cartesian vectors and local corotational basis for each element 
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formational) rotation of the beam axis concerning initial vector t


, directed 
clockwise; )(sM  is the bending moment; )(sQ  is the transverse force. The direc-
tion of the two latter parameters is chosen so, that the following differential de-
pendencies between all parameters are positive [1]: 

 0
)(

  );(
)(

  ;
)()(

    );(
)(





ds

sdQ
sQ

ds

sdM

EI

sM

ds

sd
s

ds

sdW
,  (6) 

where EI  is the constant of the beam, taken below as 1. The solution of the sys-
tem (6) can be presented in matrix form suitable for the application of TMM: 

 )()]([))(( 0,, mjim ZspsZ


 ,  (7) 

where )0(0  sZZ


 is the vector of state in the initial point of the section con-
sidered, and the coefficients of the transfer matrix are the following: 
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Note, that equations (7) can give the values of each parameter at the end-
point of each element through the initial parameters at this element by letting 

mls  , i.e.:  

 )()]([)())(( 0,,1, mmjimmm ZlpZlZ


 ,   

where lower indexes “0” and “1” mean the beginning and the end of a section, 
correspondently. 

To formulate the calculation scheme, we need to supplement the FTM (7) 
with PTM equations, which relate the vector of state at the border between the 
end of the previous and the beginning of the next sections. For real control point, 
we have the following PTM relations:  

 1,10,  mm WW , (8) 

 mmm   1,10, ,  (9) 

 1,10,  mm MM ,  (10) 

 mmm PQQ   1,10, ,  (11) 

 00, mW .  (12) 

Here mP  is an unknown force in the beam support (real control point). Gen-
erally speaking, this force is determined from condition (11), or put more cor-
rectly, the introduction of additional unknown mP  requires one additional condi-
tion (12). When compiling the system of governing the equation (11) (and 
unknown mP ) is not used. Condition (8) means that displacement (deviation of 
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position from the initial straight line) should be the same. Condition (9) is to pro-
vide the tangent continuity of the deformed contour, where the deformational an-
gles compensate for the initial misalignment angle. Condition (10) is the equality 
of approximate beam curvatures. Condition (12) requires that the position of the 
considered control point should not change during the iteration, i.e., it is fixed.  

The point transfer matrix in the case of the imaginary point is slightly differ-
ent. They require continuity up to 3rd order, i.e., including the transverse force. So, 
we have:  

 1,10,  mm WW ,   

 mmm   1,10, ,   

 1,10,  mm MM ,   

 1,10,  mm QQ .   

Or in matrix form 

 immm CZIZ ,1,10, )(][)(


  ,   

where iC


:  

 }0;0;;0{column, mimC 


.   

In this case, the PTM does not contain any additional unknowns.  
Let’s go to the organization of the calculation process by TMM. It is conven-

ient to start with an introduction of four unknown parameters for both the begin-
ning and end of each element. It means we have 8 unknowns for each element. If 
the number of elements is M , then the number of unknowns is M8 . There are 4 
FTM equations for each element, thus at the whole, there are M4  FTM equa-
tions. On the other hand, there are 1M  borders between elements for open pol-
ygon, for which  14 M  PTM can be written. So, for an open polygon, 48 M  

equations should be supplemented by 2+2 boundary conditions on each boundary. 
One of them is the condition of zero displacement, while another is either the re-
quirement to the angle value, or requirement to curvature (moment), or to trans-
verse force. When the contour (polygon) is closed we have no boundary condi-
tions, but instead, one additional PTM (four conditions) is to be written at the 
point where the last section meets the first one.  

At first glance, accounting for possibly a large number of imaginary points 
in this CBS technique requires too many unknowns and can be very slow. First, 
show that imaginary points and related unknowns actually can be removed from 
consideration. Consider two adjacent sections which are separated by imaginary 
points. According to the procedure of elimination [51] write three transfer ma-
trixes between them:  

 )()]([)( 0,,1, mmjim ZlpZ


 ,  (13) 

 immm CZIZ ,1,0,1 )(][)(


 ,  (14) 

 )()]([)( 0,11,1,1   mmjim ZlpZ


.  (15) 
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Substituting (14) into (15) and later (13) in the resulting equation we for-
mally can get the matrix equation:  

 immmmjim DZllpZ ,1,1,1,1 )()],([)(


  ,  (16) 

where elements of matrix ),( 1, mmji llp  , and free terms vector imD ,


 are easily 

calculated from (13)–(15). The matrix equation (16) is FTM for the combined 

element, which starts at the point mA


 and ends at point 2mA


, thus eliminating 

the imaginary point 1mA


. So, two FTM and one PTM are substituted by one 
FTM. Second, for the remaining real points the number of unknowns can be reduced 
to unknown moments in them only, as it is usually given in the textbooks [8]. 

Note, that calculated values of Mc  have dimension of curvature and the 
meaning of curvature in beam theory formulation. Yet they are not exact geomet-
rical curvatures. So, the additional procedure of refining the values of curvature 
based on exact differential geometry formulation was established in [1] and will 
be used in the presentation of the results.   

Main equations of GNB  

The principal distinction of GNB from spline is that it operates by a real object 
with real properties and, especially it has a given length, . L In calculations, it is 
broken into a necessary number of elements. For each element, m , the notions of 

the Basic, )(sBm


, and Smoothing, )(sSm


, solutions are introduced [2; 61], where 

s  is a curvilinear abscissa of any point of element. Then, the looking for Ultimate 

solution, )(sU k


, is the sum of these two constituents: 

 kkk SBU


 1 .   (17) 

Here the upper index k  means the iteration number. So, as follows from 
presentation (17) the basic solution is a result of the previous iteration 1i . Note, 
that, where possible, the lower and upper indexes m  and k  will be omitted.  

The main aim of the basic solution, BS, is to principally account for all non-
linearities, while the smoothing solution, SS, is a linearized analytical correction 
to BS. Another purpose of BS is that it gives the system of local curvilinear coor-
dinates and directions concerning which the SS is derived. On the other hand, BS 
is permanently refined from iteration to iteration as a result of accounting for the 
present SS. New BS is refined according to the following rule: 

 kkk SgBB


 1 ,  (18) 

where g , 10  g  is the so-called retardation coefficient, which restricts the ab-
solute change of BS and accounts for whether the process of solution is conver-
gent ( m  can be increased) or divergent ( m  should be decreased). The rule (18) is 
schematic because not all components of SS are used in BS. For the 2D case, BS 

geometrically presents itself the part of a perfect circle, the radius of which k
mR , 

(or curvature k
m

k
m R/1 ) and current length k

ml  are related with basic (embedded 
in) bending moment and axial force [61].  

SS solution is formulated for each element in the local curvilinear system of 
coordinates, Fig. 2. It operates by six governing parameters, as opposed to a 
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straight beam (cubic spline). They are: two force parameters – transverse force Q  

and axial force N , bending moment M , angle of rotation  , and two displace-
ment parameters — normal one w , and tangential one u . These parameters are 
related by six differential equations:  

 nP
R

N

Rd

dQ



;  tP

R

Q

Rd

dN



;  Q

Rd

dM



;   

 
EI

M

Rd

d





;  
EF

N

R

w

Rd

du



;  

 R

u

Rd

dw
.   

In the subsequent application below we will not consider the action of outer 

distributed forces nP  and tP , and neglect the axial elongation, i.e., take 0
1


EF

.  

The general solution of (5) for SS can be presented in the form suitable for 
the application of TMM [61], and schematically is given below. For FTM it can 
be written as [61]:  

 )()]([))(( 0,, mjim ZspsZ


 ,   

where elements of matrix )(, sp ji  are the solution of the differential equations (5), 

and the vector of state in any point s  is: 

 )}(), ();();();();({column)( sNsQsMssuswsZ 


.   

For PTM a similar equation can be written [61]:  

 immm CZHZ ,1,10, )(][)(


  .   

In this case, the matrix ][H  is not an identity matrix, due to the vectorial es-
sence of two force and two displacement parameters and different local vectorial 

basis used. As to the vector of free terms imC ,


, its all components are nonzero due 

to the discontinuity of the basic solution (so-called gaps [61]). Note that the GNB 
approach requires three boundary conditions at each end of the beam. 

The aim of this short introduction to GNB is twofold. First, to show that the 
technical solution of GNB can be similarly organized by TMM, with formal 
elimination of all points (sections) that do not contain the real constraints. Second, 
the variety of tools and possibilities of GNB analysis by numerical TMM is much 
richer than in the traditional elastica approach. Hint the few possible 

Fig. 2. General scheme of 2D curvilinear beam 

 Am Am+1 
θ 
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opportunities. If one wants to make the solution “more tensed”, it can be very 
easily done by introducing the normal pressure nP . To “tense” or to “relax” the 

particular section it needs to increase or decrease the bending stiffness EI , or to 
make it variable. The length of particular sections or the beam as a whole can be 
controlled by axial stiffness EF .  

Calculated curvatures in each curved section are presented as the sum of basic 

curvature (constant) and those induced by calculated bending moment )(sM k
m : 

 
EI

sM

R
s

k
m

k
m

k
m

)(1
)(  .   

Four points-based Bezier spline 

Consider set of four consequent control points ), ( 111 YXA , ), ( 222 YXA , 

), ( 333 YXA , ), ( 444 YXA , or in vectorial form:  

 jYiXA mmm


 ;   4,3,2,1m .   

They can be used for the construction of a third-order Bezier curve, 

),( yxP


 [15]: 

 )()(),(
4

1

4

1

tKYjtKXijPiPyxP mm
m

mm
m

yx  



;  10  t ,   

where )(tKm  are the Bernstein’s functions 

 3
1 )1()( ttK  ,    2

2 )1(3)( ttttK  ,  )1(3)( 2
3 tttK  ,  3

4 )( ttK  .   

Bezier splines have the following properties [15], important to our task:  

1. The first and last points on the curve are coincident with the first and last 
points of the control polygon. 

2. The tangent vectors at the ends of the curve have the same direction as the 
first and last polygon spans, respectively. 

So, our subsequent task is to construct a spline, which starts in point 1B


 at 

the angle 1  with a horizontal axis and ends in point 2B


 directed at angle 2 . 

Introduce the unitary tangent vectors 1


 and 2


 in these boundary points. They 
can be written as:  

 111 sincos  ji


; 222 sincos  ji


.   

So, four consequent points of cubic Bezier splines can be chosen as follows: 

 11 BA


 ,  24 BA


 ,  1112 


DAA ;  2234 


DAA ,   

where 1D  is an absolute distance from point 2A


 to point 1A


, and 2D  from 4A


 to 

point 3A


.  

Our next task is to obtain the element of length in each point, )(tds , and the 

curvature  t . According to differential geometry rules, we can write:  
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 dtPPds yx
22 )()(  ,  

3
22 )()(

)(






 




yx

xyyx

PP

PPPP
t .  

These expressions will be used in the calculation of the Brazier spline quality. 

EXAMPLES OF CALCULATION 

Several similar problems will be calculated and compared here. In some cases, the 
well-known Bezier curve will be used too. We will consider the relatively simple 
task, which is defined by two endpoints with a tangent constraint specified at each 
endpoint.  

Example task 1 

First point 1B  is placed in point )0, 0(  YX , second point 2B  has coordinates 

)0 ,150(  YX , the tangent in point 1B  is directed vertically, i.e., the angle (in 

the clockwise direction) with the horizontal axis is equal  90 , and in point 2B  
the angle is equal to 90 . It is the famous Horn task [42], which has demonstrated 
that minimization of energy is not always a solution for the best curve, and 
eventually led to the appearance of other criteria, say minimization of squared 
derivative from curvature [12].  

Intuitively, the best curve is the semi-circle of diameter equal to 150. Its 

length, 0L  is 62.235
2

150
0  �L . Calculate the quality (energy) of the ideal 

semi-circle. According to (1) it is equal to 041888.0
2

150

150

2
2

0 








 �E . 

Construct the splines according to different techniques, Fig. 3. Designation 
BZ 110 relates to the Bezier spline, where two intermediate points on the pre-
scribed tangent are placed at a distance of 110 from either endpoint. Similarly, the 
BZ 115.5 curve employs one point on distance 115.5 on each tangent. GNB 
depends on the prescribed length of the beam, so the designation GNB 230 means 
that the length of the beam is equal to 230. Many variants of BZ spline and GNB 
can be obtained. As to CBS, it gives only one possible configuration.  

Analyze the results. First of all, note that CBS gives the ideal semi-circle. 
As to other curves, at first glance, they can approach the ideal figure very well, 
and each seemingly is capable of depicting the ideal circle.  

With this respect, the more informative are graphs of curvature versus the 
length coordinate for each spline shown in Fig. 4. More definite conclusions can 
be drawn from it. First, note that CBS is indeed capable of giving the ideal circle. 
The wavy character of the graph is a reflection of an insufficient number of 
imaginary points — the more points, the smoother the curvature. Second, Bezier 
splines give noticeable deviation from the ideal circle for all parameters of 
optimization (distances from endpoints). Third, GNB is a very powerful 
technique, which depends on the chosen length of the beam. In case, when the 
prescribed length of GNB coincides with the length of the ideal circle, it actually 
gives this ideal circle.  
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Fig. 3. Several calculated splines according to the Bezier method (4 points), BCS, and GNB 
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Fig.  4. The graphs of curvatures obtained by different splines for Task 1
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Compare the quality (energy) of each depicted curve. The results of its cal-
culation are given in Table 1, where the absolute value of energy, as well as the 
reduced value of it (divided by the ideal semi-circle value of 0.41888), are pre-
sented. The result for CBS is slightly different from the ideal circle due to a 
smaller number of imaginary points (only 28 points are employed here). As to 
Bezier’s results, they are close to 1 in the considered range of chosen distances of 
additional points, and the lowest result is attained for the BZ 120 curve. 

T a b l e  1 .  Calculated energies for different splines for Task 1 

Curve BZ 110 BZ 115.5 BZ 120 BCS GNB 230 GNB 240 GNB 410 
Quality 0.04305 0.04190 0.04113 0.04190 0.043024 0.041181 0.037927 

Reduced 
quality 1.02774 1.0003 0.9818 1.0003 1.04475 0.98312 0.90544 

 

Evidently, the notion of energy cannot be the sole criterion of fairness. Note, 
that splines, which “embrace” the ideal semi-circle give the lesser values of 
energy. Concerning the results of Table 1 it is interesting to recall the results of 
Horn [42]. Remind that for this task 1 the “best” value of energy equal to 0.91383 
was obtained [42]. So, plot the graph of the energy concerning beam length by 
GNB approach, Fig. 5. Interesting to note, that in the vicinity of the ideal semi-
circle configuration ( )6.2350  LL  the quality of the curve linearly decreases 

with length. Yet in the range of length 340310  L , it attends the local “pla-
teau”. The calculated quality in this range is approximately equal to 0.03828 (at 

)320L . Dividing this value by 0.041888 (ideal semi-circle) we get the reduced 
value equal to 0.9138, which is very close to Horn’s theoretical value. This testi-
fies to the high efficiency of the GNB approach [2]. Further increase of L  beyond 
this range leads to a permanent slow decrease of energy, which was not predicted 
in Horn analysis [42]. This is related to the outward deviation of the calculated 
figure from the vertical lines 0x  and 150x , which is evident from Fig. 3 for 
GNB 410. For L  the energy tends to zero.  

Example task 2 

This task is very similar to symmetrical Task 1. The only difference is that in first 
point 1B  the tangent angle is inclined to  60  concerning the horizontal axis, and 

in second point 2B  the angle is equal to 60 . 

Fig. 5. Quality of GNB spline concerning the beam length for Task 1
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Intuitively, the best expected (ideal) curve is the semi-circle. From geometri-
cal consideration, its diameter should satisfy the following relation 30cos2/D  

75 , where one can get that 20.173D . So, the length of the ideal figure is 
equal to 37.181 . As to energy (1) of the ideal curve, it is equal to 0.02418.  

Construct the splines according to different techniques, Fig. 6. As above 
CBS gives the ideal semi-circle. Bezier spline gives very close results at a dis-
tance equal to 67. When this distance is smaller, than Bezier curve lies below the 
ideal circle, and when the distance is larger it is situated above the ideal curve. A 
similar picture is for GNB splines. When their lengths are lesser than the ideal 
circle length, it is placed below, and above otherwise.  

The informative is a graph of curvatures for each spline, shown in Fig. 7. 
The best Bezier spline, BZ 67, is very close to the ideal circle, and its curvature is 
almost ideal. The same can be said about the BCS and GNB 185. Compared with 
CBS for Task 1 (Fig. 4), the curvature for CBS for Task 2 is much smoother: we 
use here as many as 120 imaginary points. Graphs of curvature are very important 
to judgment about the quality of different splines.  

Compare the quality (energy) of each depicted curve. The results of its cal-
culation for Task 2 are given in Table 2. That results in differently-looking curves 
that sometimes are very close. This means, that energy cannot be the sole criterion 
of the construction of the curve nor for the assessment of its fairness.  
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Fig. 6. Several calculated splines according to the Bezier method, BCS, and GNB, Task 2 
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T a b l e  2 . Calculated energies for different splines for Task 2 

Curve BZ 67 BZ 80 BZ 120 BCS 181 GNB 170 GNB 181 GNB 190 

Quality 0.0241 0.0246 0.0408 0.0242 0.0303 0.0242 0.0243 
 

Example task 3 

This task is a more complicated one and relates to the construction of anti-
symmetrical geometry. Point 1B  has coordinates )0, 0(  YX , second point 

2B  has coordinates )150, 150(  YX , the tangent in point 1B  is directed at an 
angle 60 of , while in point 2B  the angle is equal to 60 , too.  

The best solution cannot be formulated intuitively, so here we will subjec-
tively assess the best solution below.  

Construct the splines according to different techniques, Fig. 8. Look on the 
CBS, which does not require any auxiliary parameters. The general subjective 
impression is that it is visually pleasant, and its calculated length is about 294. So, 
chose the auxiliary parameters in other spline methods to approach this spline. It 
is not always possible for the Bezier splines. If we take the distance to be very 
small – it would resemble the straight line between two endpoints, and, of course, 
it should be rejected. If we take the distance in the Bezier spline too large, the 
graph will be placed well beyond the vertical range of 150150  y . So, we 
chose subjectively the distances equal to 120, 150, and 180 as the candidates for 
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Fig. 7. The graphs of curvatures obtained by different splines for Task 2
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the best Bezier curve. Nevertheless, they are not pleasantly looking, and this can 
be supported by graphs of curvatures, Fig. 9. As to GNB it completely coincides 
with CBS, if we take its length as large as 294, Fig. 8. The increase or decrease of 
length leads to more loose or tight geometry, respectively.  

More informative are the graphs of curvatures concerning the current length 
coordinate, Fig. 9. The curvature of CBS is very smooth, it is a straight line (small 
fluctuations are due to a limited number of imaginary points). So, an important 
conclusion can be drawn from its visual presentation. The CBS is a Cornu spiral, 
and this can be explained by the third differential equation of (6). On each small 
straight section constP , so the moments (curvature) change linearly. In case, 
if intermediate points are the imaginary ones, the force does not change between 
them, so the whole section between any real points is a Cornu spiral.  

As one can see, the GNB completely coincides with the CBS, in case its 
length is equal to the length of CBS. If GNB is shorter than CBS, then its 
curvature is larger than that of CBS. And vice versa, for longer GNB its curvature 
is smaller. As to the Bezier curve, it demonstrates the large local curvatures for all 
three considered distances chosen. As we see, the Bezier curve is ineffective for 
anti-symmetric cases.  

Compare the energy for each curve. The results of its calculation for Task 3 
are given in Table 3. The results for Bezier curves are very poor. So, the very big 
difference in energy can testify to the deficiency of the curve. As to GNB, the 
results for it are close to CBS because their lengths are similar. In any case, by 
varying the length of GNB the quality of it can always be better than that of CBS.  
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Fig. 8. Several calculated splines according to the Bezier method, BCS, and GNB, Task 3 
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T a b l e  3 .  Calculated energies for different splines for Task 3 

Curve BZ 120 BZ 150 BZ 180 BCS  GNB 280 GNB 294 GNB 310 

Quality 0.2080 0.2092 0.2173 0.1286 0.1373 0.1284 0.1225 

Example task 4 

This task is similar to the previous one but is not an antisymmetric. Point 1B  has 

coordinates )0, 0(  YX , second point 2B  has coordinates ( ,150( X  

)150 Y , the tangent in point 1B  is directed at an angle — 60 , while in point 

2B  the angle is equal to 0 .  

The best solution cannot be formulated intuitively, so here we will subjec-
tively assess the best solution below.  

Construct the splines according to different techniques, Fig. 10. As to CBS, 
the general subjective impression is that it is visually pleasant, and its calculated 
length is about 260. So, chose the auxiliary parameters in other splines as to 
approach this spline. As in Task 3, it is not possible for the Bezier splines – they 
deflect from CBS for any chosen parameter of distance. So, the results for Bezier 
splines are shown for three subjectively chosen distances – 100, 125, and 150. 
Nevertheless, they are not pleasantly looking, and this impression can be 
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Fig. 9. The graphs of curvatures obtained by different splines for Task 3
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supported by graphs of curvatures, Fig. 11, which has large local peaks of 
curvature, which is prohibited for “fair” spline [12]. As to GNB it completely co-
incides with CBS if we take its length as 260, Fig. 10. The increase or decrease of 
length leads to more loose or tight geometry, respectively.  

Informative are the graphs of curvatures concerning the current length coor-

dinate, Fig. 11. The curvature of CBS is a straight line (small fluctuations are due 

to a limited number of imaginary points), so evidently CBS is a Cornu spiral.  

As in above Task 3, note that GNB completely coincides with CBS in case, 

its length is equal to the length of CBS and can be more tight or loose depending 

on whether the length of GNB is shorter or longer than the length of CBS. Bezier 

curve demonstrates the large curvatures for all three distances chosen.   

Compare the energy for each curve. The results of its calculation for Task 4 

are given in Table 4. The results for Bezier curves are very poor and testify to the 

deficiency of the curve. As to GNB, the results for energy are close for CBS 

because their lengths are similar. In any case, by varying the length of GNB the 

quality of it can always be better than that of CBS.  

Fig. 10. Several calculated splines according to the Bezier method, BCS, and GNB, Task 4 
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Fig. 10. Several calculated splines according to the Bezier method, BCS, and GNB, Task 4 
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T a b l e  4 .  Calculated energies for different splines for Task 4 

Curve BZ 100 BZ 125 BZ 150 BCS GNB 250 GNB 260 GNB 270 
Quality 0.1156 0.1114 0.1153 0.0781 0.0835 0.0778 0.0753 

CONCLUSION  

The main attention of the paper is paid to the discussion of the advantages of 
CBS. On one hand, it is the four degrees of freedom simplified version of GNB, 
which operates by 6 degrees of freedom at each point. The beam theory origin of 
CBS gives a wide prospect for its modernization and application. On the other 
hand, the presented here version of CBS for the task of interpolation is reduced to 
the new original technique of construction of the Cornu spiral, which is widely 
recognized as one of the most aesthetic curves for the geometrical design purpose 
[62]. The application of the methodology of linear TMM makes this technique 
very simple and effective.  

In detail, the method and its comparison with Brazier spline and GNB is 
made on the example of two endpoints that are connected by spline with pre-
scribed tangent values. Several local conclusions can be drawn out.  

1. As to the Brazier spline with the employment of four points (two interme-
diate ones can be chosen arbitrarily to optimize the geometry), it generally dem-
onstrates poorer results. The resulting curvatures, especially for geometries, when 

1 

2 

3 

4 

5 

6 

7

7

3

1

2

6 5 

6

4

Fig. 11. The graphs of curvatures obtained by different splines for Task 4
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it changes the sign, behave very unsmoothly and exhibit very high local peaks. In 
this case, the calculated value of energy (1) is much higher than for CBS. 

2. CBS for all 4 tasks considered gives very pleasant results. In all cases, the 
curvature is either constant (symmetric cases) or linearly changes with the spline 
length coordinate. The only technical requirement for its realization is the inser-
tion of a sufficient number of imaginary points. 

3. GNB is the most effective technique for spline construction as well as for 
modeling the deformation of real flexible beams. Its drawback for the geometrical 
design is that the justified length of the beam should be chosen in advance. The 
value obtained by the CBS solution is a good initial approximation for further 
GNB application. The accuracy of the GNB technique is demonstrated in the ex-
ample of the well-known Horn task [42].  

4. Energy criteria of fairness (1) cannot be considered as a sole criterion for 
the spline construction. On the other hand, a very big value of it testifies to the 
drawback of the applied technique.    
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ДОБРОТНІСТЬ 2D КОРОТАЦІЙНОГО СПЛАЙНУ ПРОМЕНЯ ПОРІВНЯНО 
З ГЕОМЕТРИЧНО НЕЛІНІЙНО ПРУЖНИМ ПРОМЕНЕМ / І.В. Ориняк, 
П.М. Яблонський, Д.Р. Кольцов, О.Р. Чертов, Р.В. Мазурик 

Анотація. Метою статті є подальше дослідження властивостей і переваг не-
щодавно запропонованого коротаційного балкового сплайну (КБС). Акцент 
зроблено на розгляді досить простої задачі проведення сплайну між двома кін-
цевими точками із заданими дотичними в них. Як критерій «хорошості» 
сплайну обрано відоме поняття «добротності», яке являє собою інтеграл від 
квадрата кривини сплайну по його довжині, що походить із теорії пружної 
балки як енергія деформації. Порівняння «добротності» КБС виконано з де-
якими варіантами кубічної кривої Безьє (КБ) і геометрично нелінійної балки 
(ГНБ) зі змінною довжиною. Показано, що КБС є набагато ефективнішим, ніж 
КБ, для якої будь-яка спроба забезпечити кращу «добротність» КБ шляхом 
зміни відстані від кінцевих точок до двох проміжних точок, як правило, при-
зводить до гірших результатів порівняно з КБС. З іншого боку, ГНБ, або ін-
шими словами, крива «еластика», здатна давати дещо кращі значення «доброт-
ності» для оптимальної довжини балки. Це можна пояснити більш складною 
методологічною основою ГНБ, яка використовує 6 ступенів вільності в кож-
ному перерізі порівняно з 4-ма ступенями вільності в КБС. 

Ключові слова: коротаційний балковий сплайн, геометрично нелінійна балка, 
плоска задача, крива Безьє, добротність, метод початкових параметрів. 


