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Abstract. The article considers and discusses the comparison of interpolation and 
extrapolation methods of estimation of the boundary trajectory of electron beams 
propagated in ionized gas. All estimations have been computed using root-
polynomial functions to numerically solve a differential-algebraic system of equa-
tions that describe the boundary trajectory of the electron beam. By providing analy-
sis, it is shown and proven that in the case of solving a self-connected interpolation-
extrapolation task, the average error of the beam radius estimation is generally 
smaller. This approach was especially effective in estimating the focal beam radius. 
An algorithm for solving self-connected interpolation-extrapolation tasks is given, 
and its efficiency is explained. Corresponding graphic dependencies are also given 
and analyzed. 
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INTRODUCTION  

The development of electron beam technologies is very important today for ad-
vanced branches of industry, including metallurgy, mechanical engineering, in-
strument making, and microelectronic production, as well as automotive, aircraft, 
and space industries [1–10]. It is caused by the advantages of the electron beam as 
a technological instrument, such as its high total power and power density, the 
simplicity of changing and controlling focal beam parameters using electric and 
magnetic fields, as well as providing technological operation in the medium of 
pure vacuum [1–10]. 

For example, the use of electron beams today in the electronic industry is 
mostly oriented toward welding contacts of electronic devices, including cryo-
genic ones [8–12], deposition of ceramic dielectric films for high-quality capaci-
tors and microwave transmitters and receiver devices [9; 10; 13–15], as well as 
toward refining of silicon [16–19]. A special technical problem is obtaining and 
applying intensive electron beams in high-energy accelerators [7; 20–22]. 
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In such circumstances, the development of electron beam technologies and 
the sources of electrons are provided in two main directions. The first is improv-
ing the traditional electron guns with heated cathodes, and the second is the elabo-
ration of novel types of electron sources based on other physical principles. For 
example, electron sources based on gas discharges are elaborated today and suc-
cessfully applied in industry. 

Among this type of electron source, a special place occupied the high-
voltage glow discharge (HVGD) electron guns, which are generally characterized 
by the stable operation in the soft vacuum in the medium of different gases, in-
cluding active and noble ones, as well as by simplicity of construction [23–28]. 
Another well-known advantage of HVGD electron guns is their simplicity in con-
trolling discharge current and beam power. In the paper [29], the slow aerody-
namic control of HVGD current using electromagnetic valves has been consid-
ered, and the corresponding time regimes have been analyzed. Fast electric 
control of beam power by lighting the additional low-voltage discharge and 
changing the concentration of charged particles in anode plasma, as well as the 
corresponding time regimes for such fast regulation, have been considered in the 
paper [30]. 

Generally, the main advantage possibilities for using HVGD electron guns in 
industry are as follows: 

1. Refining of silicon for the microelectronic industry [16–20; 31]. 
2. Obtaining high-quality ceramic films for microelectronic production and 

for power-energetic insulators. Obtaining defense films for cutting instruments 
and heat-protection films for engines in the automotive, aircraft, and space indus-
tries by applying HVGD electron guns is also possible [33–37]. 

3. Development of 3-D printing technology by metals [38–40]. 
Therefore, in such circumstances, the development of novel mathematical 

approaches for the simulation of short-focus electron beams generated by HVGD 
electron guns is generally necessary. 

PERVIOUS RESEARCHES AND STATEMENT OF THE SIMULATION 

PROBLEM 

The problem is that today elaboration of HVGD electron guns is mostly provided 
by a combination of sophisticated theoretical approaches [23; 26–30] and com-
plex experimental works [24; 25], because simplified mathematical relations for 
estimation of the focal parameters of short-focus electron beams at low pressure 
in ionized gas don’t exist [23]. Also, in part of the book [23], general approaches 
for the simulation of electric field distribution and the trajectories of charged par-
ticles have been systematized. Corresponding recommendations for the simulation 
of HVDG electron guns have also been given in [23]. But in any case, such a so-
phisticated approach to designing this type of guns is significantly hinders the 
necessary development and implementation in industry of its novel, advanced 
constructions. Therefore, the finding of simplified mathematical relations for in-
terpolation, extrapolation, and approximation of the trajectories of short-focus 
electron beams in low-pressure ionized gas is necessary [23]. Corresponding rela-
tions for an intensive long-focus electron beam propagated in high vacuum in ion-
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ized gases are well-known [1–10]. In the paper [41], simple analytical relations 
for estimating the depth of welding seam penetration using short-focus electron 
beams formed by HVGD electron guns have been proposed. Corresponding simu-
lation results have been analyzed and compared with experimental data [41]. 
Therefore, it is clear that finding and analyzing the simple analytical relations for 
estimation of the focal parameters of short-focus electron beams propagated in 
ionized gas is really necessary. 

In the years 2019–2020 in the papers [42–44] a simple approach for estimat-
ing the parameters of short-focus electron beams propagated in ionized gas has 
been proposed. Generally, this approach is based on the suggestion that, in such 
physical conditions, the beam boundary trajectory can be described with high pre-
cision by the ravine function, which has one global minimum, and outside the re-
gion of minimum, this dependence is similar to a linear one. Such an approach 
generally corresponds to the main singularities of the physics of electron beams 
[1–10]. In the papers [42–44], by the numerical experiments have shown that such 
ravine functions with the precision of fractions of a percent can be described by 
root-polynomial functions, written as follows [42–45]: 
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where z is the longitudinal coordinate of beam propagation,  zrb  is the beam ra-

dius in corresponded cross-section by z  coordinate, n  is the degree of the poly-
nomial and the order of the root-polynomial function, and nCC 0 are the poly-
nomial coefficients. 

The generally obtained results of interpolation have been systematized and 
analyzed in the paper [45]. In this work, analytical relations for calculation of the 
coefficients of root polynomial functions (1) from second to fifth order n  have 
been obtained, and the interpolation task was solved relatively to numerical 
solution of the corresponded set of algebra-differential equations, which de-
scribed the boundary trajectory of an electron beam propagated in ionized gas 
[1–10; 23; 45]: 
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where acU  is the accelerating voltage, bI  is the electron beam current, p  is the 

residual gas pressure, z  is the longitudinal coordinate, br  is the radius of the 
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boundary trajectory of the electron beam, en  is the beam electrons’ concentration, 

0in  is the concentration of residual gas ions on the beam symmetry axis, em  is 

the electron mass, f  is the residual gas ionization level, iB  is the gas ionization 

level, 0ε  is the dielectric constant, ev  is the average velocity of the beam elec-
trons, c  is the light velocity, γ  is the relativistic factor, minθ  and maxθ  are the 
minimum and maximum scattering angles of the beam electrons, corresponding to 
Rutherford model [1–10], aZ  is the nuclear charge of the residual gas atoms, dz  
is the length of the electron path in the longitudinal direction at the current itera-
tion, and θ  is the average scattering angle of the beam electrons. 

In the work [45], it has also been proven that the ravine function (1) can be 
successfully used for interpolation of the results of solving the set of equations (2) 
with very small errors in the range of 0.1–8%. Corresponding dependences of 
interpolation error on z  coordinates are given in Fig. 1 [45]. But the main 
conclusion that has been made is that interpolation error strongly depends on the 
position of the base points of interpolation, whose number is always equal to 

1n . Generally, the ravine function, which is described by a set of relations (2), 
is always symmetric relatively to the plane fzz  , where fz  is the location of 

beam focus, which should correspond to the minimum of the ravine root-
polynomial function (1) [1–10]. Therefore, in [45], the symmetric position of the 
base point, which gives the minimal error of interpolation, has been considered. 
When the numerical solution is asymmetric, the error of interpolation is usually 
increasing several times [45]. Such estimations of asymmetric solutions also 
increase the error in defining focal beam parameters.  

The solid line corresponded to a second-order function, the dotted line — to 
a third-order function, the dashed line — to a fourth-order function, and the dash-
dotted line — to a fifth-order function. Model parameters: kV; 10acU  A; 5.0bI  

Pa 1.0p . 
Therefore, the transformation of the asymmetric dataset for solving the set of 

relations (2) into a symmetric one has been proposed, and the corresponding 
simulation results have been studied. In such conditions, the additional symmetric 
point is given to the analyzed data set, and the task of interpolation with defining 
the polynomial coefficients nCC 0  is solved between two symmetric points. 
And outside this symmetric region, the task of extrapolation for the same root-

Fig. 1. Errors of interpolation of the boundary trajectory of the electron beam depend on 
z coordinate [45] 

z, m
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polynomial function (1) has been solved, and the corresponding total error of 
interpolation and approximation has been defined. The general formulation of this 
task and the analysis of the obtained simulation results are given in the next 
sections of this article. 

In the paper [46], the possibility of using third-order root-polynomial 
functions for approximation experimental data about the boundary trajectories of 
short-focus electron beams in ionized gases as well as the corresponding 
algorithm of approximation has been considered. Another approach for the 
simulation of gas discharge electron beam devices with consideration of 
experimental data has been proposed in the paper [20].  

The provided analysis of relevant sources on methods of interpolation and 
extrapolation showed that other known methods for estimation of the ravine 
functions either give a large error or are generally not suitable for solving the 
problem of estimation boundary trajectories of electron beams [42–50]. For 
example, for polynomial interpolation and extrapolation [48; 49], eliminating 
unnecessary outliers of the estimated data, especially for high-order polynomials, 
is generally impossible. Such an estimate, with the exception of a large error, does 
not even provide sufficiently reliable qualitative results about the boundary 
trajectory of the electron beam. As a rule, the reason for these outliers is different 
values of the derivative of the ravine function in the region of the minimum and 
outside it. The main advantages of the proposed approach of interpolation using 
root-polynomial functions are as follows: 

1. The smoothing of the estimated root-polynomial function in the region of 
linear variation of numerical data. 

2. Obtaining, by this reason, only one global minimum in corresponded area. 
Generally, even for high-order root-polynomial functions, outliers and 

unnecessary extremums are not observed [45]. 
It is for this reason that the interpolation error is significantly smaller, especially 

for the symmetrical ravines data sets [45]. Therefore, the main subject of the 
presented research is to study the possibilities of transforming asymmetric sets of 
numerical data into symmetric ones using appropriate numerical methods of 
functional analysis [58–52]. 

FORMALIZING INTERPOLATION AND EXTRAPOLATION TASKS FOR 

ASYMMETRIC RAVINE FUNCTIONS DESCRIBED BOUNDARY 

TRAJECTORIES OF ELECTRON BEAM 

Generally, the regions of interpolation and approximation for right-hand and left-
hand asymmetric ravine data functions are shown in the Fig. 2. It is clear that the 
main idea of this approach is to choose the position of the boundary point bpz , 

which divides the whole range of providing calculations by z  coordinate into two 
regions: Interpolation Region IR and Extrapolation Region ER. 

By this way, the task of calculating the boundary trajectory of an electron 
beam comes down to the problem of interpolation of the symmetric ravine func-
tion on the region IE, which has been considered and described in the papers [42–
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45]. After that, the root-polynomial function (1) with the same coefficients is used 
for the Extrapolation Region ER. Considering, corresponding to Fig. 2, the values 
of the radiuses of Start Point SP startr  and End Point EP endr .  Also considering 

the full set of beam trajectory coordinates ]);1[(),,( Pii Nirz  , where PN  is the 

number of calculated points, has been obtained using a set of equations (2). In 

practice, the value of PN  is .104PN  On the contrary, the value of the basic 

points BPN  for solving complex interpolation-extrapolation tasks is significantly 

smaller: .1 nNBP  Also, 0i , the start value of variable i , is necessary to for-

malize the considered task by numerical algorithm. Using the previously de-
scribed assumptions, the position of the boundary point bpz  is defined by follow-

ing the recurrent arithmetic-logic relation [47]: 
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The formalized algorithm for solving the complex self-connected interpola-
tion-extrapolation task using relation (1)–(3) on the different regions of longitudi-
nal coordinate z  is described by the flowchart presented in Fig. 3. 

SOFTWARE FOR NUMERICAL EXPERIMENTS AND ESTIMATIONS OF 

ERRORS 

Using the algorithm described in the previous section of the article for finding the 
boundary point bz , both interpolation and self-connected interpolation-
extrapolation tasks have been solved. After that, the error of estimation was ana-
lyzed. Both tasks are solved in the region ],[ maxmin zzz . Such types of errors 
were considered and analyzed. 

Fig. 2. Right-hand (a) and left-hand (b) asymmetric ravine functions: IR — Interpolation 
Region; ER — Extrapolation Region; SP — Start Point; EP — End Point; BP — Bound-
ary Point 
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1. Maximal error maxε . 

2. Average error avε , which is generally defined by the well-known method of 
optimization technique [48–52] and of mathematical statistics [53; 54] as follows: 

 
p
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i
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where simr  is the radius of the electron beam, calculated numerically by the set of 
equations (2) using the fourth-order Runge-Kutt method [51; 52], and estr  is the 
value of the beam radius, estimated using relation (2). 

3. Error on focus position Fε . 

4. Error on focal beam radius rfε . 

Corresponding relations for defining the third and fourth types of errors have 
been considered in the papers [43–45]. 

Corresponding software for the simulation and estimation parameters of 
electron beams was realized in the Python programming language, including ad-
vanced libraries for scientific calculations and graphic libraries. For the correct 
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Fig. 3. Flowchart of considered algorithm for solving self-connected interpolation-
extrapolation task 
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location and including these libraries, a virtual environment, virtual memory, vir-
tual variables, and virtual disk have been created on the local computer [55; 56]. 

Let’s consider some results of the simulation and errors in estimations. 
Task 1. Acceleration voltage acU  is 15 kV; beam current bI  is 8.5 A; op-

eration pressure in the guiding channel p  is 4.5 Pa; the initial radius of the elec-
tron beam startr  is 8.5 mm; the initial angle of convergence of the electron beam 
θ  is 150; the starting point startz  is 0.1 m; the first end point endz  is 0.15 m; and 
symmetrical point bz  with the same radius is m. 148.0  That is, the length of the 
symmetrical segment for the highest interpolation accuracy:  m 1.0 – m 148.0  

m. 048.0   
For this example, dependence )(zr , defined using the set of equations (2), is 

presented in Fig 4. 

It is clear that the dependence presented in Fig. 4 is a right-hand asymmetric 
ravine function. Errors in solving interpolation and self-connected interpolation-
extrapolation tasks for this example are presented in Table 1. All errors have been 
estimated for different order of root-polynomial functions n and length of extrapo-
lation region addL . Task parameter addL  is given in Table 1 in absolute value, in 
meters, and relatively to the length of the interpolation region IR, in percents. 

The dependences of estimation errors for two fourth-order root-polynomial 
functions that have been obtained for solving interpolation and self-connected 
interpolation-extrapolation tasks are presented in Fig. 5. It is clear that the level of 
maximal error is similar, nearly 3%, but in the case of extrapolation error in the 
focal region, it is generally smaller. Corresponding data from Table 1 are as 

follows; interpolation: % 06.0 ε F , % 1056.7 ε 3–rf ; extrapolation: 

% 0041.0 ε F , % 1082.1 ε 6–rf . Data from Table 1 show also that if for the 

extrapolation task the maximal error value εmax can be greater, then in the case of 
interpolation, the value of the average error for the extrapolation task avε  is 
generally smaller. The dependences of the value of avε  on the relative length of 
the extrapolation region ER for the tasks of interpolation and self-connected 
interpolation-extrapolation are presented at Fig. 6. 

Fig. 4. Dependence r(z) for kV, 15acU  A 5.8 bI , Pa 5.4 p , end point m 15.0 end z
(screen copy) 

r,
 m

 

z, m
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T a b l e  1 .  Interpolation and extrapolation errors for Task 1 

maxε , % avε , % Fε , % rfε , % 
n Extrapo-

lation 
Interepo-

lation 
Extrapo-

lation 
Interepo-

lation 
Extrap-
olation

Interepo-
lation 

Extrapo-
lation 

Interepo-
lation 

% / m 

,addL
 

2 2.29 2.84 1.26 1.4476 0  0.08 5.28·10–13 1.7·10–3 

3 5.92 6.58 3.25 3.55 0  0.02 0.6 0.635 

4 0.66 0.844 0.2734 0.31 0  0.004 7.7·10–11 2.1·10–4 
5 2.08 2.27 0.85 0.925 0 0.004 0.44 0.47 
6 0.14 0.203 0.063 0.07 0 0.02 2.4·10–8  8.5·10–5 

2·10–3/ 4.2 

2 2.3 3.243 1.25 1.546 1.11·10-14 6·10–3 4.57·10-13 6·10–3 
3 5.914   7.14 3.2 3.76 0  0.0041 0.629  7.6·10–3 
4 0.649  1.0 0.27 0.34 0.0041 0.06 1.82·10–6 7.56·10–3 
5 2.2  2.58 0.884 1.03 0.0041  0.02 0.48 0.53 
6 0.27   0.256 0.084 0.0654 0  0.041 3.51·10–9 4·10–4 

3·10–3 / 6.25 

2 2.3 3.7 1.254 1.66  0  0.22 1.23·10-13 0.013 
3 5.9 7.71 3.197 3.973 0 4.1·10–3 0.65 0.744 
4 0.86 1.17 0.2765 0.38 0.0042 0.1 7.1·10–7 1.878·10–3 
5 2.33 2.93 0.93 1.14 0.0042 0.6 0.52 0.03345 
6 0.424 0.316 0.07 0.1 0  0.067 2.23·10–8 10–3 

4·10–3 / 8.3 

2 2.29 4.113 1.27 1.782 2.23·10-14 0.291 2.46·10–13 0.0224 
3 5.9 8.3 3.2 4.195 0 8.5·10–3 0.68 0.8 
4 1.15 1.35 0.288 0.4264 0  0.14 3.38·10–11 3.86·10–3 
5 2.474 3.311 1.0 1.2646 0.0043 0.047 0.5637 0.67 
6 0.56 0.383 0.08 0.1166 0  9.376·10–2 2·10–8 2·10–3 

5·10–3 / 10.4 

2 4.89  6.6 1.4573 2.6 1.11·10-14 0.676 4.39·10-13 0.1263 
3 9.52  11.3 3.5 5.4 0 0.02 0.8  1.1443 
4 2.97  2.45 0.42 0.76 0 0.44 6.35·10–11 3.56·10–2 
5 4.17  5.9 1.39 2.07 4.7·10–3 1.77 0.812 1.1226 
6 1.69  0.83 0.17 0.2756 0 0.34 1.12·10–8 0.0273 

10–2 / 20.8 

 

Fig. 5. Dependences of electron beam radius (top) and error of estimation (bottom) on z
coordinate for the interpolation task (a) and the self-connected interpolation-
extrapolation task (b). kV 15acU ; A 5.8 bI ; Pa 5.4  p ; 4 n ; m 16.0 end z . On 
the top dependence )(zr , the straight line corresponds to the obtained numerical solution, 
and the dash line corresponds to estimations (screen copy)
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Task 2. acU  is 15 kV; bI  is 5.5 A; p  is 4.5 Pa; startr  is 10.3 mm; θ  is 150; 

startz  is 0.1 m; and endz  is 0.15 m. Since in this case endstart rr   , symmetrical 

point bz  with the same radius, as endr , is m. 101743.0bz  That is, the length of 
the symmetrical segment for the highest interpolation accuracy:  

 ,m 045257.0 m 101743.0  –m 147.0   or, in relative units:  

 %. 85.3  % 100m 704525.0/m 001743.0   

In the next steps of providing the calculations, we will reduce the coordinate 

endz  of the end point of the considered interval. That is, take .147.0 endz  Thus, 
we bring it closer to the extremum of the )(zr  ravine function, or to the position 

of the focus of the electron beam fz . In this way, we will decrease the 

interpolation interval IR and increase the extrapolation interval ER. For this task, 
dependence )(zr , defined using the set of equations (2), is presented in Fig 7. 

z, m

r,
 m

 

b

Contiued Fig. 5 

Fig. 6. Dependences of average error εav of interpolation (top) and end interpolation-
extrapolation (bottom) tasks on the value of extrapolation region ER relative to interpola-
tion region IR addL  for the root-polynomial functions of different order n . Right-hand

ravine function, Task 1 (screen copy)

L
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It is clear that the dependence presented in Fig. 7 is a left-hand asymmetric 
function. Errors in solving interpolation and self-connected interpolation-
extrapolation tasks for this example are presented in Table 2. 

T a b l e  2 .  Interpolation and extrapolation errors for Task 2 

maxε , % εav , % εF , % εrf , % 
n Extrapo-

lation 
Interepo-

lation 
Extrapo-

lation 
Interepo-

lation 
Extrap-
olation

Interepo-
lation 

Extrapo-
lation 

Interepo-
lation 

,

m  / %
addL  

2 1.85 2.5215 1.0 1.224 0 0.1 6.68·10–13 2.86·10–3 
3 4.8 5.6522 2.6 2.98 0 3.77·10–3 0.46 0.5 
4 0.497 0.7 0.2 0.247 0 2.34·10–4 6.37·10–11 0.034 
5 1.4255 1.624 0.593 0.6754 0 7.56·10–3 0.29 0.317 
6 0.1716 0.1737 4.236·10–2 5.31·10–2 0 2·10–2 1.6·10–8 9.1·10–3 

1.75·10–3 / 
3.8 

2 1.6 2.6 0.88 1.1743 1.11·10-14 0.16 1.4·10–13 6.5·10–3 
3 4.2 5.51 2.27 2.81 0 3.7·10–2 0.4 0.45 
4 0.583 0.752 0.1722 0.236 0 5·10–2 3.69·10–12 5.16·10–4 
5 1.19 1.74 0.5 0.61 0 7·10–3 0.243 0.2764 
6 0.26 0.19 0.037 0.05 0 0.026 1.53·10–8 1.55·10–4 

2.75·10–3 / 
6.35  

2 1.686 2.68 0.782 1.1378 0 0.21 2.28·10–13 0.0112 
3 3.6427 5.36 1.9842 2.65 0 7.2·10–3 0.346 0.41 
4 0.78 0.78 0.152 0.23 0 6.5·10–2 8.73·10–11 8.26·10–4 
5 1.13 1.3256 0.43 0.55 0 7.236·10–3 0.2 0.24 
6 0.3422 0.2 0.0343 0.05 0 3.26·10–2 1.33·10–9 2.1·10–4 

3.75·10–3 / 
9.1 

2 2.46 2.8 0.64 1.1 1.11·10-14 0.3 6.68·10–13 2.262·10–2 
3 4.94 2.36 1.576 5.1 0 10–2 0.256 0.337 
4 1.17243 0.8332 0.14 0.2293 3.4·10–3 1.33·10–3 5.62·10–7 8·10–2 
5 1.735 1.07 0.3427 0.46 0 10–2 0.134 0.18 
6 0.527 0.235 3.77·10–2 5.1·10–2 0 3.46·10–2 3.93·10–13 2.72·10–4 

5.75·10–3 / 
15.43 

2 4.224 3.0 0.65 1.225 3.34·10-14 0.44 2.81·10–13 4.74·10–2 
3 8.42 4.34 1.4 1.83 0 0.012 0.105 0.1915 
4 2.1 0.934 0.22 0.27 3.1·10–3 8.6·10–2 7.65·10–7 1.45·10–3 
5 3.354 0.86 0.39 0.327 0 1.2·10–2 4·10–2 8·10–2 
6 1.235 0.31 0.12 6.9·10–2 3.1·10–3 3.1·10–2 3.81·10–6 2.15·10–4 

1.075·10–2 

/ 39.4 

r,
 m

 

z, m 

Fig. 7. Dependence )(zr  for kV, 15acU  A 5.8 bI , and end point m 147.0 end z
(screen copy) 
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The dependences for estimation error for fourth-order root-polynomial 
functions for interpolation and self-connected interpolation-extrapolation tasks are 
presented in Fig. 8. It is clear that the level of maximal error for the task of 
interpolation is %, 05.0 εmax   and for the self-connected interpolation-
extrapolation task, it is twice as high, %. 1.0 εmax   But in this case, as in the 
previous example, the extrapolation error in the focal region is generally smaller. 
The corresponding data from Table 2 are as follows. Interpolation: 

%, 1034.2 ε 4–F  %; 034.0 ε rf  extrapolation: %, 0 ε F  %. 1037.6 ε 11–rf  

In this task, the value of the average error for extrapolation avε  is also generally 
smaller. The dependences of the value of avε  on the relative length of the 
extrapolation region ER for the interpolation and self-connected interpolation-
extrapolation tasks are presented in Fig. 9. 

Another testing numerical experiments for right-hand and left-hand ravine nu-
merical data, which have been provided, give the similar results of error estimation. 

For the output of digital and graphic information, advanced libraries of the 
Python programming language have been used, such as tkinter, numpy, and mat-
plotlib, which have been located on the virtual disk and included separately [55; 
56]. A graphic interface window of elaborated software for the bookmarking “Er-
rors of Estimation” is presented in Fig. 10. For saving and further analyzing the 
obtained graphic information, the bottom “Save Graph” has been provided in the 
interface window. 

r,
 m

 

z, m a

r,
 m

 

z, m b
Fig. 8. Dependences of electron beam radius (top) and error of estimation (bottom) on z 
coordinate for the interpolation task (a) and the self-connected interpolation-
extrapolation task (b). kV 15acU ; A 5.5 bI ; Pa 5.5  p ; 4 n ; m. 147.0 end z  On 
the top dependences, the )(zr  straight line corresponds to the obtained numerical solu-
tion, and the dash line corresponds to estimations (screen copy) 
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ANALYSIS OF OBTINED RESULTS AND DISCUSSION 

The main conclusions about the estimation errors of interpolation and self-
connected interpolation tasks are as follows: 

1. Usually, the root-polynomial functions (1) of odd order have a larger error 
value than the functions of even order. Generally, the authors have already dis-
cussed this problem in the paper [45], and it is caused by the location of base 

Fig. 9. Dependences of average error avε  of interpolation (top) and interpolation-

extrapolation (bottom) tasks on value of extrapolation region ER relative to interpolation 
region IR addL  for the root-polynomial functions of different order .n  Left-hand ravine 

function. Task 2 (screen copy) 

L

Fig. 10. Interface window for bookmarking “Errors of Estimation” in elaborated 
computer software 
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points. For functions of even order, the number of base points is odd, and in such 
a condition, one point is located in the minimum of the ravine function data, and 
other points are located evenly symmetrically to it. Such a location is considered 
optimal from the point of view of obtaining minimal interpolation error [45]. 
Since in the case of the odd order of the root-polynomial function and the even 
number of base points, this condition can’t be fulfilled, the value of error, espe-
cially in the region of minimum of the ravine function, is usually greater [45]. In 
any case, the way to select the base points strongly influences the value of the 
maximal and average errors for solving interpolation and self-connected interpo-
lation-extrapolation tasks. 

2. The values of maximal and average errors for interpolation and extrapola-
tion tasks in the cases of right-hand and left-hand asymmetric data sets are gener-
ally similar. It is generally clear by comparing the numerical data given in Table 1 
and Table 2. 

3. The maximal error of extrapolation increases with the enlarging of the in-
terval of extrapolation ER .addL  The maximum error of extrapolation usually cor-
responds to the end point of this interval .endz  Corresponding dependences 

)( addav L  are given in Fig. 6 and Fig. 9. 
4. In the case of solving self-connected interpolation-extrapolation tasks, the 

value of the average error is generally smaller, even in cases of large values of the 
interval of extrapolation ER .addL  Corresponding digital data are given in Table 1 
and Table 2. 

5. In the case of solving a self-connected interpolation-extrapolation task, the 
values of errors in defining focal beam parameters Fε  and rfε  are generally 

smaller. In most cases, for this task, the error of defining focus position is absent; 
.0ε F  Corresponding digital data are given in Table 1 and Table 2. 

6. For the task of interpolation, the maximal error εmax usually corresponds to 
the midpoint of the interval between two selected base points. Corresponding de-
pendences )(zav  are given in Fig. 5 and Fig. 8. 

7. In any case, using the self-connected interpolation-extrapolation method is 
very effective from the point of view of obtaining the minimal error of numerical 
data estimation in the region of the position of the focus of an electron beam. Cor-
responding to Table 1 and Table 2, in some cases the error of interpolation-
extrapolation estimations by the focal beam radius rfε  is significantly small, re-

sulting in a range of %]. 10 %; 10[ 7–13–  
Other features of estimating errors in solving interpolation, extrapolation, 

and approximation tasks for the boundary trajectory of electron beams by using 
root polynomial functions of the form (1), including comparison with experimen-
tal data, are the subject of separate further studies. 

All research described in this paper has been provided in the Scientific and 
Educational Laboratory of Electron Beam Technological Devices of the National 
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnical Institute”. 

CONCLUSION 

The conducted research and the obtained modeling data showed that the use of the 
root polynomial function (1) to solve self-connected tasks of the interpolation-
extrapolation problem for ravine digital data obtained as a result of the numerical 
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solution of the system of algebraic-differential equations (2) and describing the 
boundary trajectory of a short-focus electron beam, propagating in ionized gas are 
very effective and provide significantly small estimation errors.  

The obtained average error of estimation is in the range of 
%, 5.1 – 05.0 ε av  and the error of estimation of focal beam radius is in the range 

of %. 6.0 –10 ε 13–F  An estimations of the value of the average error on the 
length of the extrapolation region ER relative to the length of the extrapolation 
region IR are also obtained, and the corresponding graphic dependences 

)(ε addav L  are given and analyzed. It is also significant that the average errors of 
solving self-connected problems of interpolation-extrapolation digital data for 
right-hand and left-hand asymmetric ravine functions aresimilar. 

Obtained simulation results can be interesting for experts in the physics of 
electron beams, in the elaboration of HVGD electron guns, and in applying ad-
vanced electron-beam technologies in different branches of modern industry. 
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ПОРІВНЯННЯ ЗАСТОСУВАННЯ МЕТОДІВ ІНТЕРПОЛЯЦІЇ ТА 
ЕКСТРАПОЛЯЦІЇ ГРАНИЧНИХ ТРАЄКТОРІЙ КОРОТКОФОКУСНИХ 
ЕЛЕКТРОННИХ ПУЧКІВ ІЗ ВИКОРИСТАННЯМ КОРЕНЕВО-
ПОЛІНОМІАЛЬНИХ ФУНКЦІЙ / І.В. Мельник, А.В. Починок, М.Ю. Скрипка 

Анотація. Розглянуто й обговорено порівняння методів інтерполяційного та 
екстраполяційного оцінювання граничної траєкторії електронних пучків, які 
поширюються в іонізованому газі. Оцінювання виконано з використанням ко-
ренево-поліноміальних функцій для числового розв’язання системи алгебро-
диференціальних рівнянь, що описують граничну траєкторію електронного 
пучка. Показано та доведено, що у разі розв’язання взаємозв’язаної задачі ін-
терполяції-екстраполяції середня похибка оцінювання радіуса променя, зазви-
чай, є меншою. Особливо ефективним виявилося використання цього підходу 
в оцінюванні фокального радіуса променя. Наведено алгоритм розв’язання  ін-
терполяційно-екстраполяційної задачі та пояснено його ефективність. Наведе-
но та проаналізовано відповідні графічні залежності. 

Ключові слова: інтерполяція, екстраполяція, коренево-поліноміальна функ-
ція, яружна функція, електронний пучок, гранична траєкторія. 

 
 


